MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

CARDINAL COMPARISON

April 1st, 2021

Definition

Given two sets *E* and *F*, we write $|E| \leq |F|$ if there exists an injective function $f : E \rightarrow F$.

Definition

Given two sets *E* and *F*, we write $|E| \leq |F|$ if there exists an injective function $f : E \rightarrow F$.

Remark

It is compatible with the definition in the finite case.

Cantor-Schröder-Bernstein theorem

Given two sets *E* and *F*, if $|E| \leq |F|$ and $|F| \leq |E|$ then |E| = |F|.

Cantor-Schröder-Bernstein theorem

Given two sets *E* and *F*, if $|E| \le |F|$ and $|F| \le |E|$ then |E| = |F|.

Remark

The above theorem is less trivial than it seems at first glance. It states that: if there exist injections $f : E \to F$ and $g : F \to E$ then there exists a bijection $h : E \to F$.

Cantor-Schröder-Bernstein theorem

Given two sets *E* and *F*, if $|E| \leq |F|$ and $|F| \leq |E|$ then |E| = |F|.

Remark

The above theorem is less trivial than it seems at first glance. It states that: if there exist injections $f : E \to F$ and $g : F \to E$ then there exists a bijection $h : E \to F$.

- 1887: Cantor stated the theorem with no proof.
- 1887: Dedekind proved it but didn't publish his proof (it was found after his death).
- 1895: Cantor published a proof (nonetheless, the proof relies on the *trichotomoy principle* which Tarski later proved to be equivalent to the axiom of choice).
- 1897: Bernstein, Schröder and Dedekind independently found proofs of the theorem (without the axiom of choice). But Schröder's proof later appeared to be incorrect.
- Several other proofs are now known, e.g. Zermelo (1901, 1908) and König (1906).

We are given two injective functions $f : E \to F$ and $g : F \to E$.

Fix $x \in E$. Set $x_0 = x \in E$ and then we define the next terms inductively by

- if $x_n \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_n by g (if it exists, otherwise we stop).
- if $x_n \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_n by f (if it exists, otherwise we stop).

E

F

We are given two injective functions $f : E \to F$ and $g : F \to E$.

Fix $x \in E$. Set $x_0 = x \in E$ and then we define the next terms inductively by

- if $x_n \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_n by g (if it exists, otherwise we stop).
- if $x_n \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_n by f (if it exists, otherwise we stop).

Then we face three possible cases:

1 or the chain ends with an element in F, and then we put x in E_F ,

We are given two injective functions $f : E \to F$ and $g : F \to E$. Fix $x \in E$. Set $x_0 = x \in E$ and then we define the next terms inductively by

- if $x_n \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_n by g (if it exists, otherwise we stop).
- if $x_n \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_n by f (if it exists, otherwise we stop).

Then we face three possible cases:

2 Either the chain ends with an element in E, and then we put x in E_E ,

We are given two injective functions $f : E \to F$ and $g : F \to E$. Fix $x \in E$. Set $x_0 = x \in E$ and then we define the next terms inductively by

- if $x_n \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_n by g (if it exists, otherwise we stop).
- if $x_n \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_n by f (if it exists, otherwise we stop).

Then we face three possible cases:

 $\mathbf{3}$ or the inductive definition of the chain doesn't stop, and then we put x in E_{∞} .

We are given two injective functions $f : E \to F$ and $g : F \to E$. Fix $x \in E$. Set $x_0 = x \in E$ and then we define the next terms inductively by

- if $x_n \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_n by g (if it exists, otherwise we stop).
- if $x_n \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_n by f (if it exists, otherwise we stop).

Then we face three possible cases:

- **1** or the chain ends with an element in F, and then we put x in E_F ,
- 2 Either the chain ends with an element in E, and then we put x in E_E ,
- **3** or the inductive definition of the chain doesn't stop, and then we put x in E_{∞} .

We have a partition $E = E_E \sqcup E_F \sqcup E_{\infty}$.

We are given two injective functions $f : E \to F$ and $g : F \to E$.

Fix $x \in E$. Set $x_0 = x \in E$ and then we define the next terms inductively by

- if $x_n \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_n by g (if it exists, otherwise we stop).
- if $x_n \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_n by f (if it exists, otherwise we stop).

E

Then we face three possible cases:

- **1** or the chain ends with an element in F, and then we put x in E_F ,
- 2 Either the chain ends with an element in E, and then we put x in E_E ,
- 3 or the inductive definition of the chain doesn't stop, and then we put x in E_{∞} .

We have a partition $E = E_E \sqcup E_F \sqcup E_{\infty}$. We construct similarly $F = F_E \sqcup F_F \sqcup F_{\infty}$.

If $x \in E_E$ then $f(x) \in F_E$. Therefore $f_{|E_E} : E_E \to F_E$ is well-defined.

If $x \in E_E$ then $f(x) \in F_E$. Therefore $f_{|E_E} : E_E \to F_E$ is well-defined. Besides, it is injective since f is, and it is surjective by definition of F_E . Hence $f_{|E_E} : E_E \to F_E$ is a bijection.

If $x \in E_E$ then $f(x) \in F_E$. Therefore $f_{|E_E} : E_E \to F_E$ is well-defined. Besides, it is injective since f is, and it is surjective by definition of F_E . Hence $f_{|E_E} : E_E \to F_E$ is a bijection. Similarly $g_{|F_E} : F_F \to E_F$

If $x \in E_E$ then $f(x) \in F_E$. Therefore $f_{|E_E} : E_E \to F_E$ is well-defined. Besides, it is injective since f is, and it is surjective by definition of F_E . Hence $f_{|E_E} : E_E \to F_E$ is a bijection. Similarly $g_{|F_E} : F_F \to E_F$ and $f_{|E_\infty} : E_\infty \to F_\infty$ are bijections.

If $x \in E_E$ then $f(x) \in F_E$. Therefore $f_{|E_E} : E_E \to F_E$ is well-defined. Besides, it is injective since f is, and it is surjective by definition of F_E . Hence $f_{|E_E} : E_E \to F_E$ is a bijection. Similarly $g_{|F_F} : F_F \to E_F$ and $f_{|E_\infty} : E_\infty \to F_\infty$ are bijections. Finally, we glue them in order to obtain a bijection $h : E \to F$.

 \mathbf{E}

Cantor-Schröder-Bernstein theorem: the proof

Proof of Cantor–Schröder–Bernstein theorem. Let $f : E \to F$ and $g : F \to E$ be two injective functions. Set • $E_E = \{x \in E : \exists n \in \mathbb{N}, \exists r \in E \setminus \operatorname{Im}(g), x = (g \circ f)^n(r)\}$ • $E_F = \{x \in E : \exists n \in \mathbb{N}, \exists s \in F \setminus \operatorname{Im}(f), x = g((f \circ g)^n(s))\}$ • $E_{\infty} = E \setminus (E_E \sqcup E_F)$ • $F_E = \{y \in F : \exists n \in \mathbb{N}, \exists r \in E \setminus \operatorname{Im}(g), y = f((g \circ f)^n(r))\}$ • $F_F = \{y \in F : \exists n \in \mathbb{N}, \exists s \in F \setminus \operatorname{Im}(f), y = (f \circ g)^n(s)\}$ • $F_{m} = F \setminus (F_E \sqcup F_E)$

Cantor-Schröder-Bernstein theorem: the proof

Proof of Cantor-Schröder-Bernstein theorem. Let $f : E \to F$ and $g : F \to E$ be two injective functions. Set • $E_E = \{x \in E : \exists n \in \mathbb{N}, \exists r \in E \setminus \operatorname{Im}(g), x = (g \circ f)^n(r)\}$ • $E_F = \{x \in E : \exists n \in \mathbb{N}, \exists s \in F \setminus \operatorname{Im}(f), x = g((f \circ g)^n(s))\}$ • $E_{\infty} = E \setminus (E_E \sqcup E_E)$ • $F_E = \{ v \in F : \exists n \in \mathbb{N}, \exists r \in E \setminus \operatorname{Im}(g), y = f((g \circ f)^n(r)) \}$ • $F_F = \{ y \in F : \exists n \in \mathbb{N}, \exists s \in F \setminus \operatorname{Im}(f), y = (f \circ g)^n(s) \}$ • $F_{-} = F \setminus (F_F \sqcup F_F)$ Note that if $x \in E_E$ then $f(x) \in F_E$. So $f_{|E_E|} : E_E \to F_E$ is well-defined. It is injective since f is. And it is surjective by definition of the sets. Thus it is bijective. Similarly, $g_{|F_r}$: $F_F \to E_F$ and $f_{|E_r}$: $E_{\infty} \to F_{\infty}$ are well-defined and bijective. We define $h: E \to F$ by $h(x) = \begin{cases} f(x) & \text{if } x \in E_E \\ g^{-1}(x) & \text{if } x \in E_F \\ f(x) & \text{if } x \in E_{\infty} \end{cases}$ Then h is a bijection (check it).

Proposition

1 If *E* is a set then $|E| \leq |E|$.

2 Given two sets *E* and *F*, if $|E| \le |F|$ and $|F| \le |E|$ then |E| = |F|.

3 Given three sets *E*, *F* and *G*, if $|E| \le |F|$ and $|F| \le |G|$ then $|E| \le |G|$.

Proposition

1 If *E* is a set then $|E| \leq |E|$.

```
2 Given two sets E and F, if |E| \le |F| and |F| \le |E| then |E| = |F|.
```

3 Given three sets *E*, *F* and *G*, if $|E| \le |F|$ and $|F| \le |G|$ then $|E| \le |G|$.

Proof.

1 *id* : $E \rightarrow E$ is an injective function.

2 It is Cantor-Bernstein-Schröder theorem.

```
3 Assume that |E| ≤ |F| and |F| ≤ |G|,
i.e. that there exist injections f : E → F and g : F → G.
Then g ∘ f : E → G is injective, thus |E| ≤ |G|.
```

Proposition

1 If *E* is a set then $|E| \leq |E|$.

```
2 Given two sets E and F, if |E| \le |F| and |F| \le |E| then |E| = |F|.
```

```
3 Given three sets E, F and G, if |E| \le |F| and |F| \le |G| then |E| \le |G|.
```

Proof.

- **1** $id : E \to E$ is an injective function.
- 2 It is Cantor-Bernstein-Schröder theorem.

3 Assume that |E| ≤ |F| and |F| ≤ |G|,
i.e. that there exist injections f : E → F and g : F → G.

```
Then g \circ f : E \to G is injective, thus |E| \le |G|.
```

Remark

Comparison of cardinals shares the characteristic properties of an order. Nonetheless, it is not an order since it is not a binary relation on a set (as for equipotence).

Proposition

If $E \subset F$ then $|E| \leq |F|$.

Proposition

If $E \subset F$ then $|E| \leq |F|$.

Proof. Indeed, $f : E \to F$ defined by f(x) = x is injective.

Proposition

If $E \subset F$ then $|E| \leq |F|$.

Proof. Indeed, $f : E \to F$ defined by f(x) = x is injective.

Proposition

If $|E_1| = |E_2|$ and $|F_1| = |F_2|$ then $|E_1 \times F_1| = |E_2 \times F_2|$.

Proposition

If $E \subset F$ then $|E| \leq |F|$.

Proof. Indeed, $f : E \to F$ defined by f(x) = x is injective.

Proposition

If
$$|E_1| = |E_2|$$
 and $|F_1| = |F_2|$ then $|E_1 \times F_1| = |E_2 \times F_2|$.

Proof. Assume that $|E_1| = |E_2|$ and $|F_1| = |F_2|$ then there exist bijections $f : E_1 \to E_2$ and $g : F_1 \to F_2$. We define $h : E_1 \times F_1 \to E_2 \times F_2$ by h(x, y) = (f(x), g(y)). Let's check that h is a bijection.

- *h* is injective.
 Let (x, y), (x', y') ∈ E₁ × F₁ be such that h(x, y) = h(x', y').
 Then f(x) = f(x') and g(y) = g(y'), thus x = x' and y = y' since f and g are injectives.
 We proved that (x, y) = (x', y').
- h is surjective.

Let $(z, w) \in E_2 \times F_2$. Since *f* is surjective, there exists $x \in E_1$ such that z = f(x). Since *g* is surjective, there exists $y \in F_1$ such that w = g(y). Then h(x, y) = (f(x), g(y)) = (z, w).

Theorem

Given two sets, *E* and *F*, $|E| \le |F|$ if and only if there exists a surjective function $g : F \to E$.

Theorem

Given two sets, *E* and *F*, $|E| \leq |F|$ if and only if there exists a surjective function $g : F \rightarrow E$.

Proof.

⇒ Assume that there exists an injective function $f : E \to F$, then $\tilde{f} = f : E \to f(E)$ is bijective. If $E = \emptyset$, then there is nothing to prove. So we may assume that there exists $u \in E$. Define $g : F \to E$ by $g(y) = \begin{cases} \tilde{f}^{-1}(y) & \text{if } y \in f(E) \\ u & \text{otherwise} \end{cases}$ Let $x \in E$, then $g(f(x)) = \tilde{f}^{-1}(f(x)) = x$. Thus g is surjective.

 $\begin{array}{l} \Leftarrow \text{ Assume that there exists a surjective function } g: F \to E, \text{ then}^1 \ \forall x \in E, \ \exists y_x \in g^{-1}(x). \\ \text{Define } f: E \to F \text{ by } f(x) = y_x. \text{ Then } f \text{ is injective, so } |E| \leq |F|. \\ \text{Indeed, assume that } f(x) = f(x') \text{ then } g(f(x)) = g(f(x')). \\ \text{But } g(f(x)) = g(y_x) = x \text{ and similarly } g(f(x')) = x'. \text{ Thus } x = x'. \end{array}$

¹We use the axiom of choice here.