MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

RATIONAL NUMBERS

March 9th, 2021

We want to enlarge \mathbb{Z} with numbers of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \setminus \{0\}$ satisfying the property that $\frac{p}{q} \times q = p$. Such numbers are called rational numbers and they form the set \mathbb{Q} . We also want to extend our operations $+, \times$ and the order \leq from \mathbb{Z} to \mathbb{Q} .

We want to enlarge \mathbb{Z} with numbers of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \setminus \{0\}$ satisfying the property that $\frac{p}{q} \times q = p$. Such numbers are called rational numbers and they form the set \mathbb{Q} . We also want to extend our operations +, × and the order \leq from \mathbb{Z} to \mathbb{Q} .

Set $x = \frac{10}{14}$ and $y = \frac{5}{7}$. Then 14x = 10.

So, assuming the multiplication on Q has a cancellation rule, we get 7x = 5, i.e. $x = \frac{5}{7} = y$.

We want to enlarge \mathbb{Z} with numbers of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \setminus \{0\}$ satisfying the property that $\frac{p}{q} \times q = p$. Such numbers are called rational numbers and they form the set \mathbb{Q} . We also want to extend our operations +, × and the order \leq from \mathbb{Z} to \mathbb{Q} .

Set $x = \frac{10}{14}$ and $y = \frac{5}{7}$. Then 14x = 10.

So, assuming the multiplication on \mathbb{Q} has a cancellation rule, we get 7x = 5, i.e. $x = \frac{5}{7} = y$. Therefore, to have a coherent construction, we need to identify several fractions which are not equal *a priori*.

We want to enlarge \mathbb{Z} with numbers of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \setminus \{0\}$ satisfying the property that $\frac{p}{q} \times q = p$. Such numbers are called rational numbers and they form the set \mathbb{Q} . We also want to extend our operations +, × and the order \leq from \mathbb{Z} to \mathbb{Q} .

Set $x = \frac{10}{14}$ and $y = \frac{5}{7}$. Then 14x = 10.

So, assuming the multiplication on \mathbb{Q} has a cancellation rule, we get 7x = 5, i.e. $x = \frac{5}{7} = y$. Therefore, to have a coherent construction, we need to identify several fractions which are not equal *a priori*.

The usual formal way to achieve this point relies on *equivalence classes*, which is the point of view adopted in the lecture notes. I will adopt a more naive/less formal approach in the slides.

Definition

We define

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\} \right\}$$

with the relation

$$\forall p, r \in \mathbb{Z}, \, \forall q, s \in \mathbb{Z} \setminus \{0\}, \, \frac{p}{q} = \frac{r}{s} \Leftrightarrow ps = qr$$

where the operation in the RHS takes place in \mathbb{Z} (there is no cycling definition).

Definition

We define

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\} \right\}$$

with the relation

$$\forall p, r \in \mathbb{Z}, \forall q, s \in \mathbb{Z} \setminus \{0\}, \frac{p}{q} = \frac{r}{s} \Leftrightarrow ps = qr$$

where the operation in the RHS takes place in \mathbb{Z} (there is no cycling definition).

Example $\frac{10}{14} = \frac{5}{7}$ since $10 \times 7 = 5 \times 14 = 70$.

A few notations

Notation

Note that the function $\begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Q} \\ n & \mapsto & \frac{n}{1} \end{array}$ is injective. Therefore we may see \mathbb{Z} as a subset of \mathbb{Q} by setting $n \coloneqq \frac{n}{1} \in \mathbb{Q}$ for $n \in \mathbb{Z}$.

A few notations

Notation

Note that the function $\begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Q} \\ n & \mapsto & \frac{n}{1} \end{array}$ is injective. Therefore we may see \mathbb{Z} as a subset of \mathbb{Q} by setting $n \coloneqq \frac{n}{1} \in \mathbb{Q}$ for $n \in \mathbb{Z}$.

Notation

Note that for
$$(a, b) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$$
, we have $\frac{-a}{b} = \frac{a}{-b}$. Hence we set $-\frac{a}{b} := \frac{-a}{-b} = \frac{a}{-b}$.

A few notations

Notation

Note that the function $\begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Q} \\ n & \mapsto & \frac{n}{1} \end{array}$ is injective. Therefore we may see \mathbb{Z} as a subset of \mathbb{Q} by setting $n \coloneqq \frac{n}{1} \in \mathbb{Q}$ for $n \in \mathbb{Z}$.

Notation

Note that for
$$(a, b) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$$
, we have $\frac{-a}{b} = \frac{a}{-b}$. Hence we set $-\frac{a}{b} := \frac{-a}{b} = \frac{a}{-b}$.

Notation

Note that
$$\frac{a}{b} = 0 \Leftrightarrow a = 0$$
 and that if $\frac{a}{b} = \frac{a'}{b'} \neq 0$ then $\frac{b}{a} = \frac{b'}{a'}$.
Hence, if $x = \frac{a}{b} \neq 0$, we set $x^{-1} \coloneqq \frac{b}{a}$ which doesn't depend on the representative of x .

Lowest form representation

Proposition

Given $x \in \mathbb{Q}$, there exists a unique couple $(a, b) \in \mathbb{Z} \times \mathbb{N} \setminus \{0\}$ such that $x = \frac{a}{b}$ and gcd(a, b) = 1. Then we say that $x = \frac{a}{b}$ is written in *lowest form*.

Lowest form representation

Proposition

Given $x \in \mathbb{Q}$, there exists a unique couple $(a, b) \in \mathbb{Z} \times \mathbb{N} \setminus \{0\}$ such that $x = \frac{a}{b}$ and gcd(a, b) = 1. Then we say that $x = \frac{a}{b}$ is written in *lowest form*.

Proof. Let $x \in \mathbb{Q}$.

Existence. There exist $\alpha \in \mathbb{Z}$ and $\beta \in \mathbb{Z} \setminus \{0\}$ such that $x = \frac{\alpha}{\beta}$. Write $d = \gcd(\alpha, \beta)$, then there exist $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \setminus \{0\}$ such that $\alpha = da$ and $\beta = db$. Note that $\gcd(a, b) = 1$ (since $d = \gcd(\alpha, \beta) = \gcd(da, db) = d \gcd(a, b)$) and that $\frac{\alpha}{\beta} = \frac{\operatorname{sign}(b)a}{|b|}$ since $\operatorname{sign}(b)a\beta = \operatorname{sign}(b)adb = |b|da = |b|\alpha$.

Uniqueness. Assume that $\frac{a}{b} = \frac{a'}{b'}$ where $a, a' \in \mathbb{Z}$, $b, b' \in \mathbb{N} \setminus \{0\}$, gcd(a, b) = 1, gcd(a', b') = 1. Then ab' = a'b. By Gauss' lemma, since b|ab' and gcd(a, b) = 1, we get that b|b'. Similarly b'|b, so |b| = |b'|, thus b = b'. Then, using the cancellation rule, ab' = a'b gives a = a' since $b = b' \neq 0$.

Addition

Proposition

The addition + :
$$\begin{pmatrix} \mathbb{Q} \times \mathbb{Q} & \rightarrow & \mathbb{Q} \\ \left(\frac{a}{b}, \frac{c}{d}\right) & \mapsto & \frac{ad+bc}{bd} \end{cases}$$
 is well-defined.

Addition

Proposition

The addition + :
$$\begin{pmatrix} \mathbb{Q} \times \mathbb{Q} & \to & \mathbb{Q} \\ \left(\frac{a}{b}, \frac{c}{d}\right) & \mapsto & \frac{ad+bc}{bd} \end{cases}$$
 is well-defined.

Proof. We need to prove that the addition doesn't depend on the choice of the representatives, i.e. that if
$$\frac{a}{b} = \frac{a'}{b'}$$
 and $\frac{c}{d} = \frac{c'}{d'}$ then $\frac{a}{b} + \frac{c}{d} = \frac{a'}{b'} + \frac{c'}{d'}$.
Assume that $\frac{a}{b} = \frac{a'}{b'}$ and $\frac{c}{d} = \frac{c'}{d'}$, i.e. $ab' = ba'$ and $cd' = dc'$.
Therefore $(ad + bc)(b'd') = adb'd' + bcb'd' = ba'dd' + dc'bb' = (a'd' + b'c')(bd)$, i.e. $\frac{ad+bc}{bd} = \frac{a'd'+b'c'}{b'd'}$.

Remark

Note that the addition defined on \mathbb{Q} is compatible with the one on \mathbb{Z} . Indeed, if $m, n \in \mathbb{Z}$ then $\frac{m}{1} + \frac{n}{1} = \frac{m+n}{1}$.

Multiplication

Proposition

The multiplication
$$\times$$
: $\begin{pmatrix} \mathbb{Q} \times \mathbb{Q} & \to & \mathbb{Q} \\ \begin{pmatrix} \frac{a}{b}, \frac{c}{d} \end{pmatrix} \mapsto \frac{ac}{bd}$ is well-defined.

Multiplication

Proposition

The multiplication \times : $\begin{pmatrix} \mathbb{Q} \times \mathbb{Q} & \rightarrow & \mathbb{Q} \\ \begin{pmatrix} \frac{a}{b}, \frac{c}{d} \end{pmatrix} \mapsto & \frac{ac}{bd} \end{cases}$ is well-defined.

Proof. We need to prove that the multiplication doesn't depend on the choice of the representatives, i.e. that if $\frac{a}{b} = \frac{a'}{b'}$ and $\frac{c}{d} = \frac{c'}{d'}$ then $\frac{a}{b} \times \frac{c}{d} = \frac{a'}{b'} \times \frac{c'}{d'}$. Assume that $\frac{a}{b} = \frac{a'}{b'}$ and $\frac{c}{d} = \frac{c'}{d'}$, i.e. ab' = ba' and cd' = dc'. Therefore (ac)(b'd') = ab'cd' = ba'dc' = (a'c')(bd), i.e. $\frac{ac}{bd} = \frac{a'c'}{b'd'}$ as desired.

Remark

Note that the multiplication defined on \mathbb{Q} is compatible with the one on \mathbb{Z} . Indeed, if $m, n \in \mathbb{Z}$ then $\frac{m}{1} \times \frac{n}{1} = \frac{m \times n}{1}$.

We want to define an order on \mathbb{Q} , satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d} \frac{a}{b} = \frac{bc-ad}{bd}$, and,
- $0 \le \frac{e}{f}$ if and only if $0 \le ef$ (i.e. the sign rule).

We want to define an order on \mathbb{Q} , satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d} \frac{a}{b} = \frac{bc-ad}{bd}$, and,
- $0 \le \frac{e}{\epsilon}$ if and only if $0 \le ef$ (i.e. the sign rule).

Therefore the following definition is natural:

Definition

We define the binary relation \leq on \mathbb{Q} by

$$\frac{a}{b} \le \frac{c}{d} \Leftrightarrow 0 \le (bc - ad)bd$$

where the order on the RHS of the equivalence is the order of \mathbb{Z} .

We want to define an order on \mathbb{Q} , satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d} \frac{a}{b} = \frac{bc-ad}{bd}$, and,
- $0 \le \frac{e}{\epsilon}$ if and only if $0 \le ef$ (i.e. the sign rule).

Therefore the following definition is natural:

Definition

We define the binary relation \leq on \mathbb{Q} by

$$\frac{a}{b} \le \frac{c}{d} \Leftrightarrow 0 \le (bc - ad)bd$$

where the order on the RHS of the equivalence is the order of \mathbb{Z} .

We have to check that it doesn't depend on the choice of the representative!

We want to define an order on \mathbb{Q} , satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d} \frac{a}{b} = \frac{bc-ad}{bd}$, and,
- $0 \le \frac{e}{\epsilon}$ if and only if $0 \le ef$ (i.e. the sign rule).

Therefore the following definition is natural:

Definition

We define the binary relation \leq on \mathbb{Q} by

$$\frac{a}{b} \le \frac{c}{d} \Leftrightarrow 0 \le (bc - ad)bd$$

where the order on the RHS of the equivalence is the order of \mathbb{Z} .

We have to check that it doesn't depend on the choice of the representative!

Proposition

The order \leq defined on \mathbb{Q} extends the usual order \leq on \mathbb{Z} .

We want to define an order on $\mathbb{Q},$ satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d} \frac{a}{b} = \frac{bc-ad}{bd}$, and,
- $0 \le \frac{e}{f}$ if and only if $0 \le ef$ (i.e. the sign rule).

Therefore the following definition is natural:

Definition

We define the binary relation \leq on \mathbb{Q} by

$$\frac{a}{b} \le \frac{c}{d} \Leftrightarrow 0 \le (bc - ad)bd$$

where the order on the RHS of the equivalence is the order of \mathbb{Z} .

We have to check that it doesn't depend on the choice of the representative!

Proposition

The order \leq defined on \mathbb{Q} extends the usual order \leq on \mathbb{Z} .

Proof. Let
$$m, n \in \mathbb{Z}$$
 then $\frac{m}{1} \leq \frac{n}{1} \Leftrightarrow 0 \leq n - m \Leftrightarrow m \leq n$.

Properties

 $(\mathbb{Q},+,\times,\leq)$ is a (totally) ordered field, meaning that

- + is associative: $\forall x, y, z \in \mathbb{Q}$, (x + y) + z = x + (y + z)
- 0 is the unit of +: $\forall x \in \mathbb{Q}, x + 0 = 0 + x = x$
- -x is the additive inverse of x: $\forall x \in \mathbb{Q}, x + (-x) = (-x) + x = 0$
- + is commutative: $\forall x, y \in \mathbb{Q}, x + y = y + x$
- × is associative: $\forall x, y, z \in \mathbb{Q}, (xy)z = x(yz)$
- × is distributive with respect to +: $\forall x, y, z \in \mathbb{Q}$, x(y + z) = xy + xz and (x + y)z = xz + yz
- 1 is the unit of \times : $\forall x \in \mathbb{Q}$, $1 \times x = x \times 1 = x$
- If $x \neq 0$ then x^{-1} is the multiplicative inverse of x: $\forall x \in \mathbb{Q} \setminus \{0\}, xx^{-1} = x^{-1}x = 1$
- × is commutative: $\forall x, y \in \mathbb{Q}, xy = yx$
- \leq is reflexive: $\forall x \in \mathbb{Q}, x \leq x$
- \leq is antisymmetric: $\forall x, y \in \mathbb{Q}, (x \leq y \text{ and } y \leq x) \implies x = y$
- \leq is transitive: $\forall x, y, z \in \mathbb{Q}$, $(x \leq y \text{ and } y \leq z) \implies x \leq z$
- \leq is total: $\forall x, y \in \mathbb{Q}, x \leq y$ or $y \leq x$
- $\forall x, y, r, s \in \mathbb{Q}, (x \le y \text{ and } r \le s) \Rightarrow x + r \le y + s$
- $\forall x, y, z \in \mathbb{Q}, (x \le y \text{ and } z > 0) \Rightarrow xz \le yz$

Between two rationals there is another rational

Proposition

 $\forall x, y \in \mathbb{Q}, \, x < y \implies (\exists z \in \mathbb{Q}, \, x < z < y)$

Proposition

 $\forall x, y \in \mathbb{Q}, \, x < y \implies (\exists z \in \mathbb{Q}, \, x < z < y)$

Proof. Let $x, y \in \mathbb{Q}$ be such that x < y. Then $z = \frac{x+y}{2}$ is a suitable choice. Indeed, x < y implies 2x < x + y and thus x < z. Similarly x + y < 2y, and thus z < y.

Proposition

 $\forall x, y \in \mathbb{Q}, \, x < y \implies (\exists z \in \mathbb{Q}, \, x < z < y)$

Proof. Let $x, y \in \mathbb{Q}$ be such that x < y. Then $z = \frac{x+y}{2}$ is a suitable choice. Indeed, x < y implies 2x < x + y and thus x < z. Similarly x + y < 2y, and thus z < y.

Remark

Note that \mathbb{Q} is not well-ordered. Indeed $\mathbb{Q}_{>0} = \{x \in \mathbb{Q} : x > 0\}$ is non-empty (and even bounded from below) but it has no least element.

Theorem: \mathbb{Q} is archimedean

 $\forall \varepsilon \in \mathbb{Q}_{>0}, \, \forall A \in \mathbb{Q}_{>0}, \, \exists N \in \mathbb{N}, \, N\varepsilon > A.$

Theorem: \mathbb{Q} is archimedean

 $\forall \varepsilon \in \mathbb{Q}_{>0}, \, \forall A \in \mathbb{Q}_{>0}, \, \exists N \in \mathbb{N}, \, N\varepsilon > A.$

Proof. Since $\frac{A}{\varepsilon} > 0$, we may find a representative $\frac{a}{b} = \frac{A}{\varepsilon}$ where $a, b \in \mathbb{N} \setminus \{0\}$. Then $a + 1 - \frac{A}{\varepsilon} = a + 1 - \frac{a}{b} = \frac{a(b-1)+b}{b} > 0$, thus $(a + 1)\varepsilon > A$. So N = a + 1 is a suitable choice.

Theorem: Q is archimedean

 $\forall \varepsilon \in \mathbb{Q}_{>0}, \, \forall A \in \mathbb{Q}_{>0}, \, \exists N \in \mathbb{N}, \, N\varepsilon > A.$

Proof. Since $\frac{A}{\varepsilon} > 0$, we may find a representative $\frac{a}{b} = \frac{A}{\varepsilon}$ where $a, b \in \mathbb{N} \setminus \{0\}$. Then $a + 1 - \frac{A}{\varepsilon} = a + 1 - \frac{a}{b} = \frac{a(b-1)+b}{b} > 0$, thus $(a + 1)\varepsilon > A$. So N = a + 1 is a suitable choice.

Remark

The above theorem means that $\lim_{n \to +\infty} \frac{1}{n} = 0$, or equivalently that \mathbb{Q} doesn't contain infinitesimal elements (i.e. there is not infinitely large or infinitely small elements).

The rational root theorem

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial with integer coefficients $a_k \in \mathbb{Z}$. If $x = \frac{p}{q}$ is a rational root of f written in lowest terms (i.e. gcd(p,q) = 1), then $p|a_0$ and $q|a_n$.

The rational root theorem

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial with integer coefficients $a_k \in \mathbb{Z}$. If $x = \frac{p}{q}$ is a rational root of f written in lowest terms (i.e. gcd(p,q) = 1), then $p|a_0$ and $q|a_n$.

Proof. By assumption we have that

$$a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_1 \frac{p}{q} + a_0 = 0$$

Therefore

$$a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n = 0$$

Thus $p|a_0q^n$. Since gcd(p,q) = 1, by Gauss' lemma we obtain that $p|a_0$. Similarly $q|a_n$.