Wilson's theorem \& the Chinese remainder theorem

February $25^{\text {th }}, 2021$

Wilson's theorem - 1

Lemma

Let p be a prime number. Then

$$
\forall a \in \mathbb{Z}, a^{2} \equiv 1(\bmod p) \Longrightarrow(a \equiv-1(\bmod p) \text { or } a \equiv 1(\bmod p))
$$

Wilson's theorem - 1

Lemma

Let p be a prime number. Then

$$
\forall a \in \mathbb{Z}, a^{2} \equiv 1(\bmod p) \Longrightarrow(a \equiv-1(\bmod p) \text { or } a \equiv 1(\bmod p))
$$

Proof.
Let p be a prime number and $a \in \mathbb{Z}$ satisfying $a^{2} \equiv 1(\bmod p)$.
Then $p \mid a^{2}-1=(a-1)(a+1)$.
By Euclid's lemma, either $p \mid a-1$ or $p \mid a+1$, i.e. $a \equiv 1(\bmod p)$ or $a \equiv-1(\bmod p)$.

Wilson's theorem - 2

Wilson's theorem

Let $n \in \mathbb{N} \backslash\{0,1\}$. Then n is prime if and only if $(n-1)!\equiv-1(\bmod n)$.

Wilson's theorem - 2

Wilson's theorem

Let $n \in \mathbb{N} \backslash\{0,1\}$. Then n is prime if and only if $(n-1)!\equiv-1(\bmod n)$.
Proof. Let $n \in \mathbb{N} \backslash\{0,1\}$.

- Assume that n is a composite number.

Then there exists $k \in \mathbb{N}$ such that $k \mid n$ and $1<k<n$.
Assume by contradiction that $(n-1)!\equiv-1(\bmod n)$ then $n \mid(n-1)!+1$ and hence $k \mid(n-1)!+1$.
But $k \mid(n-1)!$, thus $k \mid((n-1)!+1-(n-1)!$, i.e. $k \mid 1$. So $k=1$ which leads to a contradiction.

- Assume that n is prime.

Let $a \in\{1,2, \ldots, n-1\}$ then $\operatorname{gcd}(a, n)=1$.
Hence a admits a multiplicative inverse modulo n :
$\exists b \in\{1,2, \ldots, n-1\}$ such that $a b \equiv 1(\bmod n)$.
Note that this b is unique.
By the above lemma, $a=1$ and $a=n-1$ are the only a as above being their self-multiplicative inverse:
otherwise $b \neq a$.
Thus $(n-1)!=1 \times 2 \times \cdots \times(n-1) \equiv 1 \times(n-1)(\bmod n) \equiv-1(\bmod n)$.
Indeed, in the above product each term simplifies with its multiplicative inverse except 1 and $n-1$.

Wilson's theorem - 3

Wilson's theorem
 Let $n \in \mathbb{N} \backslash\{0,1\}$. Then n is prime if and only if $(n-1)!\equiv-1(\bmod n)$.

Examples

- Take $p=17$ then $(17-1)!+1=20922789888001=17 \times 1230752346353$.
- Take $p=15$ then $(15-1)!+1=87178291201=15 \times 5811886080+1$.

Wilson's theorem - 3

Wilson's theorem
 Let $n \in \mathbb{N} \backslash\{0,1\}$. Then n is prime if and only if $(n-1)!\equiv-1(\bmod n)$.

Examples

- Take $p=17$ then $(17-1)!+1=20922789888001=17 \times 1230752346353$.
- Take $p=15$ then $(15-1)!+1=87178291201=15 \times 5811886080+1$.

Remark

Wilson's theorem is a very inefficient way to check whether a number is prime or not.

The Chinese remainder theorem

The Chinese remainder theorem

Let $n_{1}, n_{2} \in \mathbb{N} \backslash\{0,1\}$ be such that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ and let $a_{1}, a_{2} \in \mathbb{Z}$.
Then there exists $x \in \mathbb{Z}$ satisfying $\left\{\begin{array}{l}x \equiv a_{1}\left(\bmod n_{1}\right) \\ x \equiv a_{2}\left(\bmod n_{2}\right)\end{array}\right.$
Besides, if $x_{1}, x_{2} \in \mathbb{Z}$ are two solutions of the above system then $x_{1} \equiv x_{2}\left(\bmod n_{1} n_{2}\right)$.

The Chinese remainder theorem

The Chinese remainder theorem

Let $n_{1}, n_{2} \in \mathbb{N} \backslash\{0,1\}$ be such that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ and let $a_{1}, a_{2} \in \mathbb{Z}$.
Then there exists $x \in \mathbb{Z}$ satisfying $\left\{\begin{array}{l}x \equiv a_{1}\left(\bmod n_{1}\right) \\ x \equiv a_{2}\left(\bmod n_{2}\right)\end{array}\right.$
Besides, if $x_{1}, x_{2} \in \mathbb{Z}$ are two solutions of the above system then $x_{1} \equiv x_{2}\left(\bmod n_{1} n_{2}\right)$.

Proof.

- Existence. By Bézout's identity, there exist $m_{1}, m_{2} \in \mathbb{Z}$ such that $n_{1} m_{1}+n_{2} m_{2}=1$. Note that $n_{1} m_{1} \equiv 0\left(\bmod n_{1}\right)$ and that $n_{1} m_{1} \equiv n_{1} m_{1}+n_{2} m_{2}\left(\bmod n_{2}\right) \equiv 1\left(\bmod n_{2}\right)$.
Similarly $n_{2} m_{2} \equiv 0\left(\bmod n_{2}\right)$ and $n_{2} m_{2} \equiv 1\left(\bmod n_{1}\right)$.
Thus, if we set $x=a_{2} n_{1} m_{1}+a_{1} n_{2} m_{2}$ then
- $x \equiv a_{2} \times 0+a_{1} \times 1\left(\bmod n_{1}\right) \equiv a_{1}\left(\bmod n_{1}\right)$,
- $x \equiv a_{2} \times 1+a_{1} \times 0\left(\bmod n_{2}\right) \equiv a_{2}\left(\bmod n_{2}\right)$.
- Uniqueness modulo $n_{1} n_{2}$. Let $x_{1}, x_{2} \in \mathbb{Z}$ be two solutions.

Then $x_{1}-x_{2} \equiv 0\left(\bmod n_{1}\right)$ so $x_{1}-x_{2}=k n_{1}$ for some $k \in \mathbb{Z}$.
Similarly $n_{2} \mid x_{1}-x_{2}=k n_{1}$.
Since $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, by Gauss' lemma, $n_{2} \mid k$. So there exists $l \in \mathbb{Z}$ such that $k=n_{2} l$. Thus $x_{1}-x_{2}=\ln _{1} n_{2}$ and therefore $x_{1} \equiv x_{2}\left(\bmod n_{1} n_{2}\right)$.

