Reviews about functions

March $23^{\text {rd }}, 2021$

Functions - 1

(Informal) definition of a function

A function (or map) is the data of two sets A and B together with a "process" which assigns to each $x \in A$ a unique $f(x) \in B$:

$$
f:\left\{\begin{array}{ccc}
A & \rightarrow & B \\
x & \mapsto & f(x)
\end{array}\right.
$$

Here, f is the name of the function, A is the domain of f, and B is the codomain of f.

Remark

This process can be:

- A formula: $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=e^{x^{2}-\pi}+42$.
- An exhaustive list: $f:\{1,2,3\} \rightarrow \mathbb{R}$ defined by $f(1)=\pi, f(2)=\sqrt{2}, f(3)=e$.
- A property characterizing $f: \log$ is the unique antiderivative of $g:(0,+\infty) \rightarrow \mathbb{R}$ defined by $g(x)=\frac{1}{x}$ such that $\log (1)=0$.
- By induction: we define the sequence $u_{n}: \mathbb{N} \rightarrow \mathbb{R}$ by $u_{0}=1$ and $\forall n \in \mathbb{N}, u_{n+1}=u_{n}^{2}+1$.

Functions - 2

Remark

The domain and codomain are part of the definition of a function.
For instance:

- $f:\left\{\begin{array}{ccc}\mathbb{R} & \rightarrow & (0,+\infty) \\ x & \mapsto & e^{x}\end{array} \quad\right.$ and $\quad g:\left\{\begin{array}{ccc}\mathbb{R} & \rightarrow & \mathbb{R} \\ x & \mapsto & e^{x}\end{array}\right.$ are not the same function (the first one is surjective but not the second one).
- $f:\left\{\begin{array}{ccc}{[0,+\infty)} & \rightarrow & \mathbb{R} \\ x & \mapsto & x^{2}+1\end{array} \quad\right.$ and $\quad g:\left\{\begin{array}{ccc}\mathbb{R} & \rightarrow & \mathbb{R} \\ x & \mapsto & x^{2}+1\end{array}\right.$ are not the same function (the first one is injective but not the second one).

A function is not simply a "formula", you need to specify the domain and the codomain.

Injective/Surjective/Bijective functions - 1

Injective/Surjective/Bijective functions

Given a function $f: A \rightarrow B$.

- We say that f is injective (or one-to-one) if $\forall x_{1}, x_{2} \in A, x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$ or equivalently by taking the contrapositive $\forall x_{1}, x_{2} \in A, f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$
- We say that f is surjective (or onto) if $\forall y \in B, \exists x \in A, y=f(x)$
- We say that f is bijective if it is injective and surjective, i.e. $\forall y \in B, \exists!x \in A, y=f(x)$

Figure: Injective

Figure: Not injective

Figure: Surjective

Figure: Not surjective

Injective/Surjective/Bijective functions - 2

Proposition

Let $f: E \rightarrow F$ and $g: F \rightarrow G$ be two functions.
(1) If f and g are injective then so is $g \circ f$.
(2) If f and g are surjective then so is $g \circ f$.
(3) If $g \circ f$ is injective then f is injective too.
(4) If $g \circ f$ is surjective then g is surjective too.

Proof.

(1) Let $x, y \in E$ be such that $g(f(x))=g(f(y))$.

Then $f(x)=f(y)$ since g is injective. Thus $x=y$ since f is injective.
(2) Let $z \in G$. Since g is surjective, it exists $y \in F$ such that $z=g(y)$.

Since f is surjective, it exists $x \in E$ such that $y=f(x)$. Therefore $z=g(f(x))$.
(3) Let $x, y \in E$ such that $f(x)=f(y)$.

Then $g(f(x))=g(f(y))$ and thus $x=y$ since $g \circ f$ is injective.
(4) Let $z \in G$. Since $g \circ f$ is surjective, there exists $x \in E$ such that $z=g(f(x))$.

Then $y=f(x) \in F$ satisfies $g(y)=z$.

Inverse of a bijection

Proposition

$f: A \rightarrow B$ is bijective if and only if there exists $g: B \rightarrow A$ such that $\left\{\begin{array}{l}\forall x \in A, g(f(x))=x \\ \forall y \in B, f(g(y))=y\end{array}\right.$. Then g is unique, it is called the inverse of f and denoted by $f^{-1}: B \rightarrow A$.

Proof.

\Rightarrow Assume that f is bijective, then $\forall y \in B, \exists!x_{y} \in A, f\left(x_{y}\right)=y$.
We define $g: B \rightarrow A$ by $g(y)=x_{y}$. Then g satisfies the required properties. \Leftarrow Assume that there exists g as in the statement.
Then $g \circ f=i d_{A}$ is injective, so f is too.

Figure: Bijective function And $f \circ g=i d_{B}$ is surjective, thus f is too.
Therefore f is bijective.
Uniqueness: assume there exist two such functions $g_{1}, g_{2}: B \rightarrow A$.
Let $y \in B$. Then $f\left(g_{1}(y)\right)=y=f\left(g_{2}(y)\right)$.
So $g_{1}(y)=g_{2}(y)$ since f is injective.

Figure: Its inverse

