MAT246H1-S - LEC0201/9201

Concepts in Abstract Mathematics

Real numbers - 2

March 16th, 2021

Characterization of the supremum

Proposition

Let
$$A \subset \mathbb{R}$$
 and $M \in \mathbb{R}$. Then $M = \sup(A) \Leftrightarrow \left\{ \begin{array}{l} \forall x \in A, \ x \leq M \\ \forall \varepsilon > 0, \ \exists x \in A, \ M - \varepsilon < x \end{array} \right.$

Proof.

 \Rightarrow Assume that $M = \sup(A)$. Then M is an upper bound of A so $\forall x \in A, x \leq S$.

We know that if T is an other upper bound of A then $M \le T$ (since M is the least upper bound).

So, by taking the contrapositive, if T < M then T isn't an upper bound of A.

Let $\varepsilon > 0$. Since $M - \varepsilon < M$, we know that $M - \varepsilon$ is not an upper bound of A, meaning that there exists $x \in A$ such that $M - \varepsilon < x$.

$$\Leftarrow \text{Assume that } \left\{ \begin{array}{l} \forall x \in A, \ x \leq M \\ \forall \varepsilon > 0, \ \exists x \in A, \ M - \varepsilon < x \end{array} \right.$$

Then, by the first condition, M is an upper bound of A. Let's prove it is the least one.

We will show the contrapositive: if T < M then T isn't an upper bound of A.

Let $T \in \mathbb{R}$. Assume that T < M. Set $\varepsilon = M - T > 0$. Then there exists $x \in A$ such that $M - \varepsilon < x$, i.e. T < x.

Hence T isn't an upper bound of A.

Characterization of the infimum

Proposition

Let $A \subset \mathbb{R}$ and $m \in \mathbb{R}$. Then

$$m = \inf(A) \Leftrightarrow \left\{ \begin{array}{l} \forall x \in A, \ m \leq x \\ \forall \varepsilon > 0, \ \exists x \in A, \ x < m + \varepsilon \end{array} \right.$$

R is archimedean

Theorem: R is archimedean

 $\forall \varepsilon > 0, \, \forall A > 0, \, \exists n \in \mathbb{N}, \, n\varepsilon > A$

Proof.

Let $\varepsilon > 0$ and A > 0.

Assume by contradiction that $\forall n \in \mathbb{N}, n\varepsilon \leq A$.

Then $E = \{n\varepsilon : n \in \mathbb{N}\}\$ is non-empty and bounded from above so it admits a supremum $M = \sup E$ by the least upper bound principle.

Since $M - \varepsilon < M$, $M - \varepsilon$ is not an upper bound of E, so there exists $n \in \mathbb{N}$ such that $n\varepsilon > M - \varepsilon$.

Therefore $(n+1)\varepsilon > M$, hence a contradiction.

The above theorem means that $\lim_{n \to \infty} \frac{1}{n} = 0$, or equivalently that \mathbb{R} doesn't contain infinitesimal elements (i.e. there is not infinitely large or infinitely small elements).

Floor function

Proposition: floor function

For every $x \in \mathbb{R}$, there exists a unique $n \in \mathbb{Z}$ such that $n \le x < n + 1$.

We say that n is the integer part (or the floor function value) of x and we denote it by $\lfloor x \rfloor$.

Proof. Let $x \in \mathbb{R}$.

Existence.

```
• First case: if x \ge 0.
```

We set $E = \{n \in \mathbb{N} : x < n\}.$

By the archimedean property (with $\varepsilon = 1$), there exists $m \in \mathbb{N}$ such that m > x. Hence $E \neq \emptyset$.

By the well-ordering principle, E admits a least element p.

We have that x < p since $p \in E$ and that $p - 1 \le x$ since $p - 1 \notin E$.

Therefore n = p - 1 satisfies $n \le x < n + 1$.

• *Second case:* if x < 0. Then we apply the first case to -x.

Uniqueness. Assume that $n, n' \in \mathbb{Z}$ are two suitable integers. Then (1) $n \le x < n+1$ and $n' \le x < n'+1$.

We deduce from the last inequality that (2) $-n'-1 < -x \le -n'$.

Summing (1) and (2), we get that n - n' - 1 < 0 < n - n' + 1.

Hence n - n' < 1, i.e. $n - n' \le 0$, and -1 < n - n' i.e. $0 \le n - n'$.

Therefore n = n'.