MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

WILSON'S THEOREM & THE CHINESE REMAINDER THEOREM

February 25th, 2021

Lemma

Let p be a prime number. Then

$$\forall a \in \mathbb{Z}, a^2 \equiv 1 \pmod{p} \implies (a \equiv -1 \pmod{p} \text{ or } a \equiv 1 \pmod{p})$$

Lemma

Let p be a prime number. Then

$$\forall a \in \mathbb{Z}, a^2 \equiv 1 \pmod{p} \implies (a \equiv -1 \pmod{p}) \text{ or } a \equiv 1 \pmod{p}$$

Proof.

Let *p* be a prime number and $a \in \mathbb{Z}$ satisfying $a^2 \equiv 1 \pmod{p}$. Then $p|a^2 - 1 = (a - 1)(a + 1)$. By Euclid's lemma, either p|a - 1 or p|a + 1, i.e. $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$.

Wilson's theorem

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Then *n* is prime if and only if $(n - 1)! \equiv -1 \pmod{n}$.

Wilson's theorem

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Then *n* is prime if and only if $(n - 1)! \equiv -1 \pmod{n}$.

Proof. Let $n \in \mathbb{N} \setminus \{0, 1\}$.

• Assume that *n* is a composite number.

Then there exists $k \in \mathbb{N}$ such that $k \mid n$ and 1 < k < n.

Assume by contradiction that $(n-1)! \equiv -1 \pmod{n}$ then n|(n-1)! + 1 and hence k|(n-1)! + 1. But k|(n-1)!, thus k|((n-1)! + 1 - (n-1)!), i.e. k|1. So k = 1 which leads to a contradiction.

• Assume that n is prime.

Let $a \in \{1, 2, ..., n - 1\}$ then gcd(a, n) = 1.

Hence *a* admits a multiplicative inverse modulo *n*:

 $\exists b \in \{1, 2, \dots, n-1\}$ such that $ab \equiv 1 \pmod{n}$.

Note that this *b* is unique.

By the above lemma, a = 1 and a = n - 1 are the only *a* as above being their self-multiplicative inverse: otherwise $b \neq a$.

Thus $(n-1)! = 1 \times 2 \times \cdots \times (n-1) \equiv 1 \times (n-1) \pmod{n} \equiv -1 \pmod{n}$.

Indeed, in the above product each term simplifies with its multiplicative inverse except 1 and n - 1.

Wilson's theorem

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Then *n* is prime if and only if $(n - 1)! \equiv -1 \pmod{n}$.

Examples

- Take p = 17 then $(17 1)! + 1 = 20922789888001 = 17 \times 1230752346353$.
- Take p = 15 then $(15 1)! + 1 = 87178291201 = 15 \times 5811886080 + 1$.

Wilson's theorem

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Then *n* is prime if and only if $(n - 1)! \equiv -1 \pmod{n}$.

Examples

- Take p = 17 then $(17 1)! + 1 = 20922789888001 = 17 \times 1230752346353$.
- Take p = 15 then $(15 1)! + 1 = 87178291201 = 15 \times 5811886080 + 1$.

Remark

Wilson's theorem is a very inefficient way to check whether a number is prime or not.

The Chinese remainder theorem

The Chinese remainder theorem

Let $n_1, n_2 \in \mathbb{N} \setminus \{0, 1\}$ be such that $gcd(n_1, n_2) = 1$ and let $a_1, a_2 \in \mathbb{Z}$. Then there exists $x \in \mathbb{Z}$ satisfying $\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \end{cases}$ Besides, if $x_1, x_2 \in \mathbb{Z}$ are two solutions of the above system then $x_1 \equiv x_2 \pmod{n_1 n_2}$.

The Chinese remainder theorem

The Chinese remainder theorem

Let $n_1, n_2 \in \mathbb{N} \setminus \{0, 1\}$ be such that $gcd(n_1, n_2) = 1$ and let $a_1, a_2 \in \mathbb{Z}$. Then there exists $x \in \mathbb{Z}$ satisfying $\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \end{cases}$

Besides, if $x_1, x_2 \in \mathbb{Z}$ are two solutions of the above system then $x_1 \equiv x_2 \pmod{n_1 n_2}$.

Proof.

• *Existence*. By Bézout's identity, there exist $m_1, m_2 \in \mathbb{Z}$ such that $n_1m_1 + n_2m_2 = 1$. Note that $n_1m_1 \equiv 0 \pmod{n_1}$ and that $n_1m_1 \equiv n_1m_1 + n_2m_2 \pmod{n_2} \equiv 1 \pmod{n_2}$. Similarly $n_2m_2 \equiv 0 \pmod{n_2}$ and $n_2m_2 \equiv 1 \pmod{n_1}$. Thus, if we set $x = a_2n_1m_1 + a_1n_2m_2$ then • $x \equiv a_2 \times 0 + a_1 \times 1 \pmod{n_1} \equiv a_1 \pmod{n_1}$, • $x \equiv a_2 \times 1 + a_1 \times 0 \pmod{n_2} \equiv a_2 \pmod{n_2}$. • Uniqueness modulo n_1n_2 . Let $x_1, x_2 \in \mathbb{Z}$ be two solutions. Then $x_1 - x_2 \equiv 0 \pmod{n_1}$ so $x_1 - x_2 = kn_1$ for some $k \in \mathbb{Z}$. Similarly $n_2|x_1 - x_2 = kn_1$. Since $gcd(n_1, n_2) = 1$, by Gauss' lemma, $n_2|k$. So there exists $l \in \mathbb{Z}$ such that $k = n_2 l$. Thus $x_1 - x_2 = ln_1n_2$ and therefore $x_1 \equiv x_2 \pmod{n_1n_2}$.