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Cardinal comparison — 1

Definition

Given two sets E and F, we write |E| < | F| if there exists an injective function f : E — F.
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Cardinal comparison — 1

Definition
Given two sets E and F, we write |E| < | F| if there exists an injective function f : E — F.

It is compatible with the definition in the finite case. I
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Cardinal comparison — 2

Cantor—Schroder—Bernstein theorem

Given two sets E and F, if |E| < |F| and |F| < |E| then |E| = | F]|.
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Cardinal comparison — 2

Cantor—Schroder—Bernstein theorem

Given two sets E and F, if |E| < |F| and |F| < |E| then |E| = | F]|.

The above theorem is less trivial than it seems at first glance. It states that:
if there exist injections f : E —» F and g : F — E then there exists a bijection 4 : E - F.
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Cardinal comparison — 2

Cantor—Schroder—Bernstein theorem

Given two sets E and F, if |E| < |F| and |F| < |E| then |E| = | F]|.

The above theorem is less trivial than it seems at first glance. It states that:
if there exist injections f : E —» F and g : F — E then there exists a bijection 4 : E - F.

1887: Cantor stated the theorem with no proof.

1887: Dedekind proved it but didn’t publish his proof (it was found after his death).

1895: Cantor published a proof (nonetheless, the proof relies on the trichotomoy principle
which Tarski later proved to be equivalent to the axiom of choice).

1897: Bernstein, Schréder and Dedekind independently found proofs of the theorem
(without the axiom of choice). But Schréder’s proof later appeared to be incorrect.

e Several other proofs are now known, e.g. Zermelo (1901, 1908) and Kdnig (1906).
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 1

We are given two injective functions f : E > Fandg : F —» E.
Fix x € E. Set x, = x € E and then we define the next terms inductively by

* if x, € E then we define x,,, € F as the unique antecedant of x, by g (if it exists, otherwise we stop).
¢ if x, € F then we define x,,, € E as the unique antecedant of x, by f (if it exists, otherwise we stop).

E
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 1

We are given two injective functions f : E > Fandg : F —» E.
Fix x € E. Set x, = x € E and then we define the next terms inductively by

* if x, € E then we define x,,, € F as the unique antecedant of x, by g (if it exists, otherwise we stop).
¢ if x, € F then we define x,,, € E as the unique antecedant of x, by f (if it exists, otherwise we stop).

Xg =X

Then we face three possible cases:

© or the chain ends with an element in F, and then we put x in Ep,
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 1

We are given two injective functions f : E > Fandg : F —» E.
Fix x € E. Set x, = x € E and then we define the next terms inductively by

* if x, € E then we define x,,, € F as the unique antecedant of x, by g (if it exists, otherwise we stop).
¢ if x, € F then we define x,,, € E as the unique antecedant of x, by f (if it exists, otherwise we stop).

Xg =X

AV

Then we face three possible cases:

@ Either the chain ends with an element in E, and then we put x in Ep,
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 1

We are given two injective functions f : E > Fandg : F —» E.
Fix x € E. Set x, = x € E and then we define the next terms inductively by

* if x, € E then we define x,,, € F as the unique antecedant of x, by g (if it exists, otherwise we stop).
¢ if x, € F then we define x,,, € E as the unique antecedant of x, by f (if it exists, otherwise we stop).

Xg =X

RVAVAVSS

Then we face three possible cases:

© or the inductive definition of the chain doesn'’t stop, and then we put x in E_,.
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 1

We are given two injective functions f : E > Fandg : F —» E.
Fix x € E. Set x, = x € E and then we define the next terms inductively by

* if x, € E then we define x,,, € F as the unique antecedant of x, by g (if it exists, otherwise we stop).
¢ if x, € F then we define x,,, € E as the unique antecedant of x, by f (if it exists, otherwise we stop).

Xg =X

RVAVAVSS

Then we face three possible cases:

© or the chain ends with an element in F, and then we put x in Ep,

@ Either the chain ends with an element in E, and then we put x in Ep,

© or the inductive definition of the chain doesn'’t stop, and then we put x in E_,.
We have a partition E = E, U E U E_.
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 1

We are given two injective functions f : E > Fandg : F —» E.
Fix x € E. Set x, = x € E and then we define the next terms inductively by

* if x, € E then we define x,,, € F as the unique antecedant of x, by g (if it exists, otherwise we stop).
¢ if x, € F then we define x,,, € E as the unique antecedant of x, by f (if it exists, otherwise we stop).

E

Then we face three possible cases:

© or the chain ends with an element in F, and then we put x in Ep,

@ Either the chain ends with an element in E, and then we put x in Ep,

© or the inductive definition of the chain doesn'’t stop, and then we put x in E_,.
We have a partition £ = E; U E. U E_. We construct similarly F = F, U F, U F,..
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 2

X=X

AL
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 2

X=X

NAAY

fx)

If x € Eg then f(x) € Fy. Therefore fiz : Ep — Fy is well-defined.
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 2

X=X

NAAY

fx)

If x € Eg then f(x) € Fy. Therefore fiz : Ep — Fy is well-defined.
Besides, it is injective since f is, and it is surjective by definition of Fy.
Hence £\, : E; — F is a bijection.

Jean-Baptiste Campesato MAT246H1-S — LEC0201/9201 — Apr 1, 2021 5/9



Cantor—Schréder—Bernstein theorem: strategy of the proof — 2

If x € Eg then f(x) € Fy. Therefore fiz : Ep — Fy is well-defined.
Besides, it is injective since f is, and it is surjective by definition of Fy.
Hence £, : E; — F is a bijection.

Similarly g, : Fr — Ep
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 2

X=X

RVAVAVAY

f(x)

If x € Eg then f(x) € Fy. Therefore fiz : Ep — Fy is well-defined.
Besides, it is injective since f is, and it is surjective by definition of Fy.
Hence £, : E; — F is a bijection.

Similarly g, : Fr — Epand f;_: E, — F_ are bijections.
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Cantor—Schréder—Bernstein theorem: strategy of the proof — 2

If x € Eg then f(x) € Fy. Therefore fiz : Ep — Fy is well-defined.
Besides, it is injective since f is, and it is surjective by definition of Fy.
Hence £, : E; — F is a bijection.

Similarly g, : Fr — Ep and f;_: E, — F_ are bijections.

Finally, we glue them in order to obtain a bijection 4 : E — F.

f

EE FE
E, + 2 [F,
1L [F
E F
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Cantor—Schréder—Bernstein theorem: the proof

Proof of Cantor—Schréder—Bernstein theorem.
Let f : E— Fandg : F - E be two injective functions. Set

* Egp={x€E :IneN, Ire E\Im(g), x=(g° )"}

* Ep={x€E :3dneN, Ise F\Im(/), x =g ((f°8)"(s))}
° E,=E\ (EgUEf)

°* Fp={yeF :3neN, 3re E\Im(g), y=f (g )"(")}
* Fp={yeF : 3neN,3se F\Im(f), y=(f=8)"(s)}
Fo=F\ (FgUFg)
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Cantor—Schréder—Bernstein theorem: the proof

Proof of Cantor—Schréder—Bernstein theorem.
Let f : E— Fandg : F - E be two injective functions. Set

* Egp={x€E :IneN, Ire E\Im(g), x=(g° )"}
* Ep={x€E :3dneN, Ise F\Im(/), x =g ((f°8)"(s))}
° E,=E\ (EgUEf)
°* Fp={yeF :3neN, 3re E\Im(g), y=f (g )"(")}
* Fp={yeF : 3neN,3se F\Im(f), y=(f=8)"(s)}
° F,=F\ (FguFy)
Note that if x € E; then f(x) € Fg. So f|g, : Eg — Fg is well-defined.
It is injective since f is. And it is surjective by definition of the sets. Thus it is bijective.
Similarly, g, : Fp — Ep and fig_ : E, — F,, are well-defined and bijective.
f(x) ifxekEg
Wedefineh: E—» Fby h(x) =4 g '(x) ifxeEp .
f(x) ifxeE,
Then h is a bijection (check it). [ |
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Cardinal comparison — 3

Proposition
© If Eisasetthen |E| < |E]|.
® Giventwo sets E and F, if |E| < |F| and |F| < |E| then |E| = | F|.
® Given three sets E, F and G, if |E| < |F| and |F| < |G| then |E| < |G].
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Cardinal comparison — 3

Proposition
© If Eisasetthen |E| < |E]|.
® Giventwo sets E and F, if |E| < |F| and |F| < |E| then |E| = | F|.
® Given three sets E, F and G, if |E| < |F| and |F| < |G| then |E| < |G].

Proof.
© id : E — E is an injective function.
@ It is Cantor—Bernstein—Schréder theorem.

©® Assume that |E| < |F| and |F| < |G|,
i.e. that there exist injections f : E > Fandg: F - G.
Then go f : E — G is injective, thus |E| < |G]. [ |
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Cardinal comparison — 3

Proposition
© If Eisasetthen |E| < |E]|.
® Giventwo sets E and F, if |E| < |F| and |F| < |E| then |E| = | F|.
® Given three sets E, F and G, if |E| < |F| and |F| < |G| then |E| < |G].

Proof.
© id : E — E is an injective function.
@ It is Cantor—Bernstein—Schréder theorem.

©® Assume that |E| < |F| and |F| < |G|,
i.e. that there exist injections f : E > Fandg: F - G.
Then go f : E — G is injective, thus |E| < |G]. [ |

Comparison of cardinals shares the characteristic properties of an order.
Nonetheless, it is not an order since it is not a binary relation on a set (as for equipotence).
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Cardinal comparison — 4

Proposition
If EC Fthen |E| < |F].
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Cardinal comparison — 4

Proposition
If EC Fthen |E| < |F].

Proof. Indeed, f : E — F defined by f(x) = x is injective. |
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Cardinal comparison — 4
Proposition
If EC Fthen |E| < |F].

Proof. Indeed, f : E — F defined by f(x) = x is injective.

Proposition
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Cardinal comparison — 4

Proposition
If EC Fthen |E| < |F].

Proof. Indeed, f : E — F defined by f(x) = x is injective. |

Proposition

Proof. Assume that |E,| = |E,| and |F,| = |F,| then there exist bijections f : E, > E,and g : F| - F,.
We define h : E; X F; —» E, X F, by h(x,y) = (f(x), g(»)). Let’s check that 4 is a bijection.
® his injective.
Let (x,y),(x",y") € E, x F, be such that A(x, y) = h(x', y’).
Then f(x) = f(x') and g(y) = g('), thus x = x’ and y = y’ since f and g are injectives.
We proved that (x,y) = (x', ).
® h s surjective.
Let (z,w) € E, X F,. Since f is surjective, there exists x € E, such that z = f(x).
Since g is surjective, there exists y € F, such that w = g(y).
Then h(x, y) = (f(x),g(») = (z, w). u
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Cardinal comparison — 5

Given two sets, E and F, |E| < | F| if and only if there exists a surjective function g : F — E.
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Cardinal comparison — 5

Given two sets, E and F, |E| < | F| if and only if there exists a surjective function g : F — E.

Proof.
= Assume that there exists an injective function f : E — F,then f = f : E - f(E) is bijective.
If E = @, then there is nothing to prove. So we may assume that there exists u € E.
e _J 7o ifyef)
Defineg : F — Eby g(y) = { y otherwise
Let x € E, then g(f(x)) = F~1(f(x)) = x. Thus g is surjective.

« Assume that there exists a surjective function g : F — E, then' Vx € E, 3y, € g7 (x).

Define f : E - F by f(x) =y,. Then f is injective, so |E| < | F|.

Indeed, assume that f(x) = f(x') then g(f(x)) = g(f (x")).

But g(f(x)) = g(y,) = x and similarly g(f(x")) = x’. Thus x = x'. [ |

"We use the axiom of choice here.
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