Countable sets \& Cantor's diagonal argument

April 6 ${ }^{\text {th }}, 2021$

Countable sets - 1

Notation

In what follows, we set $\aleph_{0}:=|\mathbb{N}|$ (pronounced aleph nought).

Definition
 A set E is countable if either E is finite or $|E|=\aleph_{0}$.

Countable sets - 2

Proposition

(1) $|\mathbb{N} \backslash\{0\}|=\aleph_{0}$
(2) $|\{n \in \mathbb{N}: n \equiv 0 \bmod 2\}|=\aleph_{0}$
(3) $|\mathbb{N} \times \mathbb{N}|=\aleph_{0}$

Proof.

(1) The function $f: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}$ defined by $f(n)=n+1$ is bijective with inverse $f^{-1}: \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N}$ defined by $f^{-1}(n)=n-1$.
(2) The function $f: \mathbb{N} \rightarrow\{n \in \mathbb{N}: n \equiv 0 \bmod 2\}$ defined by $f(n)=2 n$ is bijective.
(3) Define $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by $f(a, b)=2^{a} 3^{b}$. Then f is injective by uniqueness of the prime decomposition. Thus $|\mathbb{N} \times \mathbb{N}| \leq \aleph_{0}$. Besides $\{0\} \times \mathbb{N} \subset \mathbb{N} \times \mathbb{N}$, thus $\aleph_{0}=|\{0\} \times \mathbb{N}| \leq|\mathbb{N} \times \mathbb{N}|$. Hence $|\mathbb{N} \times \mathbb{N}|=\aleph_{0}$ by Cantor-Schröder-Bernstein theorem.

Countable sets - 3

Proposition

If $S \subset \mathbb{N}$ is infinite then $|S|=\aleph_{0}$.
Proof. Let's define the function $f: \mathbb{N} \rightarrow S$ by induction as follows.
Set $f(0)=\min S$ (which is well-defined by the well-ordering principle since $S \neq \varnothing$ as it is infinite). And then, assuming that $f(n)$ is already defined, we set $f(n+1)=\min \{k \in S: k>f(n)\}$ (which is well-defined by the well-ordering principle: the involved set is non-empty since otherwise S would be finite).
It is easy to check that f is injective (note that $\forall n \in \mathbb{N}, f(n+1)>f(n)$), therefore $\aleph_{0} \leq|S|$.
But since $S \subset \mathbb{N}$, we also have $|S| \leq \aleph_{0}$.
Thus, by Cantor-Schröder-Bernstein theorem, $|S|=\aleph_{0}$.

Countable sets - 4

Proposition

A set E is countable if and only if $|E| \leq \aleph_{0}$ (i.e. there exists an injection $f: E \rightarrow \mathbb{N}$), otherwise stated E is countable if and only if there exists a bijection between E and a subset of \mathbb{N}.

Proof.
\Rightarrow Assume that E is countable.

- Either E is finite and then there exists $n \in \mathbb{N}$ and a bijection $g:\{k \in \mathbb{N}: k<n\} \rightarrow E$. We define $f: E \rightarrow \mathbb{N}$ by $f(x)=g^{-1}(x)$ (which is well-defined since $\{k \in \mathbb{N}: k<n\} \subset \mathbb{N}$). And f is an injection since g^{-1} is.
- $\operatorname{Or}|E|=\aleph_{0}$, i.e. there exists a bijection $f: E \rightarrow \mathbb{N}$.
\Leftarrow Assume there exists an injection $f: E \rightarrow \mathbb{N}$.
Assume that E is infinite. Then $|E|=|f(E)|=\aleph_{0}$.
Thus either E is finite or $|E|=\aleph_{0}$. In both cases E is countable.

Countable sets -5

Theorem

A countable union of countable sets is countable, i.e. if I is countable and if for every $i \in I, E_{i}$ is countable then $\bigcup_{i \in I} E_{i}$ is countable.

Proof.

WLOG we may now assume that $I \subset \mathbb{N}$.
Let $i \in I$. Since E_{i} is countable, there exists an injection $f_{i}: E_{i} \rightarrow \mathbb{N}^{1}$.
We define $\varphi: \bigcup_{i \in I} E_{i} \rightarrow \mathbb{N} \times \mathbb{N}$ by $\varphi(x)=\left(n, f_{n}(x)\right)$ where $n=\min \left\{i \in I: x \in E_{i}\right\}$ (which exists by the well-ordering principle).
It is not difficult to check that φ is injective.
Therefore $\bigcup_{i \in I} E_{i}$ is countable.
${ }^{1}$ We use the axiom of countable choice here.

Countable sets - 6

Theorem

If E is an infinite set then there exists $T \subset E$ such that $|T|=\aleph_{0}$, i.e. \aleph_{0} is the least infinite cardinal.

Proof.

For $n \in \mathbb{N}$, set $E_{n}=\{S \in \mathcal{P}(E):|S|=n\}$.
Since E is infinite, it contains a subset of cardinal n, therefore $E_{n} \neq \varnothing$.
So for every $n \in \mathbb{N}$, we can pick ${ }^{2} S_{n} \in E_{n}$.
Then $T:=\bigcup_{n \in \mathbb{N}} S_{n}$ is countable as a countable union of countable sets.
Besides, $\forall n \in \mathbb{N}, S_{n} \subset T$ and $\left|S_{n}\right|=n$.
Therefore T is infinite since for every $n \in \mathbb{N}$ it contains a subset of cardinal n.
Thus $|T|=\aleph_{0}$ as an infinite countable set.

[^0]
Countable sets - 7

Theorem

$|\mathbb{Z}|=\aleph_{0}$
Proof 1. Since $\mathbb{N} \subset \mathbb{Z}$, we have $|\mathbb{N}| \leq|\mathbb{Z}|$.
Define $f: \mathbb{Z} \rightarrow \mathbb{N}$ by $f(n)=\left\{\begin{array}{ll}2^{n} & \text { if } n \geq 0 \\ 3^{-n} & \text { if } n<0\end{array}\right.$.
Then f is injective by uniqueness of the prime factorization. Therefore $|\mathbb{Z}| \leq|\mathbb{N}|$. Hence $|\mathbb{Z}|=|\mathbb{N}|$ by Cantor-Schröder-Bernstein theorem.

Proof 2.
Define $f: \mathbb{Z} \rightarrow \mathbb{N}$ by $f(n)=\left\{\begin{array}{cc}2 n & \text { if } n \geq 0 \\ -(2 n+1) & \text { if } n<0\end{array}\right.$.
Then f is bijective with inverse $f^{-1}(m)=\left\{\begin{array}{cl}k & \text { if } \exists k \in \mathbb{N}, m=2 k \\ -k-1 & \text { if } \exists k \in \mathbb{N}, m=2 k+1\end{array}\right.$ Therefore $|\mathbb{Z}|=|\mathbb{N}|$.

Countable sets - 8

Theorem

$|\mathbb{Q}|=\aleph_{0}$
Proof 1. Note that $\mathbb{N} \subset \mathbb{Q}$, therefore $\aleph_{0} \leq|\mathbb{Q}|$.
Define $f: \mathbb{Q} \rightarrow \mathbb{Z} \times \mathbb{Z}$ by $f\left(\frac{a}{b}\right)=(a, b)$ where $\frac{a}{b}$ is in lowest form.
Then f is injective and thus $|\mathbb{Q}| \leq|\mathbb{Z} \times \mathbb{Z}|$. Since $|\mathbb{Z}|=|\mathbb{N}|$, we get $|\mathbb{Z} \times \mathbb{Z}|=|\mathbb{N} \times \mathbb{N}|=\aleph_{0}$. We conclude using Cantor-Schröder-Bernstein theorem.

Proof 2. Note that $\mathbb{N} \subset \mathbb{Q}$, therefore $\aleph_{0} \leq|\mathbb{Q}|$.
Moreover $f: \mathbb{Z} \times \mathbb{N} \backslash\{0\} \rightarrow \mathbb{Q}$ defined by $f(a, b)=\frac{a}{b}$ is surjective. Thus $|\mathbb{Q}| \leq|\mathbb{Z} \times \mathbb{N} \backslash\{0\}|$.
Since $|\mathbb{Z}|=|\mathbb{N}|$ and $|\mathbb{N} \backslash\{0\}|=|\mathbb{N}|$, we get $|\mathbb{Z} \times \mathbb{N} \backslash\{0\}|=|\mathbb{N} \times \mathbb{N}|=\aleph_{0}$.
We conclude using Cantor-Schröder-Bernstein theorem.
Proof 3. Note that $\mathbb{N} \subset \mathbb{Q}$, therefore $\aleph_{0} \leq|\mathbb{Q}|$.
Since $\mathbb{Q}=\bigcup_{(a, b) \in \mathbb{Z} \times \mathbb{N} \backslash\{0\}}\left\{\frac{a}{b}\right\}, \mathbb{Q}$ is countable as a countable union of countable sets. So $|\mathbb{Q}| \leq \aleph_{0}$.
We conclude using Cantor-Schröder-Bernstein theorem.

Cantor's diagonal argument - 1

Theorem: \mathbb{R} is not countable (Cantor 1874, the proof below dates back to 1891)

$\aleph_{0}<|\mathbb{R}|$
Proof. We are going to prove that there is no surjection $\mathbb{N} \rightarrow \mathbb{R}$ (and hence no such bijection).
Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function. Given $n \in \mathbb{N}$, we know that $f(n)$ has a unique proper decimal expansion $f(n)=\sum_{k=0}^{+\infty} a_{n k} 10^{-k}$ where $a_{n 0} \in \mathbb{Z}$ and $a_{n k} \in\{0,1, \ldots, 9\}$ for $k \geq 1$, i.e.

$$
\begin{aligned}
f(0) & =a_{00} \cdot a_{01} \\
a_{02} & a_{03}
\end{aligned} a_{04} a_{05} \ldots
$$

Given $k \in \mathbb{N}$, we set $b_{k}= \begin{cases}1 & \text { if } a_{k k}=0 \\ 0 & \text { otherwise }\end{cases}$
Then $b=\sum_{k=0}^{+\infty} b_{k} 10^{-k}$ is a real number written with its unique proper decimal expansion.
Note that for every $n \in \mathbb{N}, b \neq f(n)$ since $b_{n} \neq a_{n n}$ (we use the uniqueness of the proper decimal expansion).
Therefore $b \notin \operatorname{Im}(f)$ and f is not surjective.

Cantor's diagonal argument - 2

Cantor's theorem

Given a set $E,|E|<|\mathcal{P}(E)|$.
Proof. We are going to use Cantor's diagonal argument again.
First, note that $g: E \rightarrow \mathcal{P}(E)$ defined by $g(x)=\{x\}$ is injective, therefore $|E| \leq|\mathcal{P}(E)|$.
We are going to prove that there is no surjection $E \rightarrow \mathcal{P}(E)$ (and hence no such bijection).
Let $f: E \rightarrow \mathcal{P}(E)$ be a function. Define $S=\{x \in E: x \notin f(x)\}$.
Let $x \in E$.

- If $x \in f(x)$ then $x \notin S$.
- Otherwise, if $x \notin f(x)$ then $x \in S$.

Therefore $f(x) \neq S$ since one contains x but not the other one.
Thus $S \notin \operatorname{Im}(f)$ and f is not surjective.

Remark

There is no greatest cardinal.

$|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$

We already know that $|\mathbb{N}|<|\mathbb{R}|$ and that $|\mathbb{N}|<|\mathcal{P}(\mathbb{N})|$. Actually $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$.

Theorem

$|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$

Proof.
Define $f: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{R}$ by $f(S)=\sum_{n \in S} 10^{-n}$.
Then f is injective by uniqueness of the proper decimal expansion. Thus $|\mathcal{P}(\mathbb{N})| \leq|\mathbb{R}|$.
Define $g: \mathbb{R} \rightarrow \mathcal{P}(\mathbb{Q})$ by $g(x)=\{q \in \mathbb{Q}: q<x\}$.
Then g is injective. Indeed, let $x, y \in \mathbb{R}$ be such that $x<y$. Since \mathbb{Q} is dense in \mathbb{R}, there exists $q \in \mathbb{Q}$ such that $x<q<y$. So $q \notin g(x)$ but $q \in g(y)$. Therefore $g(x) \neq g(y)$.
Hence $|\mathbb{R}| \leq|\mathcal{P}(\mathbb{Q})|=|\mathcal{P}(\mathbb{N})|$ (prove the last equality using that $|\mathbb{Q}|=|\mathbb{N}|$).
We conclude thanks to Cantor-Schröder-Bernstein theorem.

There is no set of all sets

Theorem

There is no set containing all sets.
Proof. Assume that such a set V exists.
Then the powerset $\mathcal{P}(V)$ exists too and $\mathcal{P}(V) \subset V$ by definition of V.
Therefore $|\mathcal{P}(V)| \leq|V|$, but $|V|<|\mathcal{P}(V)|$ by Cantor's theorem. Hence a contradiction.
We may similarly prove that there is no set containing all finite sets, or even all singletons.

Theorem

There is no set containing all singletons.
Proof. Assume that the set S of all singletons exists.
Define $f: \mathcal{P}(S) \rightarrow S$ by $f(x)=\{x\}$ (which is well-defined).
Since f is one-to-one, we get that $|\mathcal{P}(S)| \leq|S|$.
Which contradicts $|S|<|\mathcal{P}(S)|$ (Cantor's theorem).

[^0]: ${ }^{2}$ We use the axiom of countable choice here.

