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Characterization of the supremum

Proposition

Let 𝐴 ⊂ ℝ and 𝑀 ∈ ℝ. Then 𝑀 = sup(𝐴) ⇔ {
∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑀
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑀 − 𝜀 < 𝑥

ℝ𝐴
𝑀𝑀 − 𝜀

𝜀

𝑥

Proof.
⇒ Assume that 𝑀 = sup(𝐴). Then 𝑀 is an upper bound of 𝐴 so ∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑆.
We know that if 𝑇 is an other upper bound of 𝐴 then 𝑀 ≤ 𝑇 (since 𝑀 is the least upper bound).
So, by taking the contrapositive, if 𝑇 < 𝑀 then 𝑇 isn’t an upper bound of 𝐴.
Let 𝜀 > 0. Since 𝑀 − 𝜀 < 𝑀 , we know that 𝑀 − 𝜀 is not an upper bound of 𝐴, meaning that there exists 𝑥 ∈ 𝐴 such that 𝑀 − 𝜀 < 𝑥.

⇐ Assume that {
∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑀
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑀 − 𝜀 < 𝑥

Then, by the first condition, 𝑀 is an upper bound of 𝐴. Let’s prove it is the least one.
We will show the contrapositive: if 𝑇 < 𝑀 then 𝑇 isn’t an upper bound of 𝐴.
Let 𝑇 ∈ ℝ. Assume that 𝑇 < 𝑀 . Set 𝜀 = 𝑀 − 𝑇 > 0. Then there exists 𝑥 ∈ 𝐴 such that 𝑀 − 𝜀 < 𝑥, i.e. 𝑇 < 𝑥.
Hence 𝑇 isn’t an upper bound of 𝐴. ■
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Characterization of the infimum

Proposition
Let 𝐴 ⊂ ℝ and 𝑚 ∈ ℝ. Then

𝑚 = inf(𝐴) ⇔ {
∀𝑥 ∈ 𝐴, 𝑚 ≤ 𝑥
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑥 < 𝑚 + 𝜀

ℝ𝐴
𝑚 𝑚 + 𝜀

𝜀

𝑥
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ℝ is archimedean

Theorem: ℝ is archimedean
∀𝜀 > 0, ∀𝐴 > 0, ∃𝑛 ∈ ℕ, 𝑛𝜀 > 𝐴

Proof.
Let 𝜀 > 0 and 𝐴 > 0.
Assume by contradiction that ∀𝑛 ∈ ℕ, 𝑛𝜀 ≤ 𝐴.
Then 𝐸 = {𝑛𝜀 ∶ 𝑛 ∈ ℕ} is non-empty and bounded from above so it admits a supremum
𝑀 = sup 𝐸 by the least upper bound principle.
Since 𝑀 − 𝜀 < 𝑀 , 𝑀 − 𝜀 is not an upper bound of 𝐸, so there exists 𝑛 ∈ ℕ such that 𝑛𝜀 > 𝑀 − 𝜀.
Therefore (𝑛 + 1)𝜀 > 𝑀 , hence a contradiction. ■

The above theorem means that lim
𝑛→+∞

1
𝑛 = 0, or equivalently that ℝ doesn’t contain infinitesimal

elements (i.e. there is not infinitely large or infinitely small elements).
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Floor function
Proposition: floor function
For every 𝑥 ∈ ℝ, there exists a unique 𝑛 ∈ ℤ such that 𝑛 ≤ 𝑥 < 𝑛 + 1.
We say that 𝑛 is the integer part (or the floor function value) of 𝑥 and we denote it by ⌊𝑥⌋.

Proof. Let 𝑥 ∈ ℝ.
Existence.

• First case: if 𝑥 ≥ 0.
We set 𝐸 = {𝑛 ∈ ℕ ∶ 𝑥 < 𝑛}.
By the archimedean property (with 𝜀 = 1), there exists 𝑚 ∈ ℕ such that 𝑚 > 𝑥. Hence 𝐸 ≠ ∅.
By the well-ordering principle, 𝐸 admits a least element 𝑝.
We have that 𝑥 < 𝑝 since 𝑝 ∈ 𝐸 and that 𝑝 − 1 ≤ 𝑥 since 𝑝 − 1 ∉ 𝐸.
Therefore 𝑛 = 𝑝 − 1 satisfies 𝑛 ≤ 𝑥 < 𝑛 + 1.

• Second case: if 𝑥 < 0. Then we apply the first case to −𝑥.
Uniqueness. Assume that 𝑛, 𝑛′ ∈ ℤ are two suitable integers. Then (1) 𝑛 ≤ 𝑥 < 𝑛 + 1 and 𝑛′ ≤ 𝑥 < 𝑛′ + 1.
We deduce from the last inequality that (2) − 𝑛′ − 1 < −𝑥 ≤ −𝑛′.
Summing (1) and (2), we get that 𝑛 − 𝑛′ − 1 < 0 < 𝑛 − 𝑛′ + 1.
Hence 𝑛 − 𝑛′ < 1, i.e. 𝑛 − 𝑛′ ≤ 0, and −1 < 𝑛 − 𝑛′ i.e. 0 ≤ 𝑛 − 𝑛′.
Therefore 𝑛 = 𝑛′. ■
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