Real numbers - 2

March $16^{\text {th }}, 2021$

Characterization of the supremum

Proposition

Let $A \subset \mathbb{R}$ and $M \in \mathbb{R}$. Then $M=\sup (A) \Leftrightarrow\left\{\begin{array}{l}\forall x \in A, x \leq M \\ \forall \varepsilon>0, \exists x \in A, M-\varepsilon<x\end{array}\right.$

Proof.

\Rightarrow Assume that $M=\sup (A)$. Then M is an upper bound of A so $\forall x \in A, x \leq S$.
We know that if T is an other upper bound of A then $M \leq T$ (since M is the least upper bound).
So, by taking the contrapositive, if $T<M$ then T isn't an upper bound of A.
Let $\varepsilon>0$. Since $M-\varepsilon<M$, we know that $M-\varepsilon$ is not an upper bound of A, meaning that there exists $x \in A$ such that $M-\varepsilon<x$.
\Leftarrow Assume that $\left\{\begin{array}{l}\forall x \in A, x \leq M \\ \forall \varepsilon>0, \exists x \in A, M-\varepsilon<x\end{array}\right.$
Then, by the first condition, M is an upper bound of A. Let's prove it is the least one.
We will show the contrapositive: if $T<M$ then T isn't an upper bound of A.
Let $T \in \mathbb{R}$. Assume that $T<M$. Set $\varepsilon=M-T>0$. Then there exists $x \in A$ such that $M-\varepsilon<x$, i.e. $T<x$.
Hence T isn't an upper bound of A.

Characterization of the infimum

Proposition

Let $A \subset \mathbb{R}$ and $m \in \mathbb{R}$. Then

$$
m=\inf (A) \Leftrightarrow\left\{\begin{array}{l}
\forall x \in A, m \leq x \\
\forall \varepsilon>0, \exists x \in A, x<m+\varepsilon
\end{array}\right.
$$

\mathbb{R} is archimedean

Theorem: \mathbb{R} is archimedean

```
\forall\varepsilon>0,\forallA>0,\existsn\in\mathbb{N},n\varepsilon>A
```

Proof.
Let $\varepsilon>0$ and $A>0$.
Assume by contradiction that $\forall n \in \mathbb{N}, n \varepsilon \leq A$.
Then $E=\{n \varepsilon: n \in \mathbb{N}\}$ is non-empty and bounded from above so it admits a supremum $M=\sup E$ by the least upper bound principle.
Since $M-\varepsilon<M, M-\varepsilon$ is not an upper bound of E, so there exists $n \in \mathbb{N}$ such that $n \varepsilon>M-\varepsilon$.
Therefore $(n+1) \varepsilon>M$, hence a contradiction.

The above theorem means that $\lim _{n \rightarrow+\infty} \frac{1}{n}=0$, or equivalently that \mathbb{R} doesn't contain infinitesimal elements (i.e. there is not infinitely large or infinitely small elements).

Floor function

Proposition: floor function

For every $x \in \mathbb{R}$, there exists a unique $n \in \mathbb{Z}$ such that $n \leq x<n+1$. We say that n is the integer part (or the floor function value) of x and we denote it by $\lfloor x\rfloor$.

Proof. Let $x \in \mathbb{R}$.

Existence.

- First case: if $x \geq 0$.

We set $E=\{n \in \mathbb{N}: x<n\}$.
By the archimedean property (with $\varepsilon=1$), there exists $m \in \mathbb{N}$ such that $m>x$. Hence $E \neq \varnothing$.
By the well-ordering principle, E admits a least element p.
We have that $x<p$ since $p \in E$ and that $p-1 \leq x$ since $p-1 \notin E$.
Therefore $n=p-1$ satisfies $n \leq x<n+1$.

- Second case: if $x<0$. Then we apply the first case to $-x$.

Uniqueness. Assume that $n, n^{\prime} \in \mathbb{Z}$ are two suitable integers. Then (1) $n \leq x<n+1$ and $n^{\prime} \leq x<n^{\prime}+1$.
We deduce from the last inequality that (2) $-n^{\prime}-1<-x \leq-n^{\prime}$.
Summing (1) and (2), we get that $n-n^{\prime}-1<0<n-n^{\prime}+1$.
Hence $n-n^{\prime}<1$, i.e. $n-n^{\prime} \leq 0$, and $-1<n-n^{\prime}$ i.e. $0 \leq n-n^{\prime}$.
Therefore $n=n^{\prime}$.

