MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

REVIEWS ABOUT FUNCTIONS

March 23rd, 2021

Functions – 1

(Informal) definition of a function

A function (or map) is the data of two sets A and B together with a "process" which assigns to each $x \in A$ a unique $f(x) \in B$:

$$f: \left\{ \begin{array}{ccc} A & \to & B \\ x & \mapsto & f(x) \end{array} \right.$$

Here, f is the name of the function, A is the *domain* of f, and B is the *codomain* of f.

Remark

•

This process can be:

- A formula: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^{x^2 \pi} + 42$.
- An exhaustive list: $f : \{1,2,3\} \rightarrow \mathbb{R}$ defined by $f(1) = \pi$, $f(2) = \sqrt{2}$, f(3) = e.
- A property characterizing f: log is the unique antiderivative of g: $(0, +\infty) \rightarrow \mathbb{R}$ defined by $g(x) = \frac{1}{x}$ such that $\log(1) = 0$.
- By induction: we define the sequence $u_n : \mathbb{N} \to \mathbb{R}$ by $u_0 = 1$ and $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 + 1$.

Remark

The domain and codomain are part of the definition of a function.

For instance:

•
$$f: \begin{cases} \mathbb{R} \to (0, +\infty) \\ x \mapsto e^x \end{cases}$$
 and $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto e^x \end{cases}$

are not the same function (the first one is surjective but not the second one).

•
$$f: \begin{cases} [0, +\infty) \to \mathbb{R} \\ x \mapsto x^2 + 1 \end{cases}$$
 and $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 + 1 \end{cases}$ are not the same function (the first one is injective but not the second one).

A function is not simply a "formula", you need to specify the domain and the codomain.

Injective/Surjective/Bijective functions - 1

Injective/Surjective/Bijective functions

Given a function $f : A \rightarrow B$.

- We say that *f* is *injective* (or *one-to-one*) if ∀x₁, x₂ ∈ A, x₁ ≠ x₂ ⇒ f(x₁) ≠ f(x₂) or equivalently by taking the contrapositive ∀x₁, x₂ ∈ A, f(x₁) = f(x₂) ⇒ x₁ = x₂
- We say that *f* is *surjective* (or *onto*) if $\forall y \in B, \exists x \in A, y = f(x)$
- We say that *f* is *bijective* if it is injective and surjective, i.e. $\forall y \in B, \exists ! x \in A, y = f(x)$

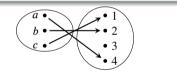


Figure: Injective

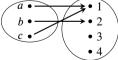
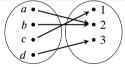
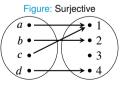


Figure: Not injective





 $\begin{array}{c}
a \bullet & \bullet & 1 \\
b \bullet & \bullet & 2 \\
c \bullet & \bullet & 3 \\
d \bullet & \bullet & 4
\end{array}$

Figure: Not surjective

Injective/Surjective/Bijective functions - 2

Proposition

- Let $f : E \to F$ and $g : F \to G$ be two functions.
 - **1** If f and g are injective then so is $g \circ f$.
 - 2 If f and g are surjective then so is $g \circ f$.
 - **3** If $g \circ f$ is injective then f is injective too.
 - 4 If $g \circ f$ is surjective then g is surjective too.

Proof.

- 1 Let $x, y \in E$ be such that g(f(x)) = g(f(y)). Then f(x) = f(y) since g is injective. Thus x = y since f is injective.
- 2 Let z ∈ G. Since g is surjective, it exists y ∈ F such that z = g(y).
 Since f is surjective, it exists x ∈ E such that y = f(x). Therefore z = g(f(x)).
- 3 Let $x, y \in E$ such that f(x) = f(y). Then g(f(x)) = g(f(y)) and thus x = y since $g \circ f$ is injective.
- 4 Let $z \in G$. Since $g \circ f$ is surjective, there exists $x \in E$ such that z = g(f(x)). Then $y = f(x) \in F$ satisfies g(y) = z.

Inverse of a bijection

Proposition

$$f: A \to B$$
 is bijective if and only if there exists $g: B \to A$ such that $\begin{cases} \forall x \in A, g(f(x)) = x \\ \forall y \in B, f(g(y)) = y \end{cases}$
Then g is unique, it is called the *inverse of* f and denoted by $f^{-1}: B \to A$.

Proof.

⇒ Assume that *f* is bijective, then $\forall y \in B$, $\exists ! x_y \in A$, $f(x_y) = y$. We define $g : B \to A$ by $g(y) = x_y$. Then *g* satisfies the required properties. \Leftarrow Assume that there exists *g* as in the statement. Then $g \circ f = id_A$ is injective, so *f* is too. And $f \circ g = id_B$ is surjective, thus *f* is too. Therefore *f* is bijective.

Uniqueness: assume there exist two such functions $g_1, g_2 : B \to A$. Let $y \in B$. Then $f(g_1(y)) = y = f(g_2(y))$. So $g_1(y) = g_2(y)$ since *f* is injective.

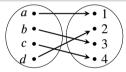


Figure: Bijective function

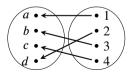


Figure: Its inverse