MAT246H1-S - LEC0201/9201

Concepts in Abstract Mathematics

REVIEWS ABOUT FUNCTIONS

March 23rd, 2021

Functions – 1

(Informal) definition of a function

A function (or map) is the data of two sets A and B together with a "process" which assigns to each $x \in A$ a unique $f(x) \in B$:

$$f: \left\{ \begin{array}{ccc} A & \to & B \\ x & \mapsto & f(x) \end{array} \right.$$

Here, f is the name of the function, A is the *domain* of f, and B is the *codomain* of f.

Remark

This process can be:

- A formula: $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^{x^2 \pi} + 42$.
- An exhaustive list: $f: \{1,2,3\} \to \mathbb{R}$ defined by $f(1) = \pi$, $f(2) = \sqrt{2}$, f(3) = e.
- A property characterizing f: \log is the unique antiderivative of $g:(0,+\infty)\to\mathbb{R}$ defined by $g(x)=\frac{1}{x}$ such that $\log(1)=0$.
- By induction: we define the sequence $u_n : \mathbb{N} \to \mathbb{R}$ by $u_0 = 1$ and $\forall n \in \mathbb{N}$, $u_{n+1} = u_n^2 + 1$.
- ...

Functions - 2

Remark

The domain and codomain are part of the definition of a function.

For instance:

- $f: \left\{ egin{array}{ll} \mathbb{R} &
 ightarrow (0, +\infty) \\ x &
 ightarrow e^x \end{array}
 ight.$ and $g: \left\{ egin{array}{ll} \mathbb{R} &
 ightarrow \mathbb{R} \\ x &
 ightarrow e^x \end{array}
 ight.$ are not the same function (the first one is surjective but not the second one).
- $f: \left\{ egin{array}{ll} [0,+\infty) & \to & \mathbb{R} \\ x & \mapsto & x^2+1 \end{array} \right.$ and $g: \left\{ egin{array}{ll} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2+1 \end{array} \right.$ are not the same function (the first one is injective but not the second one).

A function is not simply a "formula", you need to specify the domain and the codomain.

Injective/Surjective/Bijective functions

Given a function $f: A \rightarrow B$.

• We say that f is *injective* (or *one-to-one*) if $\forall x_1, x_2 \in A$, $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ or equivalently by taking the contrapositive $\forall x_1, x_2 \in A$, $f(x_1) = f(x_2) \implies x_1 = x_2$

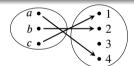


Figure: Injective

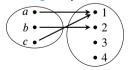


Figure: Not injective

Injective/Surjective/Bijective functions

Given a function $f: A \rightarrow B$.

• We say that f is *surjective* (or *onto*) if $\forall y \in B, \exists x \in A, y = f(x)$

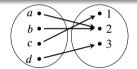


Figure: Not surjective

Injective/Surjective/Bijective functions

Given a function $f: A \rightarrow B$.

• We say that f is *bijective* if it is injective and surjective, i.e. $\forall y \in B, \exists ! x \in A, y = f(x)$

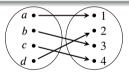


Figure: Bijective

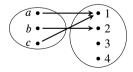


Figure: Not injective

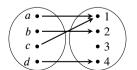


Figure: Not surjective

Injective/Surjective/Bijective functions

Given a function $f: A \rightarrow B$.

- We say that f is *injective* (or *one-to-one*) if $\forall x_1, x_2 \in A$, $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ or equivalently by taking the contrapositive $\forall x_1, x_2 \in A$, $f(x_1) = f(x_2) \implies x_1 = x_2$
- We say that f is *surjective* (or *onto*) if $\forall y \in B, \exists x \in A, y = f(x)$
- We say that f is bijective if it is injective and surjective, i.e. $\forall y \in B, \exists! x \in A, y = f(x)$

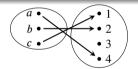


Figure: Injective

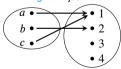


Figure: Not injective

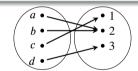


Figure: Surjective

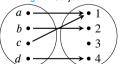


Figure: Not surjective

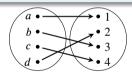


Figure: Bijective

Proposition

Let $f: E \to F$ and $g: F \to G$ be two functions.

- 1 If f and g are injective then so is $g \circ f$.
- 2 If f and g are surjective then so is $g \circ f$.
- 3 If $g \circ f$ is injective then f is injective too.
- 4 If $g \circ f$ is surjective then g is surjective too.

Proposition

Let $f: E \to F$ and $g: F \to G$ be two functions.

- 1 If f and g are injective then so is $g \circ f$.
- 2 If f and g are surjective then so is $g \circ f$.
- 3 If $g \circ f$ is injective then f is injective too.
- 4 If $g \circ f$ is surjective then g is surjective too.

Proof.

- 1 Let $x, y \in E$ be such that g(f(x)) = g(f(y)). Then f(x) = f(y) since g is injective. Thus x = y since f is injective.
- 2 Let $z \in G$. Since g is surjective, it exists $y \in F$ such that z = g(y). Since f is surjective, it exists $x \in E$ such that y = f(x). Therefore z = g(f(x)).
- 3 Let $x, y \in E$ such that f(x) = f(y). Then g(f(x)) = g(f(y)) and thus x = y since $g \circ f$ is injective.
- 4 Let $z \in G$. Since $g \circ f$ is surjective, there exists $x \in E$ such that z = g(f(x)). Then $y = f(x) \in F$ satisfies g(y) = z.

Inverse of a bijection

Proposition

 $f:A\to B$ is bijective if and only if there exists $g:B\to A$ such that $\left\{ \begin{array}{l} \forall x\in A,\ g(f(x))=x\\ \forall y\in B,\ f(g(y))=y \end{array} \right.$ Then g is unique, it is called the *inverse of* f and denoted by $f^{-1}:B\to A$.

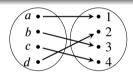


Figure: Bijective function

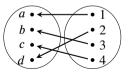


Figure: Its inverse

Inverse of a bijection

Proposition

 $f:A\to B$ is bijective if and only if there exists $g:B\to A$ such that $\left\{ \begin{array}{l} \forall x\in A,\ g(f(x))=x\\ \forall y\in B,\ f(g(y))=y \end{array} \right.$ Then g is unique, it is called the *inverse of* f and denoted by $f^{-1}:B\to A$.

Proof.

 \Rightarrow Assume that f is bijective, then $\forall y \in B$, $\exists ! x_y \in A$, $f(x_y) = y$.

We define $g: B \to A$ by $g(y) = x_y$. Then g satisfies the required properties.

 \Leftarrow Assume that there exists g as in the statement.

Then $g \circ f = id_A$ is injective, so f is too.

And $f \circ g = id_B$ is surjective, thus f is too.

Therefore f is bijective.

Uniqueness: assume there exist two such functions $g_1, g_2 : B \to A$.

Let $y \in B$. Then $f(g_1(y)) = y = f(g_2(y))$.

So $g_1(y) = g_2(y)$ since f is injective.

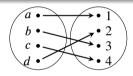


Figure: Bijective function

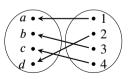


Figure: Its inverse