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Introduction

We want to enlarge ℤ with numbers of the form 𝑝
𝑞 , where 𝑝 ∈ ℤ and 𝑞 ∈ ℤ ⧵ {0} satisfying the

property that 𝑝
𝑞 × 𝑞 = 𝑝.

Such numbers are called rational numbers and they form the set ℚ.
We also want to extend our operations +, × and the order ≤ from ℤ to ℚ.

Set 𝑥 = 10
14 and 𝑦 = 5

7 . Then 14𝑥 = 10.
So, assuming the multiplication on ℚ has a cancellation rule, we get 7𝑥 = 5, i.e. 𝑥 = 5

7 = 𝑦.
Therefore, to have a coherent construction, we need to identify several fractions which are not
equal a priori.

The usual formal way to achieve this point relies on equivalence classes, which is the point of
view adopted in the lecture notes. I will adopt a more naive/less formal approach in the slides.
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Definition

Definition
We define

ℚ = {
𝑝
𝑞 ∶ 𝑝 ∈ ℤ, 𝑞 ∈ ℤ ⧵ {0}}

with the relation
∀𝑝, 𝑟 ∈ ℤ, ∀𝑞, 𝑠 ∈ ℤ ⧵ {0}, 𝑝

𝑞 = 𝑟
𝑠 ⇔ 𝑝𝑠 = 𝑞𝑟

where the operation in the RHS takes place in ℤ (there is no cycling definition).

Example
10
14 = 5

7 since 10 × 7 = 5 × 14 = 70.
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A few notations

Notation

Note that the function ℤ → ℚ
𝑛 ↦ 𝑛

1
is injective.

Therefore we may see ℤ as a subset of ℚ by setting 𝑛 ≔ 𝑛
1 ∈ ℚ for 𝑛 ∈ ℤ.

Notation
Note that for (𝑎, 𝑏) ∈ ℤ × ℤ ⧵ {0}, we have −𝑎

𝑏 = 𝑎
−𝑏 . Hence we set −𝑎

𝑏 ≔ −𝑎
𝑏 = 𝑎

−𝑏 .

Notation
Note that 𝑎

𝑏 = 0 ⇔ 𝑎 = 0 and that if 𝑎
𝑏 = 𝑎′

𝑏′ ≠ 0 then 𝑏
𝑎 = 𝑏′

𝑎′ .

Hence, if 𝑥 = 𝑎
𝑏 ≠ 0, we set 𝑥−1 ≔ 𝑏

𝑎 which doesn’t depend on the representative of 𝑥.
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Lowest form representation
Proposition
Given 𝑥 ∈ ℚ, there exists a unique couple (𝑎, 𝑏) ∈ ℤ × ℕ ⧵ {0} such that 𝑥 = 𝑎

𝑏 and gcd(𝑎, 𝑏) = 1.

Then we say that 𝑥 = 𝑎
𝑏 is written in lowest form.

Proof. Let 𝑥 ∈ ℚ.

Existence. There exist 𝛼 ∈ ℤ and 𝛽 ∈ ℤ ⧵ {0} such that 𝑥 = 𝛼
𝛽 .

Write 𝑑 = gcd(𝛼, 𝛽), then there exist 𝑎 ∈ ℤ and 𝑏 ∈ ℤ ⧵ {0} such that 𝛼 = 𝑑𝑎 and 𝛽 = 𝑑𝑏.
Note that gcd(𝑎, 𝑏) = 1 (since 𝑑 = gcd(𝛼, 𝛽) = gcd(𝑑𝑎, 𝑑𝑏) = 𝑑 gcd(𝑎, 𝑏)) and that 𝛼

𝛽 = sign(𝑏)𝑎
|𝑏|

since sign(𝑏)𝑎𝛽 = sign(𝑏)𝑎𝑑𝑏 = |𝑏|𝑑𝑎 = |𝑏|𝛼.

Uniqueness. Assume that 𝑎
𝑏 = 𝑎′

𝑏′ where 𝑎, 𝑎′ ∈ ℤ, 𝑏, 𝑏′ ∈ ℕ ⧵ {0}, gcd(𝑎, 𝑏) = 1, gcd(𝑎′, 𝑏′) = 1.
Then 𝑎𝑏′ = 𝑎′𝑏. By Gauss’ lemma, since 𝑏|𝑎𝑏′ and gcd(𝑎, 𝑏) = 1, we get that 𝑏|𝑏′.
Similarly 𝑏′|𝑏, so |𝑏| = |𝑏′|, thus 𝑏 = 𝑏′.
Then, using the cancellation rule, 𝑎𝑏′ = 𝑎′𝑏 gives 𝑎 = 𝑎′ since 𝑏 = 𝑏′ ≠ 0. ■
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Addition
Proposition

The addition + ∶
ℚ × ℚ → ℚ

(
𝑎
𝑏 , 𝑐

𝑑 ) ↦ 𝑎𝑑+𝑏𝑐
𝑏𝑑

is well-defined.

Proof. We need to prove that the addition doesn’t depend on the choice of the representatives,
i.e. that if 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ then 𝑎
𝑏 + 𝑐

𝑑 = 𝑎′

𝑏′ + 𝑐′

𝑑′ .
Assume that 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ , i.e. 𝑎𝑏′ = 𝑏𝑎′ and 𝑐𝑑′ = 𝑑𝑐′.
Therefore (𝑎𝑑 + 𝑏𝑐)(𝑏′𝑑′) = 𝑎𝑑𝑏′𝑑′ + 𝑏𝑐𝑏′𝑑′ = 𝑏𝑎′𝑑𝑑′ + 𝑑𝑐′𝑏𝑏′ = (𝑎′𝑑′ + 𝑏′𝑐′)(𝑏𝑑),
i.e. 𝑎𝑑+𝑏𝑐

𝑏𝑑 = 𝑎′𝑑′+𝑏′𝑐′

𝑏′𝑑′ . ■

Remark
Note that the addition defined on ℚ is compatible with the one on ℤ.
Indeed, if 𝑚, 𝑛 ∈ ℤ then 𝑚

1 + 𝑛
1 = 𝑚+𝑛

1 .
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Multiplication

Proposition

The multiplication × ∶
ℚ × ℚ → ℚ

(
𝑎
𝑏 , 𝑐

𝑑 ) ↦ 𝑎𝑐
𝑏𝑑

is well-defined.

Proof. We need to prove that the multiplication doesn’t depend on the choice of the
representatives, i.e. that if 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ then 𝑎
𝑏 × 𝑐

𝑑 = 𝑎′

𝑏′ × 𝑐′

𝑑′ .
Assume that 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ , i.e. 𝑎𝑏′ = 𝑏𝑎′ and 𝑐𝑑′ = 𝑑𝑐′.
Therefore (𝑎𝑐)(𝑏′𝑑′) = 𝑎𝑏′𝑐𝑑′ = 𝑏𝑎′𝑑𝑐′ = (𝑎′𝑐′)(𝑏𝑑), i.e. 𝑎𝑐

𝑏𝑑 = 𝑎′𝑐′

𝑏′𝑑′ as desired. ■

Remark
Note that the multiplication defined on ℚ is compatible with the one on ℤ.
Indeed, if 𝑚, 𝑛 ∈ ℤ then 𝑚

1 × 𝑛
1 = 𝑚×𝑛

1 .
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Order
We want to define an order on ℚ, satisfying the following natural properties:

• 𝑎
𝑏 ≤ 𝑐

𝑑 if and only if 0 ≤ 𝑐
𝑑 − 𝑎

𝑏 = 𝑏𝑐−𝑎𝑑
𝑏𝑑 , and,

• 0 ≤ 𝑒
𝑓 if and only if 0 ≤ 𝑒𝑓 (i.e. the sign rule).

Therefore the following definition is natural:

Definition
We define the binary relation ≤ on ℚ by

𝑎
𝑏 ≤ 𝑐

𝑑 ⇔ 0 ≤ (𝑏𝑐 − 𝑎𝑑)𝑏𝑑

where the order on the RHS of the equivalence is the order of ℤ.

We have to check that it doesn’t depend on the choice of the representative!

Proposition
The order ≤ defined on ℚ extends the usual order ≤ on ℤ.

Proof. Let 𝑚, 𝑛 ∈ ℤ then 𝑚
1 ≤ 𝑛

1 ⇔ 0 ≤ 𝑛 − 𝑚 ⇔ 𝑚 ≤ 𝑛. ■
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𝑓 if and only if 0 ≤ 𝑒𝑓 (i.e. the sign rule).

Therefore the following definition is natural:

Definition
We define the binary relation ≤ on ℚ by

𝑎
𝑏 ≤ 𝑐

𝑑 ⇔ 0 ≤ (𝑏𝑐 − 𝑎𝑑)𝑏𝑑

where the order on the RHS of the equivalence is the order of ℤ.

We have to check that it doesn’t depend on the choice of the representative!

Proposition
The order ≤ defined on ℚ extends the usual order ≤ on ℤ.

Proof. Let 𝑚, 𝑛 ∈ ℤ then 𝑚
1 ≤ 𝑛

1 ⇔ 0 ≤ 𝑛 − 𝑚 ⇔ 𝑚 ≤ 𝑛. ■
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Properties
(ℚ, +, ×, ≤) is a (totally) ordered field, meaning that

• + is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
• 0 is the unit of +: ∀𝑥 ∈ ℚ, 𝑥 + 0 = 0 + 𝑥 = 𝑥
• −𝑥 is the additive inverse of 𝑥: ∀𝑥 ∈ ℚ, 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0
• + is commutative: ∀𝑥, 𝑦 ∈ ℚ, 𝑥 + 𝑦 = 𝑦 + 𝑥
• × is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)
• × is distributive with respect to +: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 and (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧
• 1 is the unit of × : ∀𝑥 ∈ ℚ, 1 × 𝑥 = 𝑥 × 1 = 𝑥
• If 𝑥 ≠ 0 then 𝑥−1 is the multiplicative inverse of 𝑥: ∀𝑥 ∈ ℚ ⧵ {0}, 𝑥𝑥−1 = 𝑥−1𝑥 = 1
• × is commutative: ∀𝑥, 𝑦 ∈ ℚ, 𝑥𝑦 = 𝑦𝑥
• ≤ is reflexive: ∀𝑥 ∈ ℚ, 𝑥 ≤ 𝑥
• ≤ is antisymmetric: ∀𝑥, 𝑦 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦
• ≤ is transitive: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧
• ≤ is total: ∀𝑥, 𝑦 ∈ ℚ, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
• ∀𝑥, 𝑦, 𝑟, 𝑠 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑟 ≤ 𝑠) ⇒ 𝑥 + 𝑟 ≤ 𝑦 + 𝑠
• ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑧 > 0) ⇒ 𝑥𝑧 ≤ 𝑦𝑧
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Between two rationals there is another rational

Proposition
∀𝑥, 𝑦 ∈ ℚ, 𝑥 < 𝑦 ⟹ (∃𝑧 ∈ ℚ, 𝑥 < 𝑧 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℚ be such that 𝑥 < 𝑦. Then 𝑧 = 𝑥+𝑦
2 is a suitable choice.

Indeed, 𝑥 < 𝑦 implies 2𝑥 < 𝑥 + 𝑦 and thus 𝑥 < 𝑧. Similarly 𝑥 + 𝑦 < 2𝑦, and thus 𝑧 < 𝑦. ■

Remark
Note that ℚ is not well-ordered.
Indeed ℚ>0 = {𝑥 ∈ ℚ ∶ 𝑥 > 0} is non-empty (and even bounded from below) but it has no least
element.
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ℚ is archimedean

Theorem: ℚ is archimedean
∀𝜀 ∈ ℚ>0, ∀𝐴 ∈ ℚ>0, ∃𝑁 ∈ ℕ, 𝑁𝜀 > 𝐴.

Proof.
Since 𝐴

𝜀 > 0, we may find a representative 𝑎
𝑏 = 𝐴

𝜀 where 𝑎, 𝑏 ∈ ℕ ⧵ {0}.
Then 𝑎 + 1 − 𝐴

𝜀 = 𝑎 + 1 − 𝑎
𝑏 = 𝑎(𝑏−1)+𝑏

𝑏 > 0, thus (𝑎 + 1)𝜀 > 𝐴.
So 𝑁 = 𝑎 + 1 is a suitable choice. ■

Remark
The above theorem means that lim

𝑛→+∞
1
𝑛 = 0, or equivalently that ℚ doesn’t contain infinitesimal

elements (i.e. there is not infinitely large or infinitely small elements).
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The rational root theorem

The rational root theorem
Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 be a polynomial with integer coefficients 𝑎𝑘 ∈ ℤ.
If 𝑥 = 𝑝

𝑞 is a rational root of 𝑓 written in lowest terms (i.e. gcd(𝑝, 𝑞) = 1), then 𝑝|𝑎0 and 𝑞|𝑎𝑛.

Proof. By assumption we have that

𝑎𝑛 (
𝑝
𝑞 )

𝑛
+ 𝑎𝑛−1 (

𝑝
𝑞 )

𝑛−1
+ ⋯ + 𝑎1

𝑝
𝑞 + 𝑎0 = 0

Therefore
𝑎𝑛𝑝𝑛 + 𝑎𝑛−1𝑝𝑛−1𝑞 + ⋯ + 𝑎1𝑝𝑞𝑛−1 + 𝑎0𝑞𝑛 = 0

Thus 𝑝|𝑎0𝑞𝑛. Since gcd(𝑝, 𝑞) = 1, by Gauss’ lemma we obtain that 𝑝|𝑎0.
Similarly 𝑞|𝑎𝑛. ■
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