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Introduction

How can someone send a secret message in a way that only the recipient could read the content
even if the message happens to have been intercepted by a third party?
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Cæsar cipher (monoalphabetic)
Encryption: perform a right shift w.r.t. the key
Decryption: perform a left shift w.r.t. the key
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LEON BATTISTA ALBERTI’s cipher disk.

Implementation in Julia:
1 function caesar(c::Char, key::Integer)
2 (key >= 1 && key <= 25) || error("The key must be between 1 and 25")
3 if isletter(c)
4 shift = ifelse(islowercase(c), 'a', 'A')
5 return (c - shift + key) % 26 + shift
6 end
7 return c
8 end
9 caesar_enc(m::AbstractString, key::Integer) = map(c -> caesar(c, key), m)

10 caesar_dec(m::AbstractString, key::Integer) = map(c -> caesar(c, 26-key), m)
11
12 m = "There is no permanent place in the world for ugly mathematics."
13 key = 6
14
15 println("Original message: $m")
16 c = caesar_enc(m,key)
17 println("Encrypted message: $c")
18 println("Decrypted message: $(caesar_dec(c,key))")

[mat246@Pavilion mat246]$ julia caesar.j
Original message: There is no permanent place in the world for ugly mathematics.
Encrypted message: Znkxk oy tu vkxsgtktz vrgik ot znk cuxrj lux amre sgznksgzoiy.
Decrypted message: There is no permanent place in the world for ugly mathematics.

Weaknesses: bruteforce (only 25 keys), frequency distribution of the letters.
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Vigenère cipher (polyalphabetic) – 1

It is an improved version of Cæsar where the shift value changes depending on the position in the text
(published in 1553 by GIOVAN BATTISTA BELLASO1).

For instance, if the key is MATH, then
1 the first letter is shifted by 12,
2 the second one by 0,
3 the third one by 19,
4 the fourth one by 7,
5 and then we repeat…

This way Vigenère cipher is robust against frequency distribution of the letters.
An efficient attack, when the key is (far) shorter than the message, consists in looking for repetitions in the
crypted message (to deduce the length of the key).

1You will note the great given name.
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Vigenère cipher (polyalphabetic) – 2
Implementation in Julia:

1 function vigenere(m, key::AbstractString, enc::Bool)
2 occursin(r"^[a-zA-Z]+$",key) || error("The key can only contain letters")
3 key = lowercase(key)
4 s = ""
5 i = 0
6 for c in m
7 if isletter(c)
8 shiftcap = islowercase(c) ? 'a' : 'A'
9 shiftkey = enc ? key[i%length(key)+1]-'a' : 26-(key[i%length(key)+1]-'a')

10 s = s*((c-shiftcap+shiftkey)%26+shiftcap)
11 i += 1
12 else
13 s = s*c
14 end
15 end
16 return s
17 end
18
19 m = "There is no permanent place in the world for ugly mathematics."
20 key = "MATHEMATICS"
21 println("Original message: $m")
22 c = vigenere(m,key,true)
23 println("Encrypted message: $c")
24 println("Decrypted message: $(vigenere(c,key,false))")

[mat246@Pavilion mat246]$ julia vigenere.j
Original message: There is no permanent place in the world for ugly mathematics.
Encrypted message: Fhxyi us gw rwdmtuizt itcuq ig alq whznv rok bkxy fivzqmtamos.
Decrypted message: There is no permanent place in the world for ugly mathematics.
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Enigma (WWII) – 1

https://commons.wikimedia.org/wiki/File:
Enigma_(crittografia)_-_Museo_scienza_e_tecnologia_Milano.jpg

https://en.wikipedia.org/wiki/File:Enigma-action.svg

Emulator: https://piotte13.github.io/enigma-cipher/
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Enigma (WWII) – 2
Configuration:

• You have to pick 3 rotors among 5: 5!
(5−3)! = 60.

• You have to pick the initial position of each rotor: 26 × 26 × 26 = 17576.
• Plugboard for ℓ links: 26!

(26−2ℓ)!ℓ!2ℓ .
• In some versions, there are several possible reflector configurations.

Strengths:
• There are lots of configurations.
• The rotors move when a key is pressed, thus the Enigma machine is robust against frequency

distribution of the letters.
Weaknesses:

• Because of how the reflector is built, a key is never mapped to itself.
• Symmetry of the plugboard.
• Regularity of the stepping: every 26 steps, each rotor induces a stepping to the rotor on its left.
• The position at which a rotor induces a stepping to the next one is fixed (there is a notch on the rotor).

Pictures: https://www.cryptomuseum.com/crypto/enigma/working.htm
Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Mar 4, 2021 7 / 19

https://www.cryptomuseum.com/crypto/enigma/working.htm


Enigma (WWII) – 2
Configuration:

• You have to pick 3 rotors among 5: 5!
(5−3)! = 60.

• You have to pick the initial position of each rotor: 26 × 26 × 26 = 17576.
• Plugboard for ℓ links: 26!

(26−2ℓ)!ℓ!2ℓ .
• In some versions, there are several possible reflector configurations.

Strengths:
• There are lots of configurations.
• The rotors move when a key is pressed, thus the Enigma machine is robust against frequency

distribution of the letters.

Weaknesses:
• Because of how the reflector is built, a key is never mapped to itself.
• Symmetry of the plugboard.
• Regularity of the stepping: every 26 steps, each rotor induces a stepping to the rotor on its left.
• The position at which a rotor induces a stepping to the next one is fixed (there is a notch on the rotor).

Pictures: https://www.cryptomuseum.com/crypto/enigma/working.htm
Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Mar 4, 2021 7 / 19

https://www.cryptomuseum.com/crypto/enigma/working.htm


Enigma (WWII) – 2
Configuration:

• You have to pick 3 rotors among 5: 5!
(5−3)! = 60.

• You have to pick the initial position of each rotor: 26 × 26 × 26 = 17576.
• Plugboard for ℓ links: 26!

(26−2ℓ)!ℓ!2ℓ .
• In some versions, there are several possible reflector configurations.

Strengths:
• There are lots of configurations.
• The rotors move when a key is pressed, thus the Enigma machine is robust against frequency

distribution of the letters.
Weaknesses:

• Because of how the reflector is built, a key is never mapped to itself.
• Symmetry of the plugboard.
• Regularity of the stepping: every 26 steps, each rotor induces a stepping to the rotor on its left.
• The position at which a rotor induces a stepping to the next one is fixed (there is a notch on the rotor).

Pictures: https://www.cryptomuseum.com/crypto/enigma/working.htm
Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Mar 4, 2021 7 / 19

https://www.cryptomuseum.com/crypto/enigma/working.htm


Asymmetric ciphers – 1

In the above examples, there is a common key shared among the participants.
Either you share a common key with all the participants (but it increases the risk for the key to be
compromised) or each pair of participants has a different key (so there are lots of keys).
Big weakness: how to communicate safely the key?

Asymmetric cryptographic algorithms:

Message in clear Encrypted message Message in clear

Public key Private key
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Asymmetric ciphers – 2

Message in clear Encrypted message Message in clear

Public key Private key

• One private key: only known by the recipient to decrypt messages.
• One public key: to be used by the sender to encrypt the message.
• The knowledge of the public key is not enough to decrypt message, so it can be widely shared.
• Theoretical approach: mid 70s.
• First concrete algorithm: RSA in Ron Rivest, Adi Shamir, and Leonard Adleman in 1978.
• Actually developped in 1973 by the British secret service (classified until the 90s).
• Asymmetric ciphers can still be vulnerable to frequency distribution.
• In practice, asymmetric ciphers are usually used for authentification purposes or to initialize

communications allowing to safely exchange keys that will be used with a symmetric cipher.
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RSA: once upon a time…
Protagonists:

Alice Bob

Goal: Find a way for Bob to send a secret message to Alice so that only her can read it, even if
the message happens to be intercepted by a third party.
Hopefully, Alice and Bob attended MAT246 and understand very well modular arithmetic.
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RSA: key generation – 1
Alice picks two distinct prime numbers 𝑝 and 𝑞.

She sets 𝑛 ≔ 𝑝𝑞.
She chooses 𝑒 ∈ ℕ such that gcd(𝑒, 𝜑(𝑛)) = 1.
The public key is (𝑛, 𝑒).
She send this key to Bob via e-mail.

Since gcd(𝑒, 𝜑(𝑛)) = 1, ∃𝑑 ∈ ℕ, 𝑒𝑑 ≡ 1 (mod 𝜑(𝑛)).
Alice can easily find such a 𝑑 from a Bézout’s relation using
Euclid’s algorithm: ∃𝑢, 𝑣 ∈ ℤ, 𝑒𝑢 + 𝜑(𝑛)𝑣 = 1.
Then she picks 𝑑 = 𝑢 + 𝑘𝜑(𝑛) for a suitable 𝑘 ∈ ℤ so that 𝑑 > 0.
The private key is (𝑛, 𝑑).
She keeps this key for her and only her.

Note that Alice knows 𝑝 and 𝑞, so she can easily computes 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1).
There is no efficient algorithm to compute 𝜑(𝑛) directly from 𝑛, that’s why it is difficult to recover
the private key from the public key.
If someone finds an efficient prime factorization algorithm then RSA is no longer safe.
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RSA: key generation – 2

Note that 𝑝 and 𝑞 should be wisely chosen.
• They need to be large enough so that we can’t recover them from 𝑛 using our current

computing power.

• But that’s not enough: for instance, 𝛿 = |𝑝 − 𝑞| should be large too.
Indeed, assume that 𝑝 < 𝑞 then 𝑞 = 𝑝 + 𝛿 .
Thus √𝑛 = 𝑝√1 + 𝛿

𝑝 ∼ 𝑝 + 𝛿
2 .

Hence, according to Proposition 3 of Chapter 3, it is enough to check whether each number
less than √𝑛 divides 𝑛, and from the above estimation, 𝑝 could be obtained after less than 𝛿

2
attempts starting from √𝑛.

• They need to satisfy additional properties to avoid known attacks.
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RSA: how to encrypt a message

Bob knows the public key (𝑛, 𝑒).

A message is an element 𝑚 ∈ {0, 1, … , 𝑛 − 1}.
There exists a unique 𝑐 ∈ {0, 1, … , 𝑛 − 1} such that

𝑐 ≡ 𝑚𝑒 (mod 𝑛)

It is the crypted message that Bob sends to Alice.
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RSA: how to decrypt a message

Alice received the secret message 𝑐 from Bob.
She knows her private key (𝑛, 𝑑).

There exists a unique 𝑘 ∈ {0, 1, … , 𝑛 − 1} such that

𝑘 ≡ 𝑐𝑑 (mod 𝑛)

𝑘 is the original message: since 𝑒𝑑 = 1 + 𝑙𝜑(𝑛) for some 𝑙 ∈ ℕ, we obtain using Euler’s theorem that

𝑘 ≡ 𝑐𝑑 (mod 𝑛) ≡ 𝑚𝑒𝑑 (mod 𝑛) = 𝑚1+𝑙𝜑(𝑛) (mod 𝑛) ≡ 𝑚 × (𝑚𝜑(𝑛))
𝑙 (mod 𝑛) ≡ 𝑚 × 1𝑙 (mod 𝑛) ≡ 𝑚 (mod 𝑛)

We conclude since 𝑘 has a unique representative in {0, 1, … , 𝑛 − 1} and 𝑚, 𝑘 ∈ {0, 1, … , 𝑛 − 1}.

The above proof is not (entirely) correct, why? You will fix it in the tutorial questions.
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RSA: en example

Alice picks the prime numbers 𝑝 = 13 and 𝑞 = 17 then 𝑛 = 221 and 𝜑(𝑛) = 12 × 16 = 192.

Then she picks 𝑒 = 11, which is a suitable choice since gcd(192, 11) = 1.

Using Euclid’s algorithm, Alice obtains the Bézout relation 192 × (−2) + 11 × (35) = 1.
Therefore, she sets 𝑑 = 35 so that 𝑒𝑑 ≡ 1 (mod 192).
The public key is (𝑛, 𝑒) = (221, 11).
The private key is (𝑛, 𝑑) = (221, 35).

Later, Bob wants to send the private message 𝑚 = 149 ∈ {0, 1, 2, … , 220} to Alice.
He computes 𝑚𝑒 = 14911 ≡ 89 (mod 221).
So the encrypted message is 𝑐 = 89 ∈ {0, 1, 2, … , 220}.
He sends it to Alice by e-mail.

After receiving the e-mail, Alice computes 𝑐𝑑 = 8935 ≡ 149 (mod 221) to recover the original
message 𝑚 = 149.
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RSA in practice: how to generate the prime numbers 𝑝 and 𝑞?
We usually generate prime numbers as follows (it is a little bit tricky):

1 Generate a random odd number 𝑘 of the wanted order of magnitude
2 Check whether it is prime or not.
3 If not, we repeat (2) with 𝑘 ← 𝑘 + 2.

According to the prime number theorem, for 𝑘 large enough, there are about 𝑘
ln(𝑘) prime numbers less than

or equal to 𝑘, so we could expect a prime number before ln(𝑘)
2 attempts.

Nonetheless, we don’t know efficient algorithms to check whether a number is prime or not.
Instead, we usually use probabilistic primality tests.
For example, we know from Fermat’s little theorem that if 𝑝 is prime then

𝑎𝑝 ≡ 𝑎 (mod 𝑝)
Therefore, since 24221 ≡ 176 (mod 221), we know that 221 is not prime.

But, it is possible for such a congruence to hold even for a non-prime:

2341 ≡ 2 (mod 341)
although 341 = 11 × 31.
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RSA in practice: how to efficiently compute large powers? – 1
In the previous example, 149 and 11 are small but 14911 = 803616698647447868139149 is very large.

First, note that we don’t need 𝑚𝑒 but only need a representative modulo 𝑛,
i.e. given 𝑚, 𝑒, 𝑛 ∈ ℕ, we want to find (the unique) 𝑐 ∈ {0, 1, … , 𝑛 − 1} such that 𝑚𝑒 ≡ 𝑐 (mod 𝑛).
Hence we can iteratively multiply by 𝑐 but reduce to a representative in {0, … , 𝑛} before the next step.

For instance, to compute 14911 (mod 221), we would do:
1 1491 ≡ 149 (mod 221)
2 1492 = 149 × 149 = 22201 ≡ 101 (mod 221)
3 1493 = 101 × 149 = 15049 ≡ 21 (mod 221)
4 1494 = 21 × 149 = 3129 ≡ 35 (mod 221)
5 1495 = 35 × 149 = 5215 ≡ 132 (mod 221)
6 1496 = 132 × 149 = 19668 ≡ 220 (mod 221)
7 1497 = 220 × 149 = 32780 ≡ 72 (mod 221)
8 1498 = 72 × 149 = 10728 ≡ 120 (mod 221)
9 1499 = 120 × 149 = 17880 ≡ 200 (mod 221)
10 14910 = 200 × 149 = 29800 ≡ 186 (mod 221)
11 14911 = 186 × 149 = 27714 ≡ 89 (mod 221)

In this example, the largest number we could have obtained is 149 × 220 = 32780.
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RSA in practice: how to efficiently compute large powers? – 2
We even have more efficient algorithm.

Write the exponent in binary 𝑒 = 𝑎𝑟𝑎𝑟−1 … 𝑎1𝑎0
2 =

𝑟

∑
𝑖=0

𝑎𝑖2𝑖 where 𝑎𝑖 ∈ {0, 1}. Then

𝑚𝑒 = 𝑚∑ 𝑎𝑖2𝑖 =
𝑟

∏
𝑖=0

(𝑚2𝑖

)
𝑎𝑖

So we just need to compute successive squares: 𝑚2𝑖+1 = (𝑚2𝑖

)
2

(actually we only need it modulo 𝑛).
Implementation in Julia:

1 function fastpowmod(m,e,n::Integer)
2 n > 0 || error("n must be positive")
3 e >= 0 || error("e must be non-negative")
4 r = 1
5 while e > 0
6 if (e & 1) > 0
7 r = (r*m)%n
8 end
9 e >>= 1

10 m = (m^2)%n
11 end
12 return r>0 ? r : r+n
13 end

julia> fastpowmod(149,11,221)
89
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Basic implementation of RSA in Julia:
1 using Primes
2
3 struct PublicKey
4 n::Integer
5 e::Integer
6 end
7
8 struct PrivateKey
9 n::Integer

10 d::Integer
11 end
12
13 function gen_keys(p::Integer, q::Integer, e::Integer)
14 isprime(p) || error("p must be a prime number")
15 isprime(q) || error("q must be a prime number")
16 e>0 || error("e must be positive")
17 phi = (p-1)*(q-1)
18 (g,u,v) = gcdx(e,phi)
19 g == 1 || error("phi(n) and e must be coprime")
20 u<0 ? d=(u%phi)+phi : d=u%phi
21 n = p*q
22 return PublicKey(n,e),PrivateKey(n,d)
23 end
24
25 function encrypt(m::Integer, k::PublicKey)
26 0 <= m || error("m must be non-negative")
27 m < k.n || error("m is too large")
28 return powermod(m,k.e,k.n)
29 end
30
31 function decrypt(c::Integer, k::PrivateKey)
32 0 <= c || error("c must be non-negative")
33 c < k.n || error("c is too large")
34 return powermod(c,k.d,k.n)
35 end
36
37 (pbk,pvk) = gen_keys(13,17,11)
38 println("The public key is (n,e)=($(pbk.n),$(pbk.e)), give it to people willing to send you a secret message!")
39 println("The private key is (n,d)=($(pvk.n),$(pvk.d)), don't share it!")
40 m = 149
41 println("Original message: $m")
42 c = encrypt(m, pbk)
43 println("Encrypted message: $c")
44 println("Decrypted message: $(decrypt(c,pvk))")

[mat246@Pavilion mat246]$ julia rsa.j
The public key is (n,e)=(221,11), give it to people willing to send you a secret message!
The private key is (n,d)=(221,35), don't share it!
Original message: 149
Encrypted message: 89
Decrypted message: 149
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