Cardinal comparison

April ${ }^{\text {st }}, 2021$

Cardinal comparison - 1

Definition

Given two sets E and F, we write $|E| \leq|F|$ if there exists an injective function $f: E \rightarrow F$.

Cardinal comparison - 1

Definition

Given two sets E and F, we write $|E| \leq|F|$ if there exists an injective function $f: E \rightarrow F$.

Remark

It is compatible with the definition in the finite case.

Cardinal comparison - 2

Cantor-Schröder-Bernstein theorem

Given two sets E and F, if $|E| \leq|F|$ and $|F| \leq|E|$ then $|E|=|F|$.

Cardinal comparison - 2

Cantor-Schröder-Bernstein theorem

Given two sets E and F, if $|E| \leq|F|$ and $|F| \leq|E|$ then $|E|=|F|$.

Remark

The above theorem is less trivial than it seems at first glance. It states that: if there exist injections $f: E \rightarrow F$ and $g: F \rightarrow E$ then there exists a bijection $h: E \rightarrow F$.

Cardinal comparison - 2

Cantor-Schröder-Bernstein theorem

Given two sets E and F, if $|E| \leq|F|$ and $|F| \leq|E|$ then $|E|=|F|$.

Remark

The above theorem is less trivial than it seems at first glance. It states that: if there exist injections $f: E \rightarrow F$ and $g: F \rightarrow E$ then there exists a bijection $h: E \rightarrow F$.

- 1887: Cantor stated the theorem with no proof.
- 1887: Dedekind proved it but didn't publish his proof (it was found after his death).
- 1895: Cantor published a proof (nonetheless, the proof relies on the trichotomoy principle which Tarski later proved to be equivalent to the axiom of choice).
- 1897: Bernstein, Schröder and Dedekind independently found proofs of the theorem (without the axiom of choice). But Schröder's proof later appeared to be incorrect.
- Several other proofs are now known, e.g. Zermelo $(1901,1908)$ and König (1906).

Cantor-Schröder-Bernstein theorem: strategy of the proof - 1

We are given two injective functions $f: E \rightarrow F$ and $g: F \rightarrow E$.
Fix $x \in E$. Set $x_{0}=x \in E$ and then we define the next terms inductively by

- if $x_{n} \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_{n} by g (if it exists, otherwise we stop).
- if $x_{n} \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_{n} by f (if it exists, otherwise we stop).

Cantor-Schröder-Bernstein theorem: strategy of the proof - 1

We are given two injective functions $f: E \rightarrow F$ and $g: F \rightarrow E$.
Fix $x \in E$. Set $x_{0}=x \in E$ and then we define the next terms inductively by

- if $x_{n} \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_{n} by g (if it exists, otherwise we stop).
- if $x_{n} \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_{n} by f (if it exists, otherwise we stop).

Then we face three possible cases:
(1) or the chain ends with an element in F, and then we put x in E_{F},

Cantor-Schröder-Bernstein theorem: strategy of the proof - 1

We are given two injective functions $f: E \rightarrow F$ and $g: F \rightarrow E$.
Fix $x \in E$. Set $x_{0}=x \in E$ and then we define the next terms inductively by

- if $x_{n} \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_{n} by g (if it exists, otherwise we stop).
- if $x_{n} \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_{n} by f (if it exists, otherwise we stop).

Then we face three possible cases:
(2) Either the chain ends with an element in E, and then we put x in E_{E},

Cantor-Schröder-Bernstein theorem: strategy of the proof - 1

We are given two injective functions $f: E \rightarrow F$ and $g: F \rightarrow E$.
Fix $x \in E$. Set $x_{0}=x \in E$ and then we define the next terms inductively by

- if $x_{n} \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_{n} by g (if it exists, otherwise we stop).
- if $x_{n} \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_{n} by f (if it exists, otherwise we stop).

Then we face three possible cases:
(3) or the inductive definition of the chain doesn't stop, and then we put x in E_{∞}.

Cantor-Schröder-Bernstein theorem: strategy of the proof - 1

We are given two injective functions $f: E \rightarrow F$ and $g: F \rightarrow E$.
Fix $x \in E$. Set $x_{0}=x \in E$ and then we define the next terms inductively by

- if $x_{n} \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_{n} by g (if it exists, otherwise we stop).
- if $x_{n} \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_{n} by f (if it exists, otherwise we stop).

Then we face three possible cases:
(1) or the chain ends with an element in F, and then we put x in E_{F},
(2) Either the chain ends with an element in E, and then we put x in E_{E},
(3) or the inductive definition of the chain doesn't stop, and then we put x in E_{∞}.

We have a partition $E=E_{E} \sqcup E_{F} \sqcup E_{\infty}$.

Cantor-Schröder-Bernstein theorem: strategy of the proof - 1

We are given two injective functions $f: E \rightarrow F$ and $g: F \rightarrow E$.
Fix $x \in E$. Set $x_{0}=x \in E$ and then we define the next terms inductively by

- if $x_{n} \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_{n} by g (if it exists, otherwise we stop).
- if $x_{n} \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_{n} by f (if it exists, otherwise we stop).

Then we face three possible cases:
(1) or the chain ends with an element in F, and then we put x in E_{F},
(2) Either the chain ends with an element in E, and then we put x in E_{E},
(3) or the inductive definition of the chain doesn't stop, and then we put x in E_{∞}.

We have a partition $E=E_{E} \sqcup E_{F} \sqcup E_{\infty}$. We construct similarly $F=F_{E} \sqcup F_{F} \sqcup F_{\infty}$.

Cantor-Schröder-Bernstein theorem: strategy of the proof - 2

Cantor-Schröder-Bernstein theorem: strategy of the proof - 2

If $x \in E_{E}$ then $f(x) \in F_{E}$. Therefore $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is well-defined.

Cantor-Schröder-Bernstein theorem: strategy of the proof - 2

If $x \in E_{E}$ then $f(x) \in F_{E}$. Therefore $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is well-defined. Besides, it is injective since f is, and it is surjective by definition of F_{E}. Hence $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is a bijection.

Cantor-Schröder-Bernstein theorem: strategy of the proof - 2

If $x \in E_{E}$ then $f(x) \in F_{E}$. Therefore $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is well-defined. Besides, it is injective since f is, and it is surjective by definition of F_{E}. Hence $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is a bijection.
Similarly $g_{\mid F_{F}}: F_{F} \rightarrow E_{F}$

Cantor-Schröder-Bernstein theorem: strategy of the proof - 2

If $x \in E_{E}$ then $f(x) \in F_{E}$. Therefore $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is well-defined.
Besides, it is injective since f is, and it is surjective by definition of F_{E}.
Hence $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is a bijection.
Similarly $g_{\mid F_{F}}: F_{F} \rightarrow E_{F}$ and $f_{\mid E_{\infty}}: E_{\infty} \rightarrow F_{\infty}$ are bijections.

Cantor-Schröder-Bernstein theorem: strategy of the proof - 2

E

F

If $x \in E_{E}$ then $f(x) \in F_{E}$. Therefore $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is well-defined.
Besides, it is injective since f is, and it is surjective by definition of F_{E}.
Hence $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is a bijection.
Similarly $g_{\mid F_{F}}: F_{F} \rightarrow E_{F}$ and $f_{\mid E_{\infty}}: E_{\infty} \rightarrow F_{\infty}$ are bijections.
Finally, we glue them in order to obtain a bijection $h: E \rightarrow F$.

E_{E}	$\xrightarrow{ }{ }^{\text {F }}$
E_{F}	$g \quad F_{F}$
E_{∞}	$\xrightarrow{\longrightarrow} F_{\infty}$
E	F

Cantor-Schröder-Bernstein theorem: the proof

Proof of Cantor-Schröder-Bernstein theorem.
Let $f: E \rightarrow F$ and $g: F \rightarrow E$ be two injective functions. Set

- $E_{E}=\left\{x \in E: \exists n \in \mathbb{N}, \exists r \in E \backslash \operatorname{Im}(g), x=(g \circ f)^{n}(r)\right\}$
- $E_{F}=\left\{x \in E: \exists n \in \mathbb{N}, \exists s \in F \backslash \operatorname{Im}(f), x=g\left((f \circ g)^{n}(s)\right)\right\}$
- $E_{\infty}=E \backslash\left(E_{E} \sqcup E_{F}\right)$
- $F_{E}=\left\{y \in F: \exists n \in \mathbb{N}, \exists r \in E \backslash \operatorname{Im}(g), y=f\left((g \circ f)^{n}(r)\right)\right\}$
- $F_{F}=\left\{y \in F: \exists n \in \mathbb{N}, \exists s \in F \backslash \operatorname{Im}(f), y=(f \circ g)^{n}(s)\right\}$
- $F_{\infty}=F \backslash\left(F_{E} \sqcup F_{F}\right)$

Cantor-Schröder-Bernstein theorem: the proof

Proof of Cantor-Schröder-Bernstein theorem.
Let $f: E \rightarrow F$ and $g: F \rightarrow E$ be two injective functions. Set

- $E_{E}=\left\{x \in E: \exists n \in \mathbb{N}, \exists r \in E \backslash \operatorname{Im}(g), x=(g \circ f)^{n}(r)\right\}$
- $E_{F}=\left\{x \in E: \exists n \in \mathbb{N}, \exists s \in F \backslash \operatorname{Im}(f), x=g\left((f \circ g)^{n}(s)\right)\right\}$
- $E_{\infty}=E \backslash\left(E_{E} \sqcup E_{F}\right)$
- $F_{E}=\left\{y \in F: \exists n \in \mathbb{N}, \exists r \in E \backslash \operatorname{Im}(g), y=f\left((g \circ f)^{n}(r)\right)\right\}$
- $F_{F}=\left\{y \in F: \exists n \in \mathbb{N}, \exists s \in F \backslash \operatorname{Im}(f), y=(f \circ g)^{n}(s)\right\}$
- $F_{\infty}=F \backslash\left(F_{E} \sqcup F_{F}\right)$

Note that if $x \in E_{E}$ then $f(x) \in F_{E}$. So $f_{\mid E_{E}}: E_{E} \rightarrow F_{E}$ is well-defined.
It is injective since f is. And it is surjective by definition of the sets. Thus it is bijective.
Similarly, $g_{\mid F_{F}}: F_{F} \rightarrow E_{F}$ and $f_{\mid E_{\infty}}: E_{\infty} \rightarrow F_{\infty}$ are well-defined and bijective.
We define $h: E \rightarrow F$ by $h(x)=\left\{\begin{array}{cc}f(x) & \text { if } x \in E_{E} \\ g^{-1}(x) & \text { if } x \in E_{F} \\ f(x) & \text { if } x \in E_{\infty}\end{array}\right.$.
Then h is a bijection (check it).

Cardinal comparison - 3

Proposition

(1) If E is a set then $|E| \leq|E|$.
(2) Given two sets E and F, if $|E| \leq|F|$ and $|F| \leq|E|$ then $|E|=|F|$.
(3) Given three sets E, F and G, if $|E| \leq|F|$ and $|F| \leq|G|$ then $|E| \leq|G|$.

Cardinal comparison - 3

Proposition

(1) If E is a set then $|E| \leq|E|$.
(2) Given two sets E and F, if $|E| \leq|F|$ and $|F| \leq|E|$ then $|E|=|F|$.
(3) Given three sets E, F and G, if $|E| \leq|F|$ and $|F| \leq|G|$ then $|E| \leq|G|$.

Proof.

(1) id : $E \rightarrow E$ is an injective function.
(2) It is Cantor-Bernstein-Schröder theorem.
(3) Assume that $|E| \leq|F|$ and $|F| \leq|G|$,
i.e. that there exist injections $f: E \rightarrow F$ and $g: F \rightarrow G$.

Then $g \circ f: E \rightarrow G$ is injective, thus $|E| \leq|G|$.

Cardinal comparison - 3

Proposition

(1) If E is a set then $|E| \leq|E|$.
(2) Given two sets E and F, if $|E| \leq|F|$ and $|F| \leq|E|$ then $|E|=|F|$.
(3) Given three sets E, F and G, if $|E| \leq|F|$ and $|F| \leq|G|$ then $|E| \leq|G|$.

Proof.

(1) id : E $\rightarrow E$ is an injective function.
(2) It is Cantor-Bernstein-Schröder theorem.
(3) Assume that $|E| \leq|F|$ and $|F| \leq|G|$,
i.e. that there exist injections $f: E \rightarrow F$ and $g: F \rightarrow G$.

Then $g \circ f: E \rightarrow G$ is injective, thus $|E| \leq|G|$.

Remark

Comparison of cardinals shares the characteristic properties of an order.
Nonetheless, it is not an order since it is not a binary relation on a set (as for equipotence).

Cardinal comparison - 4

Proposition

If $E \subset F$ then $|E| \leq|F|$.

Cardinal comparison - 4

Proposition

If $E \subset F$ then $|E| \leq|F|$.
Proof. Indeed, $f: E \rightarrow F$ defined by $f(x)=x$ is injective.

Cardinal comparison - 4

Proposition
 If $E \subset F$ then $|E| \leq|F|$.

Proof. Indeed, $f: E \rightarrow F$ defined by $f(x)=x$ is injective.

Proposition

If $\left|E_{1}\right|=\left|E_{2}\right|$ and $\left|F_{1}\right|=\left|F_{2}\right|$ then $\left|E_{1} \times F_{1}\right|=\left|E_{2} \times F_{2}\right|$.

Cardinal comparison - 4

Proposition

If $E \subset F$ then $|E| \leq|F|$.
Proof. Indeed, $f: E \rightarrow F$ defined by $f(x)=x$ is injective.

Proposition

If $\left|E_{1}\right|=\left|E_{2}\right|$ and $\left|F_{1}\right|=\left|F_{2}\right|$ then $\left|E_{1} \times F_{1}\right|=\left|E_{2} \times F_{2}\right|$.
Proof. Assume that $\left|E_{1}\right|=\left|E_{2}\right|$ and $\left|F_{1}\right|=\left|F_{2}\right|$ then there exist bijections $f: E_{1} \rightarrow E_{2}$ and $g: F_{1} \rightarrow F_{2}$. We define $h: E_{1} \times F_{1} \rightarrow E_{2} \times F_{2}$ by $h(x, y)=(f(x), g(y))$. Let's check that h is a bijection.

- h is injective.

Let $(x, y),\left(x^{\prime}, y^{\prime}\right) \in E_{1} \times F_{1}$ be such that $h(x, y)=h\left(x^{\prime}, y^{\prime}\right)$.
Then $f(x)=f\left(x^{\prime}\right)$ and $g(y)=g\left(y^{\prime}\right)$, thus $x=x^{\prime}$ and $y=y^{\prime}$ since f and g are injectives.
We proved that $(x, y)=\left(x^{\prime}, y^{\prime}\right)$.

- h is surjective.

Let $(z, w) \in E_{2} \times F_{2}$. Since f is surjective, there exists $x \in E_{1}$ such that $z=f(x)$.
Since g is surjective, there exists $y \in F_{1}$ such that $w=g(y)$.
Then $h(x, y)=(f(x), g(y))=(z, w)$.

Cardinal comparison - 5

Theorem

Given two sets, E and $F,|E| \leq|F|$ if and only if there exists a surjective function $g: F \rightarrow E$.

Cardinal comparison - 5

Theorem

Given two sets, E and $F,|E| \leq|F|$ if and only if there exists a surjective function $g: F \rightarrow E$.

Proof.

\Rightarrow Assume that there exists an injective function $f: E \rightarrow F$, then $\tilde{f}=f: E \rightarrow f(E)$ is bijective. If $E=\varnothing$, then there is nothing to prove. So we may assume that there exists $u \in E$.
Define $g: F \rightarrow E$ by $g(y)=\left\{\begin{array}{cl}\tilde{f}^{-1}(y) & \text { if } y \in f(E) \\ u & \text { otherwise }\end{array}\right.$
Let $x \in E$, then $g(f(x))=\tilde{f}^{-1}(f(x))=x$. Thus g is surjective.
\Leftarrow Assume that there exists a surjective function $g: F \rightarrow E$, then ${ }^{1} \forall x \in E$, $\exists y_{x} \in g^{-1}(x)$.
Define $f: E \rightarrow F$ by $f(x)=y_{x}$. Then f is injective, so $|E| \leq|F|$.
Indeed, assume that $f(x)=f\left(x^{\prime}\right)$ then $g(f(x))=g\left(f\left(x^{\prime}\right)\right)$.
But $g(f(x))=g\left(y_{x}\right)=x$ and similarly $g\left(f\left(x^{\prime}\right)\right)=x^{\prime}$. Thus $x=x^{\prime}$.

[^0]
[^0]: ${ }^{1}$ We use the axiom of choice here.

