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Wilson’s theorem – 1

Lemma
Let 𝑝 be a prime number. Then

∀𝑎 ∈ ℤ, 𝑎2 ≡ 1 (mod 𝑝) ⟹ (𝑎 ≡ −1 (mod 𝑝) or 𝑎 ≡ 1 (mod 𝑝))

Proof.
Let 𝑝 be a prime number and 𝑎 ∈ ℤ satisfying 𝑎2 ≡ 1 (mod 𝑝).
Then 𝑝|𝑎2 − 1 = (𝑎 − 1)(𝑎 + 1).
By Euclid’s lemma, either 𝑝|𝑎 − 1 or 𝑝|𝑎 + 1, i.e. 𝑎 ≡ 1 (mod 𝑝) or 𝑎 ≡ −1 (mod 𝑝).

■
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Wilson’s theorem – 2
Wilson’s theorem
Let 𝑛 ∈ ℕ ⧵ {0, 1}. Then 𝑛 is prime if and only if (𝑛 − 1)! ≡ −1 (mod 𝑛).

Proof. Let 𝑛 ∈ ℕ ⧵ {0, 1}.
• Assume that 𝑛 is a composite number.

Then there exists 𝑘 ∈ ℕ such that 𝑘|𝑛 and 1 < 𝑘 < 𝑛.
Assume by contradiction that (𝑛 − 1)! ≡ −1 (mod 𝑛) then 𝑛|(𝑛 − 1)! + 1 and hence 𝑘|(𝑛 − 1)! + 1.
But 𝑘|(𝑛 − 1)!, thus 𝑘|((𝑛 − 1)! + 1 − (𝑛 − 1)!), i.e. 𝑘|1. So 𝑘 = 1 which leads to a contradiction.

• Assume that 𝑛 is prime.
Let 𝑎 ∈ {1, 2, … , 𝑛 − 1} then gcd(𝑎, 𝑛) = 1.
Hence 𝑎 admits a multiplicative inverse modulo 𝑛:
∃𝑏 ∈ {1, 2, … , 𝑛 − 1} such that 𝑎𝑏 ≡ 1 (mod 𝑛).
Note that this 𝑏 is unique.
By the above lemma, 𝑎 = 1 and 𝑎 = 𝑛 − 1 are the only 𝑎 as above being their self-multiplicative inverse:
otherwise 𝑏 ≠ 𝑎.
Thus (𝑛 − 1)! = 1 × 2 × ⋯ × (𝑛 − 1) ≡ 1 × (𝑛 − 1) (mod 𝑛) ≡ −1 (mod 𝑛).
Indeed, in the above product each term simplifies with its multiplicative inverse except 1 and 𝑛 − 1. ■
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Wilson’s theorem – 3
Wilson’s theorem
Let 𝑛 ∈ ℕ ⧵ {0, 1}. Then 𝑛 is prime if and only if (𝑛 − 1)! ≡ −1 (mod 𝑛).

Examples
• Take 𝑝 = 17 then (17 − 1)! + 1 = 20922789888001 = 17 × 1230752346353.
• Take 𝑝 = 15 then (15 − 1)! + 1 = 87178291201 = 15 × 5811886080 + 1.

Remark
Wilson’s theorem is a very inefficient way to check whether a number is prime or not.
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The Chinese remainder theorem
The Chinese remainder theorem
Let 𝑛1, 𝑛2 ∈ ℕ ⧵ {0, 1} be such that gcd(𝑛1, 𝑛2) = 1 and let 𝑎1, 𝑎2 ∈ ℤ.

Then there exists 𝑥 ∈ ℤ satisfying {
𝑥 ≡ 𝑎1 (mod 𝑛1)
𝑥 ≡ 𝑎2 (mod 𝑛2)

Besides, if 𝑥1, 𝑥2 ∈ ℤ are two solutions of the above system then 𝑥1 ≡ 𝑥2 (mod 𝑛1𝑛2).

Proof.
• Existence. By Bézout’s identity, there exist 𝑚1, 𝑚2 ∈ ℤ such that 𝑛1𝑚1 + 𝑛2𝑚2 = 1.

Note that 𝑛1𝑚1 ≡ 0 (mod 𝑛1) and that 𝑛1𝑚1 ≡ 𝑛1𝑚1 + 𝑛2𝑚2 (mod 𝑛2) ≡ 1 (mod 𝑛2).
Similarly 𝑛2𝑚2 ≡ 0 (mod 𝑛2) and 𝑛2𝑚2 ≡ 1 (mod 𝑛1).
Thus, if we set 𝑥 = 𝑎2𝑛1𝑚1 + 𝑎1𝑛2𝑚2 then

• 𝑥 ≡ 𝑎2 × 0 + 𝑎1 × 1 (mod 𝑛1) ≡ 𝑎1 (mod 𝑛1),
• 𝑥 ≡ 𝑎2 × 1 + 𝑎1 × 0 (mod 𝑛2) ≡ 𝑎2 (mod 𝑛2).

• Uniqueness modulo 𝑛1𝑛2. Let 𝑥1, 𝑥2 ∈ ℤ be two solutions.
Then 𝑥1 − 𝑥2 ≡ 0 (mod 𝑛1) so 𝑥1 − 𝑥2 = 𝑘𝑛1 for some 𝑘 ∈ ℤ.
Similarly 𝑛2|𝑥1 − 𝑥2 = 𝑘𝑛1.
Since gcd(𝑛1, 𝑛2) = 1, by Gauss’ lemma, 𝑛2|𝑘. So there exists 𝑙 ∈ ℤ such that 𝑘 = 𝑛2𝑙.
Thus 𝑥1 − 𝑥2 = 𝑙𝑛1𝑛2 and therefore 𝑥1 ≡ 𝑥2 (mod 𝑛1𝑛2). ■
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