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ℚ is dense in ℝ – 1

Theorem: ℚ is dense in ℝ
∀𝑥, 𝑦 ∈ ℝ, 𝑥 < 𝑦 ⇒ (∃𝑞 ∈ ℚ, 𝑥 < 𝑞 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦. Set 𝜀 = 𝑦 − 𝑥 > 0.
By the archimedean property, there exists 𝑛 ∈ ℕ ⧵ {0} such that 𝑛𝜀 > 1, i.e. 1

𝑛 < 𝜀.
Set 𝑚 = ⌊𝑛𝑥⌋ + 1. Then 𝑛𝑥 < 𝑚 ≤ 𝑛𝑥 + 1, so 𝑥 < 𝑚

𝑛 ≤ 𝑥 + 1
𝑛 < 𝑥 + 𝜀 = 𝑦. ■
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ℚ is dense in ℝ – 2

Definition: interval
A subset 𝐼 ⊂ ℝ is an interval if ∀𝑥, 𝑦 ∈ 𝐼, ∀𝑧 ∈ ℝ, (𝑥 ≤ 𝑧 ≤ 𝑦 ⇒ 𝑧 ∈ 𝐼).

Crollary
If 𝐼 ⊂ ℝ is a non-empty interval not reduced to a singleton then 𝐼 ∩ ℚ ≠ ∅.

Proof. Since 𝐼 is non-empty and not reduced to a singleton, there exist 𝑥, 𝑦 ∈ 𝐼 with 𝑥 < 𝑦.
Then, since ℚ is dense in ℝ, there exists 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦.
Since 𝐼 is an interval, 𝑞 ∈ 𝐼 . Hence 𝑞 ∈ 𝐼 ∩ ℚ ≠ ∅. ■
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ℝ ⧵ ℚ is dense in ℝ
Theorem: ℝ ⧵ ℚ is dense in ℝ
∀𝑥, 𝑦 ∈ ℝ, 𝑥 < 𝑦 ⟹ (∃𝑠 ∈ ℝ ⧵ ℚ, 𝑥 < 𝑠 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℝ such that 𝑥 < 𝑦.
Since , there exists 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦.
Similarly, there exists 𝑝 ∈ ℚ such that 𝑥 < 𝑝 < 𝑞.
Hence we obtained 𝑝, 𝑞 ∈ ℚ such that 𝑥 < 𝑝 < 𝑞 < 𝑦.
Set 𝑠 = 𝑝 + √2

2 (𝑞 − 𝑝). Then 𝑠 ∈ ℝ ⧵ ℚ (otherwise, by contradiction, √2 would be in ℚ) and

𝑝 < 𝑠 < 𝑞 (notice that 0 < √2
2 < 1 so 𝑠 is a number between 𝑝 and 𝑞).

We obtained 𝑠 ∈ ℝ ⧵ ℚ such that 𝑥 < 𝑠 < 𝑦. ■

I wanted to give it as a question in PS4… before remembering it was in my lecture notes…

Corollary
If 𝐼 ⊂ ℝ is an interval which is non-empty and not reduced to a singleton then 𝐼 ∩ (ℝ ⧵ ℚ) ≠ ∅.
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Decimal representation of real numbers – 1

Lemma
Let (𝑎𝑘)𝑘≥1 be a sequence such that ∀𝑘 ∈ ℕ ⧵ {0}, 𝑎𝑘 ∈ {0, 1, … , 9}. Then the series

𝑆 =
+∞

∑
𝑘=1

𝑎𝑘
10𝑘

is convergent and 𝑆 ≥ 0.

Proof.

Note that 0 ≤ 𝑎𝑘
10𝑘 ≤ 9

10𝑘 and that
+∞

∑
𝑘=1

9
10𝑘 is convergent (geometric series with ratio 1

10 < 1).

Therefore we may conclude using the BCT. ■
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Decimal representation of real numbers – 2
Unfortunately the decimal representation may not be unique: 0.9999 … =

+∞

∑
𝑘=1

9
10𝑘 = 9

10 × 1
1 − 1

10

= 1.000 …

In order to achieve uniqueness we are going to restrict to expansions which don’t end with infinitely many 9.

Definition: proper decimal expansion

Let 𝑥 ∈ ℝ. We say that ⌊𝑥⌋.𝑎1𝑎2𝑎3 … ≔ ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is a proper decimal expansion of 𝑥 if

1 ∀𝑘 ∈ ℕ ⧵ {0}, 𝑎𝑘 ∈ {0, 1, … , 9} 2 ∀𝑛 ∈ ℕ ⧵ {0},
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 ≤ 𝑥 − ⌊𝑥⌋ <

𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑛

Proposition

If ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is a proper decimal expansion of 𝑥 ∈ ℝ then 1 𝑥 = ⌊𝑥⌋ +

+∞

∑
𝑘=1

𝑎𝑘
10𝑘 2 ∀𝑁 ∈ ℕ ⧵ {0}, ∃𝑘 > 𝑁, 𝑎𝑘 ≠ 9

Proof.
1 We already proved that 𝑆 =

+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is convergent. Hence we get 𝑆 ≤ 𝑥 − ⌊𝑥⌋ ≤ 𝑆. So 𝑥 = ⌊𝑥⌋ + 𝑆.

2 Assume by contradiction that there exists 𝑁 ∈ ℕ ⧵ {0} such that ∀𝑘 > 𝑁, 𝑎𝑘 = 9.

Then 𝑥 − ⌊𝑥⌋ =
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 =

𝑁

∑
𝑘=1

𝑎𝑘
10𝑘 +

+∞

∑
𝑘=𝑁+1

9
10𝑘 =

𝑁

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑁 . Which contradicts the definition of proper decimal expansion. ■
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Decimal representation of real numbers – 3
Theorem
A real number 𝑥 admits a unique proper decimal expansion.
Proof. Let 𝑥 ∈ ℝ. Up to replacing 𝑥 with 𝑥 − ⌊𝑥⌋, we may assume that ⌊𝑥⌋ = 0.

Assume that
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is a proper decimal expansion of 𝑥. Then 𝑎𝑛 ≤ 10𝑛

(
𝑥 −

𝑛−1

∑
𝑘=1

𝑎𝑘
10𝑘 )

< 𝑎𝑛 + 1.

So the only possible suitable sequence (𝑎𝑛) is given by 𝑎1 = ⌊10𝑥⌋ and 𝑎𝑛+1 =
⌊

10𝑛+1
(

𝑥 −
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 )⌋

.

It proves the uniqueness, but we still need to check that it is valid.

1 Since ⌊𝑥⌋ = 0, we have 0 ≤ 𝑥 < 1. Thus 0 ≤ 10𝑥 < 10. Therefore 𝑎1 = ⌊10𝑥⌋ ∈ {0, 1, … , 9}.

Let 𝑛 ∈ ℕ ⧵ {0}, then 0 ≤ 10𝑛
(

𝑥 −
𝑛−1

∑
𝑘=1

𝑎𝑘
10𝑘 )

− 𝑎𝑛 < 1. Thus 0 ≤ 10𝑛+1
(

𝑥 −
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 )

< 10.

Therefore 𝑎𝑛+1 ∈ {0, 1, … , 9}.

2 We have ∀𝑛 ∈ ℕ ⧵ {0},
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 ≤ 𝑥 <

𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑛 by construction.

■
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Decimal representation of real numbers – 4
Theorem
A real number 𝑥 ∈ ℝ is rational if and only if its proper decimal expansion is eventually periodic,
i.e. ∃𝑟 ∈ ℕ, ∃𝑠 ∈ ℕ ⧵ {0}, ∀𝑘 ∈ ℕ, 𝑎𝑟+𝑘+𝑠 = 𝑎𝑟+𝑘, so that
𝑥 = ⌊𝑥⌋.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠 ≔ ⌊𝑥⌋.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠𝑐1𝑐2 … 𝑐𝑠𝑐1 …

Proof.
⇒ Let 𝑥 = 𝑎

𝑏 where 𝑎 ∈ ℤ and 𝑏 ∈ ℕ ⧵ {0}.

By Euclidean division, 𝑎 = 𝑏𝑞0 + 𝑟0 where 0 ≤ 𝑟0 < 𝑏. Hence 𝑎
𝑏 = 𝑞0 + 𝑟0

𝑏 . Note that 𝑞0 = ⌊
𝑎
𝑏 ⌋.

And we repeat: 10𝑟𝑘 = 𝑏𝑞𝑘+1 + 𝑟𝑘+1 where 0 ≤ 𝑟𝑘+1 < 𝑏.
Since there are only 𝑏 possible remainders, the process will start looping after at most 𝑏 steps.
But note that the (𝑞𝑘)𝑘≥1 defines exactly the decimal expansion of 𝑥.

⇐ Assume that the proper decimal expansion 𝑥 = ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is eventually periodic, i.e. ∃𝑟 ∈ ℕ, ∃𝑠 ∈ ℕ ⧵ {0}, ∀𝑘 ∈ ℕ, 𝑎𝑟+𝑘+𝑠 = 𝑎𝑟+𝑘.

Then 𝑥 = ⌊𝑥⌋ +
𝑟

∑
𝑘=1

𝑎𝑘
10𝑘 + 10−𝑟

+∞

∑
𝑘=1

𝑎𝑟+𝑘
10𝑘 . Hence it is enough to prove that 𝑦 =

+∞

∑
𝑘=1

𝑎𝑟+𝑘
10𝑘 ∈ ℚ.

Note that 10𝑠𝑦 = 𝑁 + 𝑦 where 𝑁 = 𝑎𝑟+1𝑎𝑟+2 … 𝑎𝑟+𝑠
10 ∈ ℕ. Hence 𝑦 = 𝑁

10𝑠−1 ∈ ℚ. ■
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Decimal representation of real numbers – 5

Example
We want to find the decimal expansion of 1529327

24975 .
1 1529327 = 24975 × 61 + 5852
2 58520 = 24975 × 2 + 8570
3 85700 = 24975 × 3 + 10775
4 107750 = 24975 × 4 + 7850
5 78500 = 24975 × 3 + 3575
6 35750 = 24975 × 1 + 10775

And we start to loop. Therefore 1529327
24975 = 61.234314
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Decimal representation of real numbers – 6
According to the above proof,

𝑎𝑡𝑎𝑡−1 … 𝑎0.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠 = 𝑎𝑡𝑎𝑡−1 ⋯ 𝑎0
10 +

𝑟

∑
𝑘=1

𝑏𝑘
10𝑘 + 10−𝑟 𝑐1𝑐2 … 𝑐𝑠

10

10𝑠 − 1

= 𝑎𝑡𝑎𝑡−1 … 𝑎0
10 + 𝑏1𝑏2 … 𝑏𝑟

10

10𝑟 + 𝑐1𝑐2 … 𝑐𝑠
10

10𝑟+𝑠 − 10𝑟

= 𝑎𝑡𝑎𝑡−1 … 𝑎0𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠
10 − 𝑎𝑡𝑎𝑡−1 … 𝑎0𝑏1𝑏2 … 𝑏𝑟

10

10𝑟+𝑠 − 10𝑟

Examples
• 61.234314 = 61234314 − 61234

106 − 103 = 61173080
999000

• 0.3 = 3 − 0
10 − 1 = 3

9
• 42.012 = 42012 − 42

103 − 1
= 41970

999
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√2 ∉ ℚ – 1

Proof 1 (Fundamental Theorem of Arithmetic).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ. Then 2𝑏2 = 𝑎2.
The prime factorization of the LHS has an odd number of primes (counted with exponents)
whereas the RHS has an even number of primes (counted with exponents).
Which is impossible since the prime factorization is unique up to order. ■
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√2 ∉ ℚ – 2

Proof 2 (Euclid’s lemma).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Then 2𝑏2 = 𝑎2. Therefore 2|𝑎2. By Euclid’s lemma, 2|𝑎, so 𝑎 = 2𝑘.
Thus 2𝑏2 = 4𝑘2, from which we get 𝑏2 = 2𝑘2. By Euclid’s lemma, 2|𝑏.
Hence 2| gcd(𝑎, 𝑏) = 1, which is a contradiction. ■
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√2 ∉ ℚ – 3

Proof 3 (Gauss’ lemma).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Then 2𝑏2 = 𝑎2. Therefore 𝑏|𝑎2.
Since gcd(𝑎, 𝑏) = 1, by Gauss’ lemma (applied twice), 𝑏|1 and hence 𝑏 = 1 (since 𝑏 ∈ ℕ ⧵ {0}).
Hence 𝑎2 = 2.
Which is impossible (2 is not a perfect square: ∀𝑥 ∈ ℤ, 𝑥2 ≡ 0 mod 3 or 𝑥2 ≡ 1 mod 3). ■
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√2 ∉ ℚ – 4

Proof 4 (proof by infinite descent).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ where 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ⧵ {0}.
Then 2𝑏2 = 𝑎2. Then 𝑎(𝑎 − 𝑏) = 𝑎2 − 𝑎𝑏 = 2𝑏2 − 𝑎𝑏 = 𝑏(2𝑏 − 𝑎). Hence √2 = 𝑎

𝑏 = 2𝑏−𝑎
𝑎−𝑏 .

Note that 1 < √2 = 𝑎
𝑏 , thus 0 < 𝑎 − 𝑏. Therefore 0 < 2𝑏 − 𝑎, so 𝑎 − 𝑏 < 𝑏.

Therefore we obtained another expression of √2 with a smaller positive denominator.
By repeating this process, we may construct an infinite sequence √2 = 𝑎

𝑏 = 𝑎1
𝑏1

= 𝑎2
𝑏2

= ⋯ such
that 𝑎𝑘 > 0 and 0 < 𝑏𝑘+1 < 𝑏𝑘.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. ■
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√2 ∉ ℚ – 5

Proof 5 (by congruences).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form. Then 2𝑏2 = 𝑎2.
We can’t have 𝑎 ≡ 0 mod 3 and 𝑏 ≡ 0 mod 3 simulatenously (otherwise 3| gcd(𝑎, 𝑏) = 1).

• Either 𝑎 ≡ ±1 mod 3 and 𝑏 ≡ 0 mod 3, then 𝑎2 − 2𝑏2 ≡ 1 mod 3,
• or 𝑎 ≡ 0 mod 3 and 𝑏 ≡ ±1 mod 3, then 𝑎2 − 2𝑏2 ≡ 1 mod 3,
• or 𝑎 ≡ ±1 mod 3 and 𝑏 ≡ ±1 mod 3, then 𝑎2 − 2𝑏2 ≡ 2 mod 3.

Therefore 𝑎2 − 2𝑏2 ≢ 0 mod 3 and so 𝑎2 − 2𝑏2 ≠ 0. Which is a contradiction. ■
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√2 ∉ ℚ – 6

Proof 6 (by the well-ordering principle).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ. Then 𝑎 = √2𝑏.
Therefore 𝐸 = {𝑛 ∈ ℕ ∶ 𝑛√2 ∈ ℕ ⧵ {0}} is not empty since it contains |𝑏| as √2|𝑏| = |𝑎|.
By the well-ordering principle, 𝐸 admits a least element 𝑝. Then 𝑝√2 ∈ ℕ ⧵ {0}.
Set 𝑞 = 𝑝√2 − 𝑝. Then 𝑞 ∈ ℤ. Besides 𝑞 = 𝑝(√2 − 1) so that 0 < 𝑞 < 𝑝.
But 𝑞√2 = 2𝑝 − 𝑝√2 = 𝑝 − 𝑞 ∈ ℕ ⧵ {0}. So 𝑞 ∈ 𝐸.
Which is a contradiction since 𝑝 is the least element of 𝐸 and 𝑞 < 𝑝. ■
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√2 ∉ ℚ – 7

Proof 7 (by the rational root theorem).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Since √2 = 𝑎

𝑏 is a root of 𝑥2 − 2 = 0, we deduce from the rational root theorem that 𝑎|2 and 𝑏|1.
So either √2 = ±1 or √2 = ±2.
We obtain a contradiction in both cases since (±1)2 = 1 ≠ 2 and (±2)2 = 4 ≠ 2. ■
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√2 ∉ ℚ – 8

Proof 8 (by the archimedean property).
For 𝑛 ∈ ℕ, set 𝑢𝑛 = (√2 − 1)

𝑛
. We may prove either by induction or using the binomial formula,

that for every 𝑛, there exist 𝑎𝑛, 𝑏𝑛 ∈ ℤ such that 𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛√2.
Since1 0 < √2 − 1 < 1

2 , we may also prove that 0 < 𝑢𝑛 ≤ 1
2𝑛 .

Assume by contradiction that √2 = 𝑝
𝑞 ∈ ℚ, then

𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛√2 = 𝑎𝑛 + 𝑏𝑛
𝑝
𝑞 = 𝑞𝑎𝑛 + 𝑝𝑏𝑛

𝑞

Since 𝑢𝑛 > 0 we get that |𝑞𝑎𝑛 + 𝑝𝑏𝑛| ≥ 1 and that 𝑢𝑛 ≥ 1
|𝑞| .

Therefore ∀𝑛 ∈ ℕ, 0 < 1
|𝑞| ≤ 𝑢𝑛 ≤ 1

2𝑛 . Which contradicts the archimedean property. ■

1Use the fact that (0, +∞) ∋ 𝑥 → 𝑥2 ∈ ℝ is increasing and that 2 ≤ (
3
2 )

2
to conclude that √2 ≤ 3

2 .
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√2 ∉ ℚ – 9
Proof 9 (geometric version of proof 4).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ where 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ⧵ {0}. Then 𝑎 = √2𝑏 > 𝑏.

𝑎
𝑏

𝑏

𝑎
𝑏

𝑏

(𝑎 − 𝑏)2

(𝑎 − 𝑏)2

(2𝑏 − 𝑎)2

By a direct computation of the side length, the square at the center has an area
of 𝒜 = (2𝑏 − 𝑎)2.
But, by inclusion-exclusion, 𝒜 also satisfies 2(𝑎 − 𝑏)2 + 2𝑏2 − 𝒜 = 𝑎2.
So 𝒜 = 2(𝑎 − 𝑏)2 + 2𝑏2 − 𝑎2 = 2(𝑎 − 𝑏)2 since 𝑎2 = 2𝑏2.
Therefore 2(𝑎 − 𝑏)2 = 𝒜 = (2𝑏 − 𝑎)2. Thus 2 = (2𝑏−𝑎)2

(𝑎−𝑏)2 .

Hence √2 = 2𝑏−𝑎
𝑎−𝑏 witha 0 < 2𝑏 − 𝑎 and 0 < 𝑎 − 𝑏 < 𝑏.

aSee Proof 4 for 0 < 2𝑏 − 𝑎.

By repeating this process, we may construct an infinite sequence √2 = 𝑎
𝑏 = 𝑎1

𝑏1
= 𝑎2

𝑏2
= ⋯ such that 𝑎𝑘 > 0

and 0 < 𝑏𝑘+1 < 𝑏𝑘.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. ■
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√2 ∉ ℚ – 10
Proof 10 (Pythagoras flavored).
Let 𝐴𝐵𝐶 be a isosceles right triangle in 𝐴. By the Pythagorean theorem 𝐵𝐶

𝐴𝐵
= √2.

Assuming that √2 is rational means geometrically that 𝐵𝐶 and 𝐴𝐵 are commensurable, i.e. they are both integral multiple of a another
length 𝑑2.
Put 𝐷 on [𝐵𝐶] such that 𝐵𝐷 = 𝐴𝐵.
Define 𝐸 as the intersection of (𝐴𝐶) with the line through 𝐷 which is perpendicular to (𝐵𝐶).
Note that3 𝐴𝐸 = 𝐸𝐷 = 𝐷𝐶.
Thus 𝐶𝐷 = 𝐵𝐶 − 𝐴𝐵 and 𝐸𝐶 = 𝐴𝐶 − 𝐴𝐸 = 𝐴𝐵 − (𝐵𝐶 − 𝐴𝐵) = 2𝐴𝐵 − 𝐵𝐶.
Therefore 𝐶𝐷 and 𝐸𝐶 are integral multiple of 𝑑.
Besides 𝐷𝐸𝐶 is a isosceles right triangle in 𝐷, therefore we may repeat this construction on the triangle 𝐷𝐸𝐶 in order to construct an
infinite sequence of segment lines (𝐴𝐶, 𝐸𝐶, 𝐹 𝐶, …, see below) which are all integral multiple of 𝑑 and with decreasing length.
Which is impossible.

𝐴 𝐵

𝐶

𝐴 𝐵

𝐶

𝐷

𝐸

𝐴 𝐵

𝐶

𝐷

𝐸

𝐹 𝐺

■
2That is the geometric version of irrationality used by ancient Greeks:

if √2 = 𝑎
𝑏 , set 𝑑 = 𝐴𝐵

𝑏 then 𝐴𝐵 = 𝑏𝑑 and 𝐵𝐶 = √2 × 𝐴𝐵 = 𝑎
𝑏 𝑏𝑑 = 𝑎𝑑.

3Compare the triangles 𝐵𝐴𝐸 and 𝐵𝐷𝐸 which are respectively right in 𝐴 and 𝐷 with common hypotenuse and 𝐴𝐵 = 𝐷𝐵, so, by the Pythagorean theorem, 𝐴𝐸 = 𝐸𝐷.
Besides the triangle 𝐶𝐷𝐸 is isosceles right in 𝐴 by angle considerations, thus 𝐸𝐷 = 𝐷𝐶.
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√2 ∉ ℚ – 11

Proof 11 (my favorite one).
The proof is left as an exercise to the reader. ■
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More about √2
Before leaving √2, I would like to show you a funny proof relying on the tertium non datur.

Proposition
There exist 𝑎, 𝑏 > 0 irrational numbers such that 𝑎𝑏 ∈ ℚ.

Proof.

• Assume that √2
√2

∈ ℚ. Then we can take 𝑎 = 𝑏 = √2.

• Assume that √2
√2

∉ ℚ. Then we can take 𝑎 = √2
√2

and 𝑏 = √2.

Indeed,
(

√2
√2

)

√2

= √2
2

= 2.

■
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𝑒 ∉ ℚ

Recall from your first year calculus that 𝑒 =
+∞

∑
𝑛=0

1
𝑛! .

Proof 1.
Assume by contradiction that 𝑒 = 𝑎

𝑏 where 𝑎, 𝑏 ∈ ℕ ⧵ {0}. Note that 𝑏 > 1 since 𝑒 ∉ ℕ. Besides

𝑏!
⎛
⎜
⎜
⎝
𝑒 −

𝑏

∑
𝑛=0

1
𝑛!

⎞
⎟
⎟
⎠

= 𝑏!
( ∑

𝑛≥𝑏+1

1
𝑛!)

Note that the LHS is an integer.
We are going to derive a contradiction by proving that the RHS is not an integer. Indeed

0 < 𝑏!
( ∑

𝑛≥𝑏+1

1
𝑛!)

≤ ∑
𝑛≥1

1
(𝑏 + 1)𝑛 = 1

𝑏 < 1

■
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𝑒 ∉ ℚ
Proof 2.
For 𝑛 ∈ ℕ, set 𝑢𝑛 = ∫

1

0
𝑥𝑛𝑒𝑥d𝑥.

Using an induction and integration by part, we can prove that for 𝑛 ∈ ℕ, there exist 𝑎𝑛, 𝑏𝑛 ∈ ℤ
such that 𝑢𝑛 = 𝑎𝑛 + 𝑒𝑏𝑛.

Assume by contradiction that 𝑒 = 𝑝
𝑞 where 𝑝, 𝑞 ∈ ℕ ⧵ {0}. Then 0 < 𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛

𝑝
𝑞 = 𝑞𝑎𝑛+𝑝𝑏𝑛

𝑞 .

Since 𝑢𝑛 > 0 we get that 𝑞𝑎𝑛 + 𝑝𝑏𝑛 ≥ 1 and that 𝑢𝑛 ≥ 1
𝑞 .

Therefore ∀𝑛 ∈ ℕ, 0 < 1
𝑞 ≤ 𝑢𝑛 ≤ ∫

1

0
𝑥𝑛𝑒d𝑥 = 𝑒

𝑛 + 1 .
Which is impossible. ■
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