MAT246H1-S - LEC0201/9201

Concepts in Abstract Mathematics

CARDINAL COMPARISON

April 1st, 2021

Definition

Given two sets E and F, we write $|E| \le |F|$ if there exists an injective function $f: E \to F$.

Remark

It is compatible with the definition in the finite case.

Cantor-Schröder-Bernstein theorem

Given two sets E and F, if $|E| \le |F|$ and $|F| \le |E|$ then |E| = |F|.

Remark

The above theorem is less trivial than it seems at first glance. It states that: if there exist injections $f: E \to F$ and $g: F \to E$ then there exists a bijection $h: E \to F$.

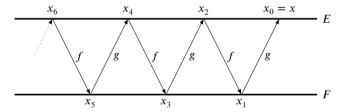
- 1887: Cantor stated the theorem with no proof.
- 1887: Dedekind proved it but didn't publish his proof (it was found after his death).
- 1895: Cantor published a proof (nonetheless, the proof relies on the *trichotomoy principle* which Tarski later proved to be equivalent to the axiom of choice).
- 1897: Bernstein, Schröder and Dedekind independently found proofs of the theorem (without the axiom of choice). But Schröder's proof later appeared to be incorrect.
- Several other proofs are now known, e.g. Zermelo (1901, 1908) and König (1906).

Cantor–Schröder–Bernstein theorem: strategy of the proof – 1

We are given two injective functions $f: E \to F$ and $g: F \to E$.

Fix $x \in E$. Set $x_0 = x \in E$ and then we define the next terms inductively by

- if $x_n \in E$ then we define $x_{n+1} \in F$ as the unique antecedant of x_n by g (if it exists, otherwise we stop).
- if $x_n \in F$ then we define $x_{n+1} \in E$ as the unique antecedant of x_n by f (if it exists, otherwise we stop).

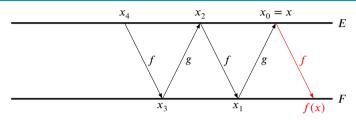


Then we face three possible cases:

- 1 or the chain ends with an element in F, and then we put x in E_F ,
- 2 Either the chain ends with an element in E, and then we put x in E_E ,
- 3 or the inductive definition of the chain doesn't stop, and then we put x in E_{∞} .

We have a partition $E = E_E \sqcup E_F \sqcup E_\infty$. We construct similarly $F = F_E \sqcup F_F \sqcup F_\infty$.

Cantor-Schröder-Bernstein theorem: strategy of the proof - 2

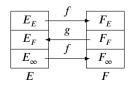


If $x \in E_E$ then $f(x) \in F_E$. Therefore $f_{|E_E|}: E_E \to F_E$ is well-defined.

Besides, it is injective since f is, and it is surjective by definition of F_{F} .

Hence $f_{|E_E}: E_E \to F_E$ is a bijection.

Similarly $g_{|F_F|}: F_F \to E_F$ and $f_{|E_\infty}: E_\infty \to F_\infty$ are bijections. Finally, we glue them in order to obtain a bijection $h: E \to F$.



Cantor-Schröder-Bernstein theorem: the proof

Proof of Cantor-Schröder-Bernstein theorem.

Let $f: E \to F$ and $g: F \to E$ be two injective functions. Set

- $E_E = \left\{ x \in E : \exists n \in \mathbb{N}, \exists r \in E \setminus \text{Im}(g), x = (g \circ f)^n(r) \right\}$
- $E_F = \left\{ x \in E : \exists n \in \mathbb{N}, \exists s \in F \setminus \text{Im}(f), x = g\left((f \circ g)^n(s) \right) \right\}$
- $E_{\infty} = E \setminus (E_E \sqcup E_F)$
- $F_E = \left\{ y \in F : \exists n \in \mathbb{N}, \exists r \in E \setminus \text{Im}(g), y = f\left((g \circ f)^n(r) \right) \right\}$
- $F_F = \{ y \in F : \exists n \in \mathbb{N}, \exists s \in F \setminus \text{Im}(f), y = (f \circ g)^n(s) \}$
- $F_{\infty} = F \setminus (F_E \sqcup F_F)$

Note that if $x \in E_E$ then $f(x) \in F_E$. So $f_{|E_E|} : E_E \to F_E$ is well-defined.

It is injective since f is. And it is surjective by definition of the sets. Thus it is bijective.

Similarly, $g_{|F_F}: F_F \to E_F$ and $f_{|E_\infty}: E_\infty \to F_\infty$ are well-defined and bijective.

We define
$$h: E \to F$$
 by $h(x) = \left\{ \begin{array}{ll} f(x) & \text{if } x \in E_E \\ g^{-1}(x) & \text{if } x \in E_F \end{array} \right.$ $f(x) & \text{if } x \in E_\infty \end{array}$

Then *h* is a bijection (check it).

Proposition

- 1 If E is a set then $|E| \le |E|$.
- 2 Given two sets E and F, if $|E| \le |F|$ and $|F| \le |E|$ then |E| = |F|.
- 3 Given three sets E, F and G, if $|E| \le |F|$ and $|F| \le |G|$ then $|E| \le |G|$.

Proof.

- 1 $id: E \rightarrow E$ is an injective function.
- 1t is Cantor-Bernstein-Schröder theorem.
- 3 Assume that $|E| \le |F|$ and $|F| \le |G|$, i.e. that there exist injections $f: E \to F$ and $g: F \to G$. Then $g \circ f: E \to G$ is injective, thus $|E| \le |G|$.

Remark

Comparison of cardinals shares the characteristic properties of an order.

Nonetheless, it is not an order since it is not a binary relation on a set (as for equipotence).

Proposition

If $E \subset F$ then $|E| \leq |F|$.

Proof. Indeed, $f: E \to F$ defined by f(x) = x is injective.

Proposition

If $|E_1| = |E_2|$ and $|F_1| = |F_2|$ then $|E_1 \times F_1| = |E_2 \times F_2|$.

Proof. Assume that $|E_1| = |E_2|$ and $|F_1| = |F_2|$ then there exist bijections $f: E_1 \to E_2$ and $g: F_1 \to F_2$. We define $h: E_1 \times F_1 \to E_2 \times F_2$ by h(x,y) = (f(x),g(y)). Let's check that h is a bijection.

- h is injective.
 Let (x, y), (x', y') ∈ E₁ × F₁ be such that h(x, y) = h(x', y').
 Then f(x) = f(x') and g(y) = g(y'), thus x = x' and y = y' since f and g are injectives.
 We proved that (x, y) = (x', y').
- h is surjective. Let $(z, w) \in E_2 \times F_2$. Since f is surjective, there exists $x \in E_1$ such that z = f(x). Since g is surjective, there exists $y \in F_1$ such that w = g(y). Then h(x, y) = (f(x), g(y)) = (z, w).

Theorem

Given two sets, E and F, $|E| \le |F|$ if and only if there exists a surjective function $g: F \to E$.

Proof.

 \Rightarrow Assume that there exists an injective function $f:E\to F$, then $\tilde{f}=f:E\to f(E)$ is bijective. If $E=\emptyset$, then there is nothing to prove. So we may assume that there exists $u\in E$.

Define
$$g: F \to E$$
 by $g(y) = \begin{cases} \tilde{f}^{-1}(y) & \text{if } y \in f(E) \\ u & \text{otherwise} \end{cases}$

Let $x \in E$, then $g(f(x)) = \tilde{f}^{-1}(f(x)) = x$. Thus g is surjective.

 \Leftarrow Assume that there exists a surjective function $g: F \to E$, then $\forall x \in E, \exists y_x \in g^{-1}(x)$.

Define $f: E \to F$ by $f(x) = y_x$. Then f is injective, so $|E| \le |F|$.

Indeed, assume that f(x) = f(x') then g(f(x)) = g(f(x')).

But $g(f(x)) = g(y_x) = x$ and similarly g(f(x')) = x'. Thus x = x'.

¹We use the axiom of choice here.