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Qisdensein R — 1

Theorem: Q is dense in R
Vx,yER, x<y=>3qeQ,x<qg<y
Proof. Let x,y e Rbe suchthatx <y. Sete=y—x > 0.

By the archimedean property, there exists n € N\ {0} such that ne > 1, i.e. % <e.
Setm = |nx| + 1. Thennx<m§nx+1,80x<%§x+%<x+£=y.
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Definition: interval
A subset I c Ris anintervalifVx,ye I,VzeR, (x<z<y=>z€l).

If I ¢ R is a non-empty interval not reduced to a singleton then I N Q # @.

Proof. Since I is non-empty and not reduced to a singleton, there exist x, y € I with x < y.
Then, since Q is dense in R, there exists ¢ € Q such that x < ¢ < y.
Since I'isaninterval,ge I. Hence g e I N Q # &.
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R\ Q is dense in R
Theorem: R\ Q is dense in R
Vx,yER, x<y = @EseR\Q, x<s<y)

Proof. Let x,y € R such that x < y.

Since , there exists ¢ € Q such that x < g < y.
Similarly, there exists p € Q such that x < p < q.
Hence we obtained p,q € Q such that x < p < g < y.

Sets=p+ %(q —p). Then s € R\ Q (otherwise, by contradiction, \/5 would be in Q) and

p < s < q (notice that 0 < g < 1 s0 s is a number between p and q).
We obtained s € R\ Q such that x < s < y. [ |

| wanted to give it as a question in PS4... before remembering it was in my lecture notes...

If I c Ris an interval which is non-empty and not reduced to a singleton then I n (R \ Q) # @.
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Decimal representation of real numbers — 1

Let (a;)>1 be a sequence such that Vk € N\ {0}, ¢, € {0,1,...,9}. Then the series
+o0 @
s=Yy £
ot 10%
is convergent and S > 0.
Proof.
9 1
Note that 0 < A 2 and that — is convergent (geometric series with ratio — < 1
otefha 10k = 10k Z gent (g 10 )
Therefore we may conclude using the BCT. [ |
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Decimal representatio real numbers — 2

+oo
Unfortunately the decimal representation may not be unique: 0.9999 ... = Z l% = 19—0 X 1;' =1.000...
k=1 ~ 70

10
In order to achieve uniqueness we are going to restrict to expansions which don’t end with infinitely many 9.

Definition: proper decimal expansion

+
8 |

Let x € R. We say that |x].a,aya;5 ... := |x] + Z % is a proper decimal expansion of x if
k=1

© vikenN\{0},q.€{01,..9 O VneN\{O},ZW<x [xJ<210k 10”

Proposition

If [x] + Z —— is a proper decimal expansion of x € R then 0 x=|x]+ Z 9 VN eN\ {0}, 3k > N, a, #9

10%

Proof.
0 We already proved that S = Z —— is convergent. Hence we get S < x — [x] < S. Sox = |x| + S.

9 Assume by contradiction that there exists N € N\ {0} such that Vk > N, q, =9.

+00 N +oo

N
4 O 9 _ ai
Then x — |x| = ; o = z o Z o= Z Tof Tt IO_N Which contradicts the definition of proper decimal expansion. B
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Decimal representation of real numbers — 3

A real number x admits a unique proper decimal expansion.

Proof. Let x € R. Up to replacing x with x — | x], we may assume that |x] = 0.

+00 n—1
a . . ay
Assume that —— is a proper decimal expansion of x. Then a, < 10" <a,+1.
; ToF s aprop p x a, (x ) 10k) a,
n
Y )J
k=1 1 ¢

0 Since [x] =0, we have 0 < x < 1. Thus 0 < 10x < 10. Therefore a; = [10x] € {0, 1,...,9}.

n—1 n
a " a
Letn e N\ {0}, then 0 < 10" (x—’;ﬁ>—an < 1. Thus 0 < 10" (x z 10k) < 10.

Therefore a,,, € {0,1,...,9}.

So the only possible suitable sequence (a,) is given by a; = |10x] and a,,; = { 10! (

It proves the uniqueness, but we still need to check that it is valid.

n
@ We have vn e N\ {0}, Z —* <x< Z ot W by construction.
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Decimal representation of real numbers — 4

A real number x € R is rational if and only if its proper decimal expansion is eventually periodic,
ie. IreN,IseN\ {0}, VkeN, a,,,,, = a,,, So that
x = |x].byby...b.cicy ... cg = |x|.byby ... b.ciCy ... CiC1C5 ... C5C ...

Proof.
= Letx= % where a € Z and b € N\ {0}

By Euclidean division, a = bg, + ry where 0 < ry < b. Hence § =gy + ’T" Note that ¢, = HJ
And we repeat: 10r, = bg;, | + i Where 0 <r,; <b.

Since there are only b possible remainders, the process will start looping after at most b steps.
But note that the (g, ), defines exactly the decimal expansion of x.

< Assume that the proper decimal expansion x = |x] + Z — is eventually periodic, i.e. 3r e N, 3s e N\ {0}, VK €N, a, ., = a, ;-

+00 oo

Then x = [x] + 2 — +107" z I;’&f Hence it is enough to prove that y = Z a,(;_: € Q.
k=1

Note that lofy_N+ywhere N =a,+,a,+2...a,+S'° eN. Hence y = m e Q. |
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Decimal representation of real numbers — 5

We want to find the decimal expansion of 1322327

24975 °
© 1529327 = 24975 x 61 + 5852
@ 58520 = 24975 x 2 + 8570
© 85700 = 24975 x 3 + 10775
@ 107750 = 24975 x 4 + 7850
0 78500 = 24975 x 3 + 3575
0 35750 = 24975 x 1 + 10775

And we start to loop. Therefore 2222 = 61.234314
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Decimal representation of real numbers — 6

According to the above proof,

b cc c 10
—1 _ 1 2...
a,a,_; ...agbby ... bcicy ..., =qa a4 Y —— 41077 S
_— =l 10% 105 -1
— 10 g9
-7 7 10+b1b2...br CIC2...CS
T 0 107 107+s — 107
10 10
_ ata,_l aob1b2 brCICZ Cs - ata,_l aob1b2 br
- 107+s — 107

61234314 — 61234 _ 61173080
° 61.234314 = =
— 100 — 103 999000
3-0 _3
°03=-"—==:
03=1-179
4201242 _ 41970
° 42012 = =
—  103-1 999 )
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V2¢ga-1

Proof 1 (Fundamental Theorem of Arithmetic).

Assume by contradiction that v/2 = 2 €Q. Then 2b” = @’

The prime factorization of the LHS has an odd number of primes (counted with exponents)
whereas the RHS has an even number of primes (counted with exponents).

Which is impossible since the prime factorization is unique up to order. [ |
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V2gQ-2

Proof 2 (Euclid’s lemma).

Assume by contradiction that \/_ = % € Q written in lowest form.

Then 2b% = 4. Therefore 2|a*. By Euclid’s lemma, 2|a, s0 a = 2k.

Thus 2b* = 4k?, from which we get b* = 2k*. By Euclid’s lemma, 2|b.

Hence 2| ged(a, b) = 1, which is a contradiction. [ |
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V2¢0-3

Proof 3 (Gauss’ lemma).

Assume by contradiction that \/_ = % € Q written in lowest form.

Then 26> = 4. Therefore b|a>.

Since ged(a, b) = 1, by Gauss’ lemma (applied twice), 5|1 and hence b =1 (since b € N\ {0}).
Hence a* = 2.

Which is impossible (2 is not a perfect square: Vx € Z, x> =0 mod 3 or x> =1 mod 3). |
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Proof 4 (proof by infinite descent).

Assume by contradiction that \/_ = % € Qwhereae Nand b e N\ {0}.

Then 262 = a%. Then a(a — b) = a* — ab = 2b* — ab = b(2b — a). Hence /2 = 4= 2
Note that 1 < \/—= %,thu30< a—b. Therefore 0 < 2b—a,s0a—b < b.

Therefore we obtained another expression of \/5 with a smaller positive denominator.
By repeating this process, we may construct an infinite sequence v2 = ¢ = 4 = 2 = ... such

b~ by b
that ak > 0 and 0 < bk+1 < bk'
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. |
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V2¢ Q-5

Proof 5 (by congruences).
Assume by contradiction that v/2 = 2 € Q written in lowest form. Then 20° = d.
We can't have a =0 mod 3 and b =0 mod 3 simulatenously (otherwise 3| gcd(a, b) = 1).

* Eithera=+1 mod 3 and =0 mod 3, then o> - 2b* =1 mod 3,
°* ora=0 mod3andb=+1 mod 3,then o> —2b* =1 mod 3,
e ora=+1 mod3andb=+1 mod 3, then a*> — 26> =2 mod 3.
Therefore a* — 26> # 0 mod 3 and so a — 2b* # 0. Which is a contradiction. [
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V2¢ Q-6

Proof 6 (by the well-ordering principle).
Assume by contradiction that v/2 = ¢ € @. Then a = v/2b.

Therefore E = {n eN : ny2eN\ {0}} is not empty since it contains |b| as \/§|b| = |a|.

By the well-ordering principle, E admits a least element p. Then p\/§ e N\ {0}.
Setgq = p\/i—p. Then g € Z. Besides ¢ =p(\/§— 1)sothat0 < g < p.

Butgv2=2p-pV2=p-qgeN\{0}. SoqgeE.
Which is a contradiction since p is the least element of E and g < p. |
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V2gQ-7

Proof 7 (by the rational root theorem).
Assume by contradiction that \/_ = % € Q written in lowest form.

Since \/_ = % is a root of x> — 2 = 0, we deduce from the rational root theorem that a|2 and b|1.

So either \/5 =+10ry2=+2.
We obtain a contradiction in both cases since (+1)*> =1 # 2 and (+2)> = 4 # 2. [ ]
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Proof 8 (by the archimedean property).

ForneN, setu, = (\/5 - l)n. We may prove either by induction or using the binomial formula,
that for every n, there exist a,, b, € Zsuchthatu,=a,+b \/5

Since’ 0< V2 -1 < , we may also prove that 0 < u, < 21

Assume by contradictlon that \/_ = ; € Q, then

+ pb
w,=a,+b\2=a,+b L =0T
q q
Since u,, > 0 we get that lga, +pb | > 1andthatu, > |1|
ThereforeVvn e N, 0 < — P Which contradicts the archimedean property. [ |

| n—zn

2
TUse the fact that (0,+00) 3 x — x> € Ris increasing and that 2 < ( 2 ) to conclude that \/5 < %
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V2¢ Q-9

Proof 9 (geometric version of proof 4).
Assume by contradiction that \/_ = % € Qwhereae Nand b e N\ {0}. Thena = \/Eb > b.

By a direct computation of the side length, the square at the center has an area
of A =(2b-a).
But, by inclusion-exclusion, 4 also satisfies 2(a — b)* + 2b* — A = d*.

a
b S0 A =2(a — b)? +2b* — a®> = 2(a — b)? since a* = 2b°.
2
Therefore 2(a — b = A = (2b—a)®. Thus 2 = f”_;b);
Hence V2 = Za”T‘:with"”0<2b—aand0<a—b<b.
4See Proof 4 for 0 < 2b — a.
By repeating this process, we may construct an infinite sequence \/_ = % = Z—‘ = Z—Z = .--such thata, >0
1 2
and 0 < by, < b;.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. |
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Proof 10 (Pythagoras flavored).
BC

Let ABC be a isosceles right triangle in A. By the Pythagorean theorem == \/E

Assuming that \/5 is rational means geometrically that BC and AB are commensurable, i.e. they are both integral multiple of a another
length d°.

Put D on [BC] such that BD = AB.

Define E as the intersection of (AC) with the line through D which is perpendicular to (BC).

Note that® AE = ED = DC. _

Thus CD = BC — AB and EC = AC — AE = AB — (BC AB) =2AB - BC.

Therefore CD and EC are integral multiple of d.

Besides DEC is a isosceles right triangle in D, therefore we may repeat this construction on the triangle DEC in order to construct an
infinite sequence of segment lines (AC, EC, FC, ..., see below) which are all integral multiple of 4 and with decreasing length.

Which is impossible.

C C C
F G
E E
A B A B A B ]
2That is the geometric version of irrationality used by ancient Greeks:
|f\/>7b,setd——lhenAB bd and BC = \/EXAB— % pd = ad.

Compare the triangles BAE and BDE which are respectively right in A and D with common hypotenuse and AB = DB, so, by the Pythagorean theorem, AE = ED.
Besides the triangle C DE is isosceles right in A by angle considerations, thus ED = DC.
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V2eg Q- 11

Proof 11 (my favorite one).
The proof is left as an exercise to the reader. [ |
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More about \/5

Before leaving \/5 | would like to show you a funny proof relying on the tertium non datur.

Proposition

There exist a, b > 0 irrational numbers such that a® € Q.

Proof.

2
e Assume that \/5\/— € Q. Thenwe cantake a=b = \/5

2 2
e Assume that \/5\/— ¢ Q. Then we can take a = \/5\/_ and b = \/5

V2 V2 2
Indeed, (\/5 ) =\/§ =2.
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e & Q

+o0

Recall from your first year calculus that e = l'
n:
n=0

Proof 1.
Assume by contradiction that e = % where a,b € N\ {0}. Note that b > 1 since e ¢ N. Besides

b
1 1
b! e—zm =b!< Z E)
n=0 n>b+1

Note that the LHS is an integer.
We are going to derive a contradiction by proving that the RHS is not an integer. Indeed

1 11
0<b!<2 H)SZ(bH)n‘b“

n>b+1 n>1
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Proof 2. .
ForneN, setu, = / x"e*dx.
0

Using an induction and integration by part, we can prove that for n € N, there exist a,,b, € Z
such that u, = a, + eb,.

qa,+pb,

Assume by contradiction that e = § where p,q € N\ {0}. Then0 < u, =a, + b,,% ==

Since u, > 0 we get that ga, + pb, > 1 and that u, > 5

1
Therefore Vh e N, 0 < 1 <u, < / x"edx = .
q 0 n+1
Which is impossible. u
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