CARDINALITY: FINITE SETS

March $25^{\text {th }}, 2021$

Finite sets - 1

Definition: finite set

We say that a set E is finite if there exists $n \in \mathbb{N}$ and a bijection $f:\{k \in \mathbb{N}: k<n\} \rightarrow E$. Then we write $|E|=n$.

Note that $\{k \in \mathbb{N}: k<n\}=\{0,1,2, \ldots, n-1\}$.

Finite sets - 2

Lemma
Let $n, p \in \mathbb{N}$. If there exists an injective function $f:\{k \in \mathbb{N}: k<n\} \rightarrow\{k \in \mathbb{N}: k<p\}$ then $n \leq p$.

Finite sets - 2

Lemma

Let $n, p \in \mathbb{N}$. If there exists an injective function $f:\{k \in \mathbb{N}: k<n\} \rightarrow\{k \in \mathbb{N}: k<p\}$ then $n \leq p$.
Proof. We prove the statement by induction on n.

- Base case at $n=0$: for any $p \in \mathbb{N}$ we have $n \leq p$.
- Induction step. Assume that the statement holds for some $n \in \mathbb{N}$.

Let $p \in \mathbb{N}$. Assume that there exists an injective function $f:\{k \in \mathbb{N}: k<n+1\} \rightarrow\{k \in \mathbb{N}: k<p\}$.
Define $g:\{k \in \mathbb{N}: k<n\} \rightarrow\{k \in \mathbb{N}: k<p-1\}$ as follows: $g(x)=\left\{\begin{array}{cl}f(x) & \text { if } f(x)<f(n) \\ f(x)-1 & \text { if } f(x)>f(n)\end{array}\right.$ Note that $f(x) \neq f(n)$ since f is injective.

Finite sets - 2

Lemma

Let $n, p \in \mathbb{N}$. If there exists an injective function $f:\{k \in \mathbb{N}: k<n\} \rightarrow\{k \in \mathbb{N}: k<p\}$ then $n \leq p$.
Proof. We prove the statement by induction on n.

- Base case at $n=0$: for any $p \in \mathbb{N}$ we have $n \leq p$.
- Induction step. Assume that the statement holds for some $n \in \mathbb{N}$.

Let $p \in \mathbb{N}$. Assume that there exists an injective function $f:\{k \in \mathbb{N}: k<n+1\} \rightarrow\{k \in \mathbb{N}: k<p\}$.
Define $g:\{k \in \mathbb{N}: k<n\} \rightarrow\{k \in \mathbb{N}: k<p-1\}$ as follows: $g(x)=\left\{\begin{array}{cl}f(x) & \text { if } f(x)<f(n) \\ f(x)-1 & \text { if } f(x)>f(n)\end{array}\right.$
Note that $f(x) \neq f(n)$ since f is injective.

* Claim 1: g is well-defined, i.e. $\forall x \in\{k \in \mathbb{N}: k<n\}, g(x) \in\{k \in \mathbb{N}: k<p-1\}$.

Let $x \in\{k \in \mathbb{N}: k<n\}$.

So either, $f(x)<f(n)$ and then $g(x)=f(x)<f(n)<p$, therefore $0 \leq g(x)<p-1$.
Or, $f(x)>f(n)$ and then $g(x)=f(x)-1<p-1$, therefore $0 \leq g(x)<p-1$.

* Claim 2: g is injective.

Let $x, y \in\{k \in \mathbb{N}: k<n\}$ be such that $g(x)=g(y)$.
First case: $f(x), f(y)<f(n)$.
Then $g(x)=f(x)$ and $g(y)=f(y)$. So $f(x)=f(y)$ and thus $x=y$ since f is injective.
Second case: $f(x), f(y)>f(n)$.
Then $g(x)=f(x)-1$ and $g(y)=f(y)-1$. So $f(x)=f(y)$ and thus $x=y$ since f is injective.
Third case: $f(x)<f(n)$ and $f(y)>f(n)$.
Then $g(x)=f(x)<f(n)$ and $g(y)=f(y)-1>f(n)-1 \geq f(n)$. Therefore, this case is impossible.

Therefore, by the induction hypothesis, $n \leq p-1$, i.e. $n+1 \leq p$.

Finite sets - 3

Definition: finite set

We say that a set E is finite if there exists $n \in \mathbb{N}$ and a bijection $f:\{k \in \mathbb{N}: k<n\} \rightarrow E$. Then we write $|E|=n$.

Corollary

Let E be a finite set. If $|E|=n$ and $|E|=m$, then $m=n$. Then we say that $|E|$ is the cardinal of E, which is uniquely defined.

Finite sets - 3

Definition: finite set

We say that a set E is finite if there exists $n \in \mathbb{N}$ and a bijection $f:\{k \in \mathbb{N}: k<n\} \rightarrow E$.
Then we write $|E|=n$.

Corollary

Let E be a finite set. If $|E|=n$ and $|E|=m$, then $m=n$.
Then we say that $|E|$ is the cardinal of E, which is uniquely defined.
Proof. Assume there exists a bijection $f_{1}:\{k \in \mathbb{N}: k<n\} \rightarrow E$ and a bijection $f_{2}:\{k \in \mathbb{N}: k<m\} \rightarrow E$. Then $f_{2}^{-1} \circ f_{1}:\{k \in \mathbb{N}: k<n\} \rightarrow\{k \in \mathbb{N}: k<m\}$ is a bijection, so by the above lemma, $n \leq m$. Similarly, $f_{1}^{-1} \circ f_{2}:\{k \in \mathbb{N}: k<m\} \rightarrow\{k \in \mathbb{N}: k<n\}$ is a bijection and thus $m \leq n$. Therefore $n=m$.

Finite sets - 3

Definition: finite set

We say that a set E is finite if there exists $n \in \mathbb{N}$ and a bijection $f:\{k \in \mathbb{N}: k<n\} \rightarrow E$.
Then we write $|E|=n$.

Corollary

Let E be a finite set. If $|E|=n$ and $|E|=m$, then $m=n$.
Then we say that $|E|$ is the cardinal of E, which is uniquely defined.
Proof. Assume there exists a bijection $f_{1}:\{k \in \mathbb{N}: k<n\} \rightarrow E$ and a bijection $f_{2}:\{k \in \mathbb{N}: k<m\} \rightarrow E$. Then $f_{2}^{-1} \circ f_{1}:\{k \in \mathbb{N}: k<n\} \rightarrow\{k \in \mathbb{N}: k<m\}$ is a bijection, so by the above lemma, $n \leq m$. Similarly, $f_{1}^{-1} \circ f_{2}:\{k \in \mathbb{N}: k<m\} \rightarrow\{k \in \mathbb{N}: k<n\}$ is a bijection and thus $m \leq n$.
Therefore $n=m$.

Remark: the empty set

$|E|=0 \Leftrightarrow E=\varnothing$
Indeed, if $E=\varnothing$ then $f:\{k \in \mathbb{N}: k<0\} \rightarrow E$ is always bijective: injectiveness and surjectiveness are vacuously true. So $|E|=0$.
Otherwise, if $E \neq \varnothing$ then $f:\{k \in \mathbb{N}: k<0\} \rightarrow E$ is never surjective (thus never bijective), so $|E| \neq 0$.

Finite sets - 4

Proposition

If $E \subset F$ and F is finite then E is finite too, besides, $|E| \leq|F|$.

Finite sets - 4

Proposition

If $E \subset F$ and F is finite then E is finite too, besides, $|E| \leq|F|$.
Proof. Let's prove by induction on $n=|F|$ that if $E \subset F$ then E is finite and $|E| \leq n$.

- Base case at $n=0$: then $F=\varnothing$, so the only possible subset is $E=\varnothing$ and then $|E|=0$.
- Induction step. Assume that the statement holds for some $n \in \mathbb{N}$.

Let F be a set such that $|F|=n+1$.

- First case: $E=F$. Then the statement is obvious.

- Second case: $E \neq F$. Then there exists $x \in F \backslash E$.

There exists a bijection $f:\{k \in \mathbb{N}: k<n+1\} \rightarrow F$.
Since f is bijective, there exists a unique $m<n+1$ such that $f(m)=x$.
Define $g:\{k \in \mathbb{N}: k<n\} \rightarrow F \backslash\{x\}$ by $g(k)=f(k)$ for $k \neq m$,
and, if $m \neq n, g(m)=f(n)$.

Then g is a bijection, so $F \backslash\{x\}$ is finite and $|F \backslash\{x\}|=n$.
Since $E \subset F \backslash\{x\}$, by the induction hypothesis, E is finite and $|E| \leq n<n+1$.

Finite sets - 5

Proposition

Let $E \subset F$ with F finite. Then $|F|=|E|+|F \backslash E|$.

Finite sets - 5

Proposition

Let $E \subset F$ with F finite. Then $|F|=|E|+|F \backslash E|$.

Proof. Since $F \backslash E \subset F$ and $E \subset F$, we know that E and $F \backslash E$ are finite.
Denote $r=|E|$ and $s=|F \backslash E|$.
There exist bijections $f:\{k \in \mathbb{N}: k<r\} \rightarrow E$ and $g:\{k \in \mathbb{N}: k<s\} \rightarrow F \backslash E$.
Define $h:\{k \in \mathbb{N}: k<r+s\} \rightarrow F$ by $h(k)=\left\{\begin{array}{cc}f(k) & \text { if } k<r \\ g(k-r) & \text { if } k \geq r\end{array}\right.$.

- h is well-defined:

Indeed, if $0 \leq k<r$ then $f(k)$ is well-defined and $f(k) \in E \subset F$.
If $r \leq k<r+s$ then $0 \leq k-r<s$ so that $g(k-r)$ is well-defined and $g(k-r) \in F \backslash E \subset F$.

- h is a bijection:
- h is injective: let $x, y \in\{0,1, \ldots, r+s-1\}$ be such that $h(x)=h(y)$.

Either $h(x)=h(y) \in E$ and then $f(x)=h(x)=h(y)=f(y)$ thus $x=y$ since f is injective.
Or $h(x)=h(y) \in F \backslash E$ and then $g(x-r)=h(x)=h(y)=g(y-r)$ thus $x-r=y-r$ since g is injective, hence $x=y$.

- h is surjective: let $y \in F$.

Either $y \in E$, and then there exists $x \in\{0,1, \ldots, r-1\}$ such that $f(x)=y$, since f is surjective. Then $h(x)=f(x)=y$.
Or $y \in F \backslash E$, and then there exists $x \in\{0,1, \ldots, s-1\}$ such that $g(x)=y$ since g is surjective. Then $h(x+r)=g(x)=y$.
Therefore $|F|=r+s=|E|+|F \backslash E|$.

Finite sets - 6

Proposition

Let E and F be two finite sets. Then
(1) $|E \cup F|=|E|+|F|-|E \cap F|$
(2) $|E \times F|=|E| \times|F|$

Finite sets - 6

Proposition

Let E and F be two finite sets. Then

(1) $|E \cup F|=|E|+|F|-|E \cap F|$
(2) $|E \times F|=|E| \times|F|$

Proof.

(1) Using the previous proposition twice, we get

$$
|E \cup F|=|E \sqcup(F \backslash(E \cap F))|=|E|+|F \backslash(E \cap F)|=|E|+|F|-|E \cap F|
$$

(2) We prove this proposition by induction on $n=|F| \in \mathbb{N}$.

- Base case at $n=0$: then $F=\varnothing$ so $E \times F=\varnothing$ too and $|E \times F|=0=|E| \times 0=|E| \times|F|$.
- Case $n=1$: we will use this special case later in the proof.

Assume that $F=\{*\}$ and that $|E|=n$. Then there exists a bijection $f:\{k \in \mathbb{N}: k<n\} \rightarrow E$.
Note that $g:\{k \in \mathbb{N}: k<n\} \rightarrow E \times F$ defined by $g(k)=(f(k), *)$ is a bijection.
Therefore $|E \times F|=n=n \times 1=|E| \times|F|$.

- Induction step. Assume that the statement holds for some $n \in \mathbb{N}$.

Let F be a set such that $|F|=n+1$.
Since $|F|>0$, there exists $x \in F$ and $|F \backslash\{x\}|=|F|-|\{x\}|=n+1-1=n$. Then

$$
\begin{aligned}
|E \times F| & =|(E \times(F \backslash\{x\})) \cup(E \times\{x\})|=|E \times(F \backslash\{x\})|+|E \times\{x\}| \\
& =|E| \times|F \backslash\{x\}|+|E| \text { using the induction hypothesis and the case } n=1 \\
& =|E| \times(|F|-1)+|E|=|E| \times|F|
\end{aligned}
$$

Finite sets - 7

Proposition

Assume that $E \subset F$ with F finite. Then $E=F \Leftrightarrow|E|=|F|$.

Finite sets - 7

Proposition

Assume that $E \subset F$ with F finite. Then $E=F \Leftrightarrow|E|=|F|$.

Proof.

\Rightarrow It is obvious.
\Leftarrow Assume that $|E|=|F|$. Then $|F \backslash E|=|F|-|E|=0$. Thus $F \backslash E=\varnothing$, i.e. $E=F$.

Finite sets - 7

Proposition

Assume that $E \subset F$ with F finite. Then $E=F \Leftrightarrow|E|=|F|$.
Proof.
\Rightarrow It is obvious.
\Leftarrow Assume that $|E|=|F|$. Then $|F \backslash E|=|F|-|E|=0$. Thus $F \backslash E=\varnothing$, i.e. $E=F$.

Proposition

Let E a finite set. Then F is finite and $|E|=|F|$ if and only if there exists a bijection $f: E \rightarrow F$.

Finite sets - 7

Proposition

Assume that $E \subset F$ with F finite. Then $E=F \Leftrightarrow|E|=|F|$.

Proof.

\Rightarrow It is obvious.
\Leftarrow Assume that $|E|=|F|$. Then $|F \backslash E|=|F|-|E|=0$. Thus $F \backslash E=\varnothing$, i.e. $E=F$.

Proposition

Let E a finite set. Then F is finite and $|E|=|F|$ if and only if there exists a bijection $f: E \rightarrow F$.

Proof.

\Rightarrow Assume that F is finite and that $|E|=|F|=n$.
Then there exist bijections $\varphi:\{k \in \mathbb{N}: k<n\} \rightarrow E$ and $\psi:\{k \in \mathbb{N}: k<n\} \rightarrow F$.
Therefore $f=\psi \circ \varphi^{-1}: E \rightarrow F$ is a bijection.
\Leftarrow Assume that there exists a bijection $f: E \rightarrow F$.
Since E is finite there exists a bijection $\varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow E$.
Thus $f \circ \varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow F$ is a bijection. Therefore F is finite and $|F|=|E|$.

Finite sets - 8

Proposition

Let E, F be two finite sets such that $|E|=|F|$. Let $f: E \rightarrow F$. Then TFAE:
(1) f is injective,
(2) f is surjective,
(3) f is bijective.

Finite sets - 8

Proposition

Let E, F be two finite sets such that $|E|=|F|$. Let $f: E \rightarrow F$. Then TFAE:
(1) f is injective,
(2) f is surjective,
(3) f is bijective.

Proof.
Assume that f is injective.
There exists a bijection $\varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow E$.
Then $f \circ \varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow f(E)$ is a bijection. Thus $|f(E)|=|E|=|F|$.
Since $f(E) \subset F$ and $|f(E)|=|F|$, we get $f(E)=F$, i.e. f is surjective.
Assume that f is surjective.
Then for every $y \in F, f^{-1}(y) \subset E$ is finite and non-empty, i.e. $\left|f^{-1}(y)\right| \geq 1$.
Assume by contradiction that there exists $y \in F$ such that $\left|f^{-1}(y)\right|>1$.
Thus $|E|=\left|\bigsqcup_{y \in F} f^{-1}(y)\right|=\sum_{y \in F}\left|f^{-1}(y)\right|>|F|=|E|$. Hence a contradiction.

Finite sets - 9

Proposition

Let E and F be two finite sets. Then $|E| \leq|F|$ if and only if there exists an injection $f: E \rightarrow F$.

Finite sets - 9

Proposition

Let E and F be two finite sets. Then $|E| \leq|F|$ if and only if there exists an injection $f: E \rightarrow F$.
Proof.
\Rightarrow Assume that $|E| \leq|F|$.
There exist bijections $\varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow E$ and $\psi:\{k \in \mathbb{N}: k<|F|\} \rightarrow F$.
Since $|E| \leq|F|, f=\psi \circ \varphi^{-1}: E \rightarrow F$ is well-defined and injective.
\Rightarrow Assume that there exists an injection $f: E \rightarrow F$.
Then f induces a bijection $f: E \rightarrow f(E)$, so that $|E|=|f(E)|$.
And since $f(E) \subset F$, we have $|f(E)| \leq|F|$.

Finite sets - 9

Proposition

Let E and F be two finite sets. Then $|E| \leq|F|$ if and only if there exists an injection $f: E \rightarrow F$.

Proof.

\Rightarrow Assume that $|E| \leq|F|$.
There exist bijections $\varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow E$ and $\psi:\{k \in \mathbb{N}: k<|F|\} \rightarrow F$.
Since $|E| \leq|F|, f=\psi \circ \varphi^{-1}: E \rightarrow F$ is well-defined and injective.
\Rightarrow Assume that there exists an injection $f: E \rightarrow F$.
Then f induces a bijection $f: E \rightarrow f(E)$, so that $|E|=|f(E)|$.
And since $f(E) \subset F$, we have $|f(E)| \leq|F|$.
Corollary: the pigeonhole principle or Dirichlet's drawer principle
Let E and F be two finite sets. If $|E|>|F|$ then there is no injective function $E \rightarrow F$.

Finite sets - 9

Proposition

Let E and F be two finite sets. Then $|E| \leq|F|$ if and only if there exists an injection $f: E \rightarrow F$.

Proof.

\Rightarrow Assume that $|E| \leq|F|$.
There exist bijections $\varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow E$ and $\psi:\{k \in \mathbb{N}: k<|F|\} \rightarrow F$.
Since $|E| \leq|F|, f=\psi \circ \varphi^{-1}: E \rightarrow F$ is well-defined and injective.
\Rightarrow Assume that there exists an injection $f: E \rightarrow F$.
Then f induces a bijection $f: E \rightarrow f(E)$, so that $|E|=|f(E)|$.
And since $f(E) \subset F$, we have $|f(E)| \leq|F|$.

Corollary: the pigeonhole principle or Dirichlet's drawer principle

Let E and F be two finite sets. If $|E|>|F|$ then there is no injective function $E \rightarrow F$.

Examples

- There are two non-bald people in Toronto with the exact same number of hairs on their heads.
- During a post-covid party with $n>1$ participants, we may always find two people who shook hands to the same number of people.

Finite sets - 10

Remark: trichotomy principle for finite sets

Since the cardinal of a finite set is a natural number, we deduce from the fact that \mathbb{N} is totally ordered, that given two finite sets E and F, exactly one of the followings occurs:

- either $|E|<|F|$
i.e. there is an injection $E \rightarrow F$ but no bijection $E \rightarrow F$,
- or $|E|=|F|$
i.e. there is a bijection $E \rightarrow F$,
- or $|E|>|F|$
i.e. there is an injection $F \rightarrow E$ but no bijection $E \rightarrow F$.

