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Cardinal comparison – 1

Definition
Given two sets 𝐸 and 𝐹 , we write |𝐸| ≤ |𝐹 | if there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 .

Remark
It is compatible with the definition in the finite case.
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Cardinal comparison – 2

Cantor–Schröder–Bernstein theorem
Given two sets 𝐸 and 𝐹 , if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐸| then |𝐸| = |𝐹 |.

Remark
The above theorem is less trivial than it seems at first glance. It states that:
if there exist injections 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐸 then there exists a bijection ℎ ∶ 𝐸 → 𝐹 .

• 1887: Cantor stated the theorem with no proof.
• 1887: Dedekind proved it but didn’t publish his proof (it was found after his death).
• 1895: Cantor published a proof (nonetheless, the proof relies on the trichotomoy principle

which Tarski later proved to be equivalent to the axiom of choice).
• 1897: Bernstein, Schröder and Dedekind independently found proofs of the theorem

(without the axiom of choice). But Schröder’s proof later appeared to be incorrect.
• Several other proofs are now known, e.g. Zermelo (1901, 1908) and König (1906).
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Cantor–Schröder–Bernstein theorem: strategy of the proof – 1
We are given two injective functions 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐸.
Fix 𝑥 ∈ 𝐸. Set 𝑥0 = 𝑥 ∈ 𝐸 and then we define the next terms inductively by

• if 𝑥𝑛 ∈ 𝐸 then we define 𝑥𝑛+1 ∈ 𝐹 as the unique antecedant of 𝑥𝑛 by 𝑔 (if it exists, otherwise we stop).
• if 𝑥𝑛 ∈ 𝐹 then we define 𝑥𝑛+1 ∈ 𝐸 as the unique antecedant of 𝑥𝑛 by 𝑓 (if it exists, otherwise we stop).

𝐸

𝐹

𝑥0 = 𝑥

𝑥1

𝑔

𝑥2

𝑓

𝑥3

𝑔

𝑥4

𝑓

𝑥5

𝑔

Then we face three possible cases:

1 or the chain ends with an element in 𝐹 , and then we put 𝑥 in 𝐸𝐹 ,
2 Either the chain ends with an element in 𝐸, and then we put 𝑥 in 𝐸𝐸 ,
3 or the inductive definition of the chain doesn’t stop, and then we put 𝑥 in 𝐸∞.

We have a partition 𝐸 = 𝐸𝐸 ⊔ 𝐸𝐹 ⊔ 𝐸∞. We construct similarly 𝐹 = 𝐹𝐸 ⊔ 𝐹𝐹 ⊔ 𝐹∞.
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Cantor–Schröder–Bernstein theorem: strategy of the proof – 2

𝐸

𝐹

𝑓(𝑥)

𝑓

𝑥0 = 𝑥

𝑥1
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𝑓

𝑥3

𝑔

𝑥4

𝑓

𝑔(𝑥)

𝑔

𝑥0 = 𝑥

𝑥1

𝑓

𝑥2

𝑔

𝑥3

𝑓

𝑥4

𝑔

𝑓(𝑥)

𝑓

𝑥0 = 𝑥

𝑥1

𝑔

𝑥2

𝑓

𝑥3

𝑔

𝑥4

𝑓

𝑥5

𝑔

𝑥6

𝑓

If 𝑥 ∈ 𝐸𝐸 then 𝑓(𝑥) ∈ 𝐹𝐸 . Therefore 𝑓|𝐸𝐸
∶ 𝐸𝐸 → 𝐹𝐸 is well-defined.

Besides, it is injective since 𝑓 is, and it is surjective by definition of 𝐹𝐸 .
Hence 𝑓|𝐸𝐸

∶ 𝐸𝐸 → 𝐹𝐸 is a bijection.
Similarly 𝑔|𝐹𝐹

∶ 𝐹𝐹 → 𝐸𝐹 and 𝑓|𝐸∞
∶ 𝐸∞ → 𝐹∞ are bijections.

Finally, we glue them in order to obtain a bijection ℎ ∶ 𝐸 → 𝐹 .

𝐸
𝐸∞

𝐸𝐹

𝐸𝐸

𝐹
𝐹∞

𝐹𝐹

𝐹𝐸
𝑓

𝑓
𝑔
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Cantor–Schröder–Bernstein theorem: strategy of the proof – 2
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Cantor–Schröder–Bernstein theorem: the proof

Proof of Cantor–Schröder–Bernstein theorem.
Let 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐸 be two injective functions. Set

• 𝐸𝐸 = {𝑥 ∈ 𝐸 ∶ ∃𝑛 ∈ ℕ, ∃𝑟 ∈ 𝐸 ⧵ Im(𝑔), 𝑥 = (𝑔 ∘ 𝑓)𝑛(𝑟)}
• 𝐸𝐹 = {𝑥 ∈ 𝐸 ∶ ∃𝑛 ∈ ℕ, ∃𝑠 ∈ 𝐹 ⧵ Im(𝑓 ), 𝑥 = 𝑔 ((𝑓 ∘ 𝑔)𝑛(𝑠))}
• 𝐸∞ = 𝐸 ⧵ (𝐸𝐸 ⊔ 𝐸𝐹 )
• 𝐹𝐸 = {𝑦 ∈ 𝐹 ∶ ∃𝑛 ∈ ℕ, ∃𝑟 ∈ 𝐸 ⧵ Im(𝑔), 𝑦 = 𝑓 ((𝑔 ∘ 𝑓)𝑛(𝑟))}
• 𝐹𝐹 = {𝑦 ∈ 𝐹 ∶ ∃𝑛 ∈ ℕ, ∃𝑠 ∈ 𝐹 ⧵ Im(𝑓 ), 𝑦 = (𝑓 ∘ 𝑔)𝑛(𝑠)}
• 𝐹∞ = 𝐹 ⧵ (𝐹𝐸 ⊔ 𝐹𝐹 )

Note that if 𝑥 ∈ 𝐸𝐸 then 𝑓(𝑥) ∈ 𝐹𝐸 . So 𝑓|𝐸𝐸 ∶ 𝐸𝐸 → 𝐹𝐸 is well-defined.
It is injective since 𝑓 is. And it is surjective by definition of the sets. Thus it is bijective.
Similarly, 𝑔|𝐹𝐹 ∶ 𝐹𝐹 → 𝐸𝐹 and 𝑓|𝐸∞ ∶ 𝐸∞ → 𝐹∞ are well-defined and bijective.

We define ℎ ∶ 𝐸 → 𝐹 by ℎ(𝑥) =
⎧⎪
⎨
⎪⎩

𝑓(𝑥) if 𝑥 ∈ 𝐸𝐸
𝑔−1(𝑥) if 𝑥 ∈ 𝐸𝐹
𝑓(𝑥) if 𝑥 ∈ 𝐸∞

.

Then ℎ is a bijection (check it). ■
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Cardinal comparison – 3
Proposition

1 If 𝐸 is a set then |𝐸| ≤ |𝐸|.
2 Given two sets 𝐸 and 𝐹 , if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐸| then |𝐸| = |𝐹 |.
3 Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐺| then |𝐸| ≤ |𝐺|.

Proof.
1 𝑖𝑑 ∶ 𝐸 → 𝐸 is an injective function.
2 It is Cantor–Bernstein–Schröder theorem.
3 Assume that |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐺|,

i.e. that there exist injections 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐺.
Then 𝑔 ∘ 𝑓 ∶ 𝐸 → 𝐺 is injective, thus |𝐸| ≤ |𝐺|. ■

Remark
Comparison of cardinals shares the characteristic properties of an order.
Nonetheless, it is not an order since it is not a binary relation on a set (as for equipotence).
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Cardinal comparison – 4
Proposition
If 𝐸 ⊂ 𝐹 then |𝐸| ≤ |𝐹 |.

Proof. Indeed, 𝑓 ∶ 𝐸 → 𝐹 defined by 𝑓(𝑥) = 𝑥 is injective. ■

Proposition
If |𝐸1| = |𝐸2| and |𝐹1| = |𝐹2| then |𝐸1 × 𝐹1| = |𝐸2 × 𝐹2|.

Proof. Assume that |𝐸1| = |𝐸2| and |𝐹1| = |𝐹2| then there exist bijections 𝑓 ∶ 𝐸1 → 𝐸2 and 𝑔 ∶ 𝐹1 → 𝐹2.
We define ℎ ∶ 𝐸1 × 𝐹1 → 𝐸2 × 𝐹2 by ℎ(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)). Let’s check that ℎ is a bijection.

• ℎ is injective.
Let (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝐸1 × 𝐹1 be such that ℎ(𝑥, 𝑦) = ℎ(𝑥′, 𝑦′).
Then 𝑓(𝑥) = 𝑓(𝑥′) and 𝑔(𝑦) = 𝑔(𝑦′), thus 𝑥 = 𝑥′ and 𝑦 = 𝑦′ since 𝑓 and 𝑔 are injectives.
We proved that (𝑥, 𝑦) = (𝑥′, 𝑦′).

• ℎ is surjective.
Let (𝑧, 𝑤) ∈ 𝐸2 × 𝐹2. Since 𝑓 is surjective, there exists 𝑥 ∈ 𝐸1 such that 𝑧 = 𝑓(𝑥).
Since 𝑔 is surjective, there exists 𝑦 ∈ 𝐹1 such that 𝑤 = 𝑔(𝑦).
Then ℎ(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)) = (𝑧, 𝑤). ■
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Cardinal comparison – 5
Theorem
Given two sets, 𝐸 and 𝐹 , |𝐸| ≤ |𝐹 | if and only if there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸.

Proof.
⇒ Assume that there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 , then ̃𝑓 = 𝑓 ∶ 𝐸 → 𝑓(𝐸) is bijective.
If 𝐸 = ∅, then there is nothing to prove. So we may assume that there exists 𝑢 ∈ 𝐸.

Define 𝑔 ∶ 𝐹 → 𝐸 by 𝑔(𝑦) = {
̃𝑓 −1(𝑦) if 𝑦 ∈ 𝑓(𝐸)
𝑢 otherwise

Let 𝑥 ∈ 𝐸, then 𝑔(𝑓(𝑥)) = ̃𝑓 −1(𝑓 (𝑥)) = 𝑥. Thus 𝑔 is surjective.

⇐ Assume that there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸, then ∀𝑥 ∈ 𝐸, ∃𝑦𝑥 ∈ 𝑔−1(𝑥).
Define 𝑓 ∶ 𝐸 → 𝐹 by 𝑓(𝑥) = 𝑦𝑥. Then 𝑓 is injective, so |𝐸| ≤ |𝐹 |.
Indeed, assume that 𝑓(𝑥) = 𝑓(𝑥′) then 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑥′)).
But 𝑔(𝑓(𝑥)) = 𝑔(𝑦𝑥) = 𝑥 and similarly 𝑔(𝑓(𝑥′)) = 𝑥′. Thus 𝑥 = 𝑥′. ■

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Apr 1, 2021 9 / 9



Cardinal comparison – 5
Theorem
Given two sets, 𝐸 and 𝐹 , |𝐸| ≤ |𝐹 | if and only if there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸.

Proof.
⇒ Assume that there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 , then ̃𝑓 = 𝑓 ∶ 𝐸 → 𝑓(𝐸) is bijective.
If 𝐸 = ∅, then there is nothing to prove. So we may assume that there exists 𝑢 ∈ 𝐸.

Define 𝑔 ∶ 𝐹 → 𝐸 by 𝑔(𝑦) = {
̃𝑓 −1(𝑦) if 𝑦 ∈ 𝑓(𝐸)
𝑢 otherwise

Let 𝑥 ∈ 𝐸, then 𝑔(𝑓(𝑥)) = ̃𝑓 −1(𝑓 (𝑥)) = 𝑥. Thus 𝑔 is surjective.

⇐ Assume that there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸, then1 ∀𝑥 ∈ 𝐸, ∃𝑦𝑥 ∈ 𝑔−1(𝑥).
Define 𝑓 ∶ 𝐸 → 𝐹 by 𝑓(𝑥) = 𝑦𝑥. Then 𝑓 is injective, so |𝐸| ≤ |𝐹 |.
Indeed, assume that 𝑓(𝑥) = 𝑓(𝑥′) then 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑥′)).
But 𝑔(𝑓(𝑥)) = 𝑔(𝑦𝑥) = 𝑥 and similarly 𝑔(𝑓(𝑥′)) = 𝑥′. Thus 𝑥 = 𝑥′. ■

1We use the axiom of choice here.
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