Rational numbers

March $9^{\text {th }}, 2021$

Introduction

We want to enlarge \mathbb{Z} with numbers of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \backslash\{0\}$ satisfying the property that $\frac{p}{q} \times q=p$.
Such numbers are called rational numbers and they form the set \mathbb{Q}.
We also want to extend our operations,$+ \times$ and the order \leq from \mathbb{Z} to \mathbb{Q}.

Introduction

We want to enlarge \mathbb{Z} with numbers of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \backslash\{0\}$ satisfying the property that $\frac{p}{q} \times q=p$.
Such numbers are called rational numbers and they form the set \mathbb{Q}.
We also want to extend our operations,$+ \times$ and the order \leq from \mathbb{Z} to \mathbb{Q}.

Set $x=\frac{10}{14}$ and $y=\frac{5}{7}$. Then $14 x=10$.
So, assuming the multiplication on \mathbb{Q} has a cancellation rule, we get $7 x=5$, i.e. $x=\frac{5}{7}=y$.

Introduction

We want to enlarge \mathbb{Z} with numbers of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \backslash\{0\}$ satisfying the property that $\frac{p}{q} \times q=p$.
Such numbers are called rational numbers and they form the set \mathbb{Q}.
We also want to extend our operations,$+ \times$ and the order \leq from \mathbb{Z} to \mathbb{Q}.

Set $x=\frac{10}{14}$ and $y=\frac{5}{7}$. Then $14 x=10$.
So, assuming the multiplication on \mathbb{Q} has a cancellation rule, we get $7 x=5$, i.e. $x=\frac{5}{7}=y$. Therefore, to have a coherent construction, we need to identify several fractions which are not equal a priori.

Introduction

We want to enlarge \mathbb{Z} with numbers of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \backslash\{0\}$ satisfying the property that $\frac{p}{q} \times q=p$.
Such numbers are called rational numbers and they form the set \mathbb{Q}.
We also want to extend our operations,$+ \times$ and the order \leq from \mathbb{Z} to \mathbb{Q}.

Set $x=\frac{10}{14}$ and $y=\frac{5}{7}$. Then $14 x=10$.
So, assuming the multiplication on \mathbb{Q} has a cancellation rule, we get $7 x=5$, i.e. $x=\frac{5}{7}=y$.
Therefore, to have a coherent construction, we need to identify several fractions which are not equal a priori.

The usual formal way to achieve this point relies on equivalence classes, which is the point of view adopted in the lecture notes. I will adopt a more naive/less formal approach in the slides.

Definition

Definition

We define

$$
\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z} \backslash\{0\}\right\}
$$

with the relation

$$
\forall p, r \in \mathbb{Z}, \forall q, s \in \mathbb{Z} \backslash\{0\}, \frac{p}{q}=\frac{r}{s} \Leftrightarrow p s=q r
$$

where the operation in the RHS takes place in \mathbb{Z} (there is no cycling definition).

Definition

Definition

We define

$$
\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z} \backslash\{0\}\right\}
$$

with the relation

$$
\forall p, r \in \mathbb{Z}, \forall q, s \in \mathbb{Z} \backslash\{0\}, \frac{p}{q}=\frac{r}{s} \Leftrightarrow p s=q r
$$

where the operation in the RHS takes place in \mathbb{Z} (there is no cycling definition).

Example

$\frac{10}{14}=\frac{5}{7}$ since $10 \times 7=5 \times 14=70$.

A few notations

Notation

Note that the function $\begin{aligned} & \mathbb{Z} \rightarrow \stackrel{\mathbb{Q}}{n} \text { is injective. } \\ & \text { Therefore we may see } \mathbb{Z} \text { as a subset of } \mathbb{Q} \text { by setting } n:=\frac{n}{1} \in \mathbb{Q} \text { for } n \in \mathbb{Z} .\end{aligned}$.

A few notations

Notation

Note that the function $\begin{array}{lll}\mathbb{Z} & \rightarrow & \mathbb{Q} \\ n & \mapsto & \frac{n}{1}\end{array}$ is injective.
Therefore we may see \mathbb{Z} as a subset of \mathbb{Q} by setting $n:=\frac{n}{1} \in \mathbb{Q}$ for $n \in \mathbb{Z}$.

Notation

Note that for $(a, b) \in \mathbb{Z} \times \mathbb{Z} \backslash\{0\}$, we have $\frac{-a}{b}=\frac{a}{-b}$. Hence we set $-\frac{a}{b}:=\frac{-a}{b}=\frac{a}{-b}$.

A few notations

Notation

Note that the function $\begin{array}{lll}\mathbb{Z} & \rightarrow & \mathbb{Q} \\ n & \mapsto & \frac{n}{1}\end{array}$ is injective.
Therefore we may see \mathbb{Z} as a subset of \mathbb{Q} by setting $n:=\frac{n}{1} \in \mathbb{Q}$ for $n \in \mathbb{Z}$.

Notation

Note that for $(a, b) \in \mathbb{Z} \times \mathbb{Z} \backslash\{0\}$, we have $\frac{-a}{b}=\frac{a}{-b}$. Hence we set $-\frac{a}{b}:=\frac{-a}{b}=\frac{a}{-b}$.

Notation

Note that $\frac{a}{b}=0 \Leftrightarrow a=0$ and that if $\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}} \neq 0$ then $\frac{b}{a}=\frac{b^{\prime}}{a^{\prime}}$.
Hence, if $x=\frac{a}{b} \neq 0$, we set $x^{-1}:=\frac{b}{a}$ which doesn't depend on the representative of x.

Lowest form representation

Proposition

Given $x \in \mathbb{Q}$, there exists a unique couple $(a, b) \in \mathbb{Z} \times \mathbb{N} \backslash\{0\}$ such that $x=\frac{a}{b}$ and $\operatorname{gcd}(a, b)=1$. Then we say that $x=\frac{a}{b}$ is written in lowest form.

Lowest form representation

Proposition

Given $x \in \mathbb{Q}$, there exists a unique couple $(a, b) \in \mathbb{Z} \times \mathbb{N} \backslash\{0\}$ such that $x=\frac{a}{b}$ and $\operatorname{gcd}(a, b)=1$. Then we say that $x=\frac{a}{b}$ is written in lowest form.

Proof. Let $x \in \mathbb{Q}$.
Existence. There exist $\alpha \in \mathbb{Z}$ and $\beta \in \mathbb{Z} \backslash\{0\}$ such that $x=\frac{\alpha}{\beta}$.
Write $d=\operatorname{gcd}(\alpha, \beta)$, then there exist $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \backslash\{0\}$ such that $\alpha=d a$ and $\beta=d b$.
Note that $\operatorname{gcd}(a, b)=1($ since $d=\operatorname{gcd}(\alpha, \beta)=\operatorname{gcd}(d a, d b)=d \operatorname{gcd}(a, b))$ and that $\frac{\alpha}{\beta}=\frac{\operatorname{sign}(b) a}{|b|}$ since $\operatorname{sign}(b) a \beta=\operatorname{sign}(b) a d b=|b| d a=|b| \alpha$.

Uniqueness. Assume that $\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}}$ where $a, a^{\prime} \in \mathbb{Z}, b, b^{\prime} \in \mathbb{N} \backslash\{0\}, \operatorname{gcd}(a, b)=1, \operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$. Then $a b^{\prime}=a^{\prime} b$. By Gauss' lemma, since $b \mid a b^{\prime}$ and $\operatorname{gcd}(a, b)=1$, we get that $b \mid b^{\prime}$.
Similarly $b^{\prime} \mid b$, so $|b|=\left|b^{\prime}\right|$, thus $b=b^{\prime}$.
Then, using the cancellation rule, $a b^{\prime}=a^{\prime} b$ gives $a=a^{\prime}$ since $b=b^{\prime} \neq 0$.

Addition

Proposition

The addition $+: \begin{array}{llcc}\mathbb{Q} \times \mathbb{Q} & \rightarrow & \mathbb{Q} \\ \left(\frac{a}{b}, \frac{c}{d}\right) & \mapsto & \frac{a d+b c}{b d}\end{array}$ is well-defined.

Addition

Proposition

The addition $+:$| $\mathbb{Q} \times \mathbb{Q}$ | \rightarrow | \mathbb{Q} |
| :--- | :--- | :---: |
| $\left(\frac{a}{b}, \frac{c}{d}\right)$ | \mapsto | $\frac{a d+b c}{b d}$ | is well-defined.

Proof. We need to prove that the addition doesn't depend on the choice of the representatives, i.e. that if $\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}}$ and $\frac{c}{d}=\frac{c^{\prime}}{d^{\prime}}$ then $\frac{a}{b}+\frac{c}{d}=\frac{a^{\prime}}{b^{\prime}}+\frac{c^{\prime}}{d^{\prime}}$.

Assume that $\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}}$ and $\frac{c}{d}=\frac{c^{\prime}}{d^{\prime}}$, i.e. $a b^{\prime}=b a^{\prime}$ and $c d^{\prime}=d c^{\prime}$.
Therefore $(a d+b c)\left(b^{\prime} d^{\prime}\right)=a d b^{\prime} d^{\prime}+b c b^{\prime} d^{\prime}=b a^{\prime} d d^{\prime}+d c^{\prime} b b^{\prime}=\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)(b d)$, i.e. $\frac{a d+b c}{b d}=\frac{a^{\prime} d^{\prime}+b^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}$.

Remark

Note that the addition defined on \mathbb{Q} is compatible with the one on \mathbb{Z}. Indeed, if $m, n \in \mathbb{Z}$ then $\frac{m}{1}+\frac{n}{1}=\frac{m+n}{1}$.

Multiplication

Proposition The multiplication $\times: \begin{array}{lll}\mathbb{Q} \times \mathbb{Q} & \rightarrow & \mathbb{Q} \\ \left(\frac{a}{b}, \frac{c}{d}\right) & \mapsto & \frac{a c}{b d}\end{array}$ is well-defined.

Multiplication

Proposition

The multiplication $\times:$| $\mathbb{Q} \times \mathbb{Q}$ | \rightarrow | \mathbb{Q} |
| :--- | :--- | :--- |
| $\left(\frac{a}{b}, \frac{c}{d}\right)$ | \mapsto | $\frac{a c}{b d}$ | is well-defined.

Proof. We need to prove that the multiplication doesn't depend on the choice of the representatives, i.e. that if $\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}}$ and $\frac{c}{d}=\frac{c^{\prime}}{d^{\prime}}$ then $\frac{a}{b} \times \frac{c}{d}=\frac{a^{\prime}}{b^{\prime}} \times \frac{c^{\prime}}{d^{\prime}}$.
Assume that $\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}}$ and $\frac{c}{d}=\frac{c^{\prime}}{d^{\prime}}$, i.e. $a b^{\prime}=b a^{\prime}$ and $c d^{\prime}=d c^{\prime}$.
Therefore $(a c)\left(b^{\prime} d^{\prime}\right)=a b^{\prime} c d^{\prime}=b a^{\prime} d c^{\prime}=\left(a^{\prime} c^{\prime}\right)(b d)$, i.e. $\frac{a c}{b d}=\frac{a^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}$ as desired.

Remark

Note that the multiplication defined on \mathbb{Q} is compatible with the one on \mathbb{Z}. Indeed, if $m, n \in \mathbb{Z}$ then $\frac{m}{1} \times \frac{n}{1}=\frac{m \times n}{1}$.

Order

We want to define an order on \mathbb{Q}, satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d}$, and,
- $0 \leq \frac{e}{f}$ if and only if $0 \leq e f$ (i.e. the sign rule).

Order

We want to define an order on \mathbb{Q}, satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d}$, and,
- $0 \leq \frac{e}{f}$ if and only if $0 \leq e f$ (i.e. the sign rule).

Therefore the following definition is natural:

Definition

We define the binary relation \leq on \mathbb{Q} by

$$
\frac{a}{b} \leq \frac{c}{d} \Leftrightarrow 0 \leq(b c-a d) b d
$$

where the order on the RHS of the equivalence is the order of \mathbb{Z}.

Order

We want to define an order on \mathbb{Q}, satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d}$, and,
- $0 \leq \frac{e}{f}$ if and only if $0 \leq e f$ (i.e. the sign rule).

Therefore the following definition is natural:

Definition

We define the binary relation \leq on \mathbb{Q} by

$$
\frac{a}{b} \leq \frac{c}{d} \Leftrightarrow 0 \leq(b c-a d) b d
$$

where the order on the RHS of the equivalence is the order of \mathbb{Z}.
We have to check that it doesn't depend on the choice of the representative!

Order

We want to define an order on \mathbb{Q}, satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d}$, and,
- $0 \leq \frac{e}{f}$ if and only if $0 \leq e f$ (i.e. the sign rule).

Therefore the following definition is natural:

Definition

We define the binary relation \leq on \mathbb{Q} by

$$
\frac{a}{b} \leq \frac{c}{d} \Leftrightarrow 0 \leq(b c-a d) b d
$$

where the order on the RHS of the equivalence is the order of \mathbb{Z}.
We have to check that it doesn't depend on the choice of the representative!

Proposition

The order \leq defined on \mathbb{Q} extends the usual order \leq on \mathbb{Z}.

Order

We want to define an order on \mathbb{Q}, satisfying the following natural properties:

- $\frac{a}{b} \leq \frac{c}{d}$ if and only if $0 \leq \frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d}$, and,
- $0 \leq \frac{e}{f}$ if and only if $0 \leq e f$ (i.e. the sign rule).

Therefore the following definition is natural:

Definition

We define the binary relation \leq on \mathbb{Q} by

$$
\frac{a}{b} \leq \frac{c}{d} \Leftrightarrow 0 \leq(b c-a d) b d
$$

where the order on the RHS of the equivalence is the order of \mathbb{Z}.
We have to check that it doesn't depend on the choice of the representative!

Proposition

The order \leq defined on \mathbb{Q} extends the usual order \leq on \mathbb{Z}.
Proof. Let $m, n \in \mathbb{Z}$ then $\frac{m}{1} \leq \frac{n}{1} \Leftrightarrow 0 \leq n-m \Leftrightarrow m \leq n$.

Properties

$(\mathbb{Q},+, \times, \leq)$ is a (totally) ordered field, meaning that

- + is associative: $\forall x, y, z \in \mathbb{Q},(x+y)+z=x+(y+z)$
- 0 is the unit of $+: \forall x \in \mathbb{Q}, x+0=0+x=x$
- $-x$ is the additive inverse of $x: \forall x \in \mathbb{Q}, x+(-x)=(-x)+x=0$
- + is commutative: $\forall x, y \in \mathbb{Q}, x+y=y+x$
- x is associative: $\forall x, y, z \in \mathbb{Q},(x y) z=x(y z)$
- X is distributive with respect to $+: \forall x, y, z \in \mathbb{Q}, x(y+z)=x y+x z$ and $(x+y) z=x z+y z$
- 1 is the unit of $\times: \forall x \in \mathbb{Q}, 1 \times x=x \times 1=x$
- If $x \neq 0$ then x^{-1} is the multiplicative inverse of $x: \forall x \in \mathbb{Q} \backslash\{0\}, x x^{-1}=x^{-1} x=1$
- x is commutative: $\forall x, y \in \mathbb{Q}, x y=y x$
- \leq is reflexive: $\forall x \in \mathbb{Q}, x \leq x$
- \leq is antisymmetric: $\forall x, y \in \mathbb{Q},(x \leq y$ and $y \leq x) \Longrightarrow x=y$
- \leq is transitive: $\forall x, y, z \in \mathbb{Q},(x \leq y$ and $y \leq z) \Longrightarrow x \leq z$
- \leq is total: $\forall x, y \in \mathbb{Q}, x \leq y$ or $y \leq x$
- $\forall x, y, r, s \in \mathbb{Q},(x \leq y$ and $r \leq s) \Rightarrow x+r \leq y+s$
- $\forall x, y, z \in \mathbb{Q},(x \leq y$ and $z>0) \Rightarrow x z \leq y z$

Between two rationals there is another rational

```
Proposition
\forallx,y\in\mathbb{Q},x<y\Longrightarrow(\existsz\in\mathbb{Q},x<z<y)
```


Between two rationals there is another rational

Proposition

$$
\forall x, y \in \mathbb{Q}, x<y \Longrightarrow(\exists z \in \mathbb{Q}, x<z<y)
$$

Proof. Let $x, y \in \mathbb{Q}$ be such that $x<y$. Then $z=\frac{x+y}{2}$ is a suitable choice. Indeed, $x<y$ implies $2 x<x+y$ and thus $x<z$. Similarly $x+y<2 y$, and thus $z<y$.

Between two rationals there is another rational

Proposition

$$
\forall x, y \in \mathbb{Q}, x<y \Longrightarrow(\exists z \in \mathbb{Q}, x<z<y)
$$

Proof. Let $x, y \in \mathbb{Q}$ be such that $x<y$. Then $z=\frac{x+y}{2}$ is a suitable choice. Indeed, $x<y$ implies $2 x<x+y$ and thus $x<z$. Similarly $x+y<2 y$, and thus $z<y$.

Remark

Note that \mathbb{Q} is not well-ordered.
Indeed $\mathbb{Q}_{>0}=\{x \in \mathbb{Q}: x>0\}$ is non-empty (and even bounded from below) but it has no least element.

Q is archimedean

Theorem: \mathbb{Q} is archimedean $\forall \varepsilon \in \mathbb{Q}_{>0}, \forall A \in \mathbb{Q}_{>0}, \exists N \in \mathbb{N}, N \varepsilon>A$.

\mathbb{Q} is archimedean

Theorem: \mathbb{Q} is archimedean

$\forall \varepsilon \in \mathbb{Q}_{>0}, \forall A \in \mathbb{Q}_{>0}, \exists N \in \mathbb{N}, N \varepsilon>A$.
Proof.
Since $\frac{A}{\varepsilon}>0$, we may find a representative $\frac{a}{b}=\frac{A}{\varepsilon}$ where $a, b \in \mathbb{N} \backslash\{0\}$.
Then $a+1-\frac{A}{\varepsilon}=a+1-\frac{a}{b}=\frac{a(b-1)+b}{b}>0$, thus $(a+1) \varepsilon>A$.
So $N=a+1$ is a suitable choice.

Q is archimedean

Theorem: \mathbb{Q} is archimedean

$\forall \varepsilon \in \mathbb{Q}_{>0}, \forall A \in \mathbb{Q}_{>0}, \exists N \in \mathbb{N}, N \varepsilon>A$.
Proof.
Since $\frac{A}{\varepsilon}>0$, we may find a representative $\frac{a}{b}=\frac{A}{\varepsilon}$ where $a, b \in \mathbb{N} \backslash\{0\}$.
Then $a+1-\frac{A}{\varepsilon}=a+1-\frac{a}{b}=\frac{a(b-1)+b}{b}>0$, thus $(a+1) \varepsilon>A$.
So $N=a+1$ is a suitable choice.

Remark

The above theorem means that $\lim _{n \rightarrow+\infty} \frac{1}{n}=0$, or equivalently that \mathbb{Q} doesn't contain infinitesimal elements (i.e. there is not infinitely large or infinitely small elements).

The rational root theorem

The rational root theorem

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients $a_{k} \in \mathbb{Z}$. If $x=\frac{p}{q}$ is a rational root of f written in lowest terms (i.e. $\operatorname{gcd}(p, q)=1$), then $p \mid a_{0}$ and $q \mid a_{n}$.

The rational root theorem

The rational root theorem

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients $a_{k} \in \mathbb{Z}$. If $x=\frac{p}{q}$ is a rational root of f written in lowest terms (i.e. $\operatorname{gcd}(p, q)=1$), then $p \mid a_{0}$ and $q \mid a_{n}$.

Proof. By assumption we have that

$$
a_{n}\left(\frac{p}{q}\right)^{n}+a_{n-1}\left(\frac{p}{q}\right)^{n-1}+\cdots+a_{1} \frac{p}{q}+a_{0}=0
$$

Therefore

$$
a_{n} p^{n}+a_{n-1} p^{n-1} q+\cdots+a_{1} p q^{n-1}+a_{0} q^{n}=0
$$

Thus $p \mid a_{0} q^{n}$. Since $\operatorname{gcd}(p, q)=1$, by Gauss' lemma we obtain that $p \mid a_{0}$. Similarly $q \mid a_{n}$.

