MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

March 16th, 2021

Characterization of the supremum

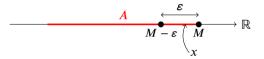
Proposition

Let
$$A \subset \mathbb{R}$$
 and $M \in \mathbb{R}$. Then $M = \sup(A) \Leftrightarrow \begin{cases} \forall x \in A, x \leq M \\ \forall \varepsilon > 0, \exists x \in A, M - \varepsilon < x \end{cases}$

Characterization of the supremum

Proposition

Let
$$A \subset \mathbb{R}$$
 and $M \in \mathbb{R}$. Then $M = \sup(A) \Leftrightarrow \begin{cases} \forall x \in A, x \leq M \\ \forall \varepsilon > 0, \exists x \in A, M - \varepsilon < x \end{cases}$



Proof.

⇒ Assume that $M = \sup(A)$. Then M is an upper bound of A so $\forall x \in A, x \leq S$. We know that if T is an other upper bound of A then $M \leq T$ (since M is the least upper bound). So, by taking the contrapositive, if T < M then T isn't an upper bound of A. Let $\varepsilon > 0$. Since $M - \varepsilon < M$, we know that $M - \varepsilon$ is not an upper bound of A, meaning that there exists $x \in A$ such that $M - \varepsilon < x$.

 $\begin{array}{l} \leftarrow \text{Assume that} \begin{cases} \forall x \in A, \ x \leq M \\ \forall \varepsilon > 0, \ \exists x \in A, \ M - \varepsilon < x \end{cases} \\ \text{Then, by the first condition, } M \text{ is an upper bound of } A. \text{ Let's prove it is the least one.} \\ \text{We will show the contrapositive: if } T < M \text{ then } T \text{ isn't an upper bound of } A. \\ \text{Let } T \in \mathbb{R}. \text{ Assume that } T < M. \text{ Set } \varepsilon = M - T > 0. \text{ Then there exists } x \in A \text{ such that } M - \varepsilon < x, \text{ i.e. } T < x. \end{cases}$

Hence T isn't an upper bound of A.

Proposition

Let $A \subset \mathbb{R}$ and $m \in \mathbb{R}$. Then

$$m = \inf(A) \Leftrightarrow \begin{cases} \forall x \in A, \ m \le x \\ \forall \varepsilon > 0, \ \exists x \in A, \ x < m + \varepsilon \end{cases}$$

Theorem: \mathbb{R} is archimedean

 $\forall \varepsilon > 0, \, \forall A > 0, \, \exists n \in \mathbb{N}, \, n \varepsilon > A$

Theorem: \mathbb{R} is archimedean

 $\forall \varepsilon > 0, \, \forall A > 0, \, \exists n \in \mathbb{N}, \, n\varepsilon > A$

Proof.

Let $\varepsilon > 0$ and A > 0.

Assume by contradiction that $\forall n \in \mathbb{N}, n\varepsilon \leq A$.

Then $E = \{n\varepsilon : n \in \mathbb{N}\}$ is non-empty and bounded from above so it admits a supremum $M = \sup E$ by the least upper bound principle.

Since $M - \varepsilon < M$, $M - \varepsilon$ is not an upper bound of *E*, so there exists $n \in \mathbb{N}$ such that $n\varepsilon > M - \varepsilon$. Therefore $(n + 1)\varepsilon > M$, hence a contradiction.

Theorem: \mathbb{R} is archimedean

 $\forall \varepsilon > 0, \, \forall A > 0, \, \exists n \in \mathbb{N}, \, n\varepsilon > A$

Proof.

Let $\varepsilon > 0$ and A > 0.

Assume by contradiction that $\forall n \in \mathbb{N}, n\varepsilon \leq A$.

Then $E = \{n\varepsilon : n \in \mathbb{N}\}$ is non-empty and bounded from above so it admits a supremum $M = \sup E$ by the least upper bound principle.

Since $M - \varepsilon < M$, $M - \varepsilon$ is not an upper bound of *E*, so there exists $n \in \mathbb{N}$ such that $n\varepsilon > M - \varepsilon$. Therefore $(n + 1)\varepsilon > M$, hence a contradiction.

The above theorem means that $\lim_{n \to +\infty} \frac{1}{n} = 0$, or equivalently that \mathbb{R} doesn't contain infinitesimal elements (i.e. there is not infinitely large or infinitely small elements).

Floor function

Proposition: floor function

For every $x \in \mathbb{R}$, there exists a unique $n \in \mathbb{Z}$ such that $n \le x < n + 1$. We say that *n* is the integer part (or the floor function value) of *x* and we denote it by $\lfloor x \rfloor$.

Floor function

Proposition: floor function

For every $x \in \mathbb{R}$, there exists a unique $n \in \mathbb{Z}$ such that $n \le x < n + 1$. We say that *n* is the integer part (or the floor function value) of *x* and we denote it by $\lfloor x \rfloor$.

Proof. Let $x \in \mathbb{R}$. **Existence.**

First case: if x ≥ 0.
We set E = {n ∈ N : x < n}.
By the archimedean property (with ε = 1), there exists m ∈ N such that m > x. Hence E ≠ Ø.
By the well-ordering principle, E admits a least element p.
We have that x
Therefore n = p − 1 satisfies n ≤ x < n + 1.

• Second case: if x < 0. Then we apply the first case to -x.

Uniqueness. Assume that $n, n' \in \mathbb{Z}$ are two suitable integers. Then (1) $n \le x < n + 1$ and $n' \le x < n' + 1$. We deduce from the last inequality that (2) $-n' - 1 < -x \le -n'$. Summing (1) and (2), we get that n - n' - 1 < 0 < n - n' + 1. Hence n - n' < 1, i.e. $n - n' \le 0$, and -1 < n - n' i.e. $0 \le n - n'$. Therefore n = n'.