MAT246H1-S - LEC0201/9201

Concepts in Abstract Mathematics

WILSON'S THEOREM & THE CHINESE REMAINDER THEOREM

February 25th, 2021

Wilson's theorem – 1

Lemma

Let *p* be a prime number. Then

$$\forall a \in \mathbb{Z}, a^2 \equiv 1 \pmod{p} \implies (a \equiv -1 \pmod{p} \text{ or } a \equiv 1 \pmod{p})$$

Proof.

Let *p* be a prime number and $a \in \mathbb{Z}$ satisfying $a^2 \equiv 1 \pmod{p}$.

Then $p|a^2 - 1 = (a-1)(a+1)$.

By Euclid's lemma, either p|a-1 or p|a+1, i.e. $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$.

Wilson's theorem - 2

Wilson's theorem

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Then n is prime if and only if $(n - 1)! \equiv -1 \pmod{n}$.

Proof. Let $n \in \mathbb{N} \setminus \{0, 1\}$.

Assume that n is a composite number.

Then there exists $k \in \mathbb{N}$ such that $k \mid n$ and 1 < k < n.

Assume by contradiction that $(n-1)! \equiv -1 \pmod{n}$ then $n \mid (n-1)! + 1$ and hence $k \mid (n-1)! + 1$.

But k|(n-1)!, thus k|((n-1)!+1-(n-1)!), i.e. k|1. So k=1 which leads to a contradiction.

Assume that n is prime.

Let $a \in \{1, 2, ..., n-1\}$ then gcd(a, n) = 1.

Hence a admits a multiplicative inverse modulo n:

 $\exists b \in \{1, 2, \dots, n-1\} \text{ such that } ab \equiv 1 \pmod{n}.$

Note that this *b* is unique.

By the above lemma, a = 1 and a = n - 1 are the only a as above being their self-multiplicative inverse: otherwise $b \neq a$.

Thus $(n-1)! = 1 \times 2 \times \cdots \times (n-1) \equiv 1 \times (n-1) \pmod{n} \equiv -1 \pmod{n}$.

Indeed, in the above product each term simplifies with its multiplicative inverse except 1 and n-1.

Wilson's theorem - 3

Wilson's theorem

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Then n is prime if and only if $(n - 1)! \equiv -1 \pmod{n}$.

Examples

- Take p = 17 then $(17 1)! + 1 = 20922789888001 = 17 \times 1230752346353$.
- Take p = 15 then $(15 1)! + 1 = 87178291201 = 15 \times 5811886080 + 1$.

Remark

Wilson's theorem is a very inefficient way to check whether a number is prime or not.

The Chinese remainder theorem

The Chinese remainder theorem

```
Let n_1, n_2 \in \mathbb{N} \setminus \{0, 1\} be such that \gcd(n_1, n_2) = 1 and let a_1, a_2 \in \mathbb{Z}.
Then there exists x \in \mathbb{Z} satisfying  \begin{cases} & x \equiv a_1 \pmod{n_1} \\ & x \equiv a_2 \pmod{n_2} \end{cases}  Besides, if x_1, x_2 \in \mathbb{Z} are two solutions of the above system then x_1 \equiv x_2 \pmod{n_1 n_2}.
```

Proof.

- Existence. By Bézout's identity, there exist $m_1, m_2 \in \mathbb{Z}$ such that $n_1m_1 + n_2m_2 = 1$. Note that $n_1m_1 \equiv 0 \pmod{n_1}$ and that $n_1m_1 \equiv n_1m_1 + n_2m_2 \pmod{n_2} \equiv 1 \pmod{n_2}$. Similarly $n_2m_2 \equiv 0 \pmod{n_2}$ and $n_2m_2 \equiv 1 \pmod{n_1}$. Thus, if we set $x = a_2n_1m_1 + a_1n_2m_2$ then
 - $x \equiv a_2 \times 0 + a_1 \times 1 \pmod{n_1} \equiv a_1 \pmod{n_1}$,
 - $x \equiv a_2 \times 1 + a_1 \times 0 \pmod{n_2} \equiv a_2 \pmod{n_2}$.
- *Uniqueness modulo* n_1n_2 . Let $x_1, x_2 \in \mathbb{Z}$ be two solutions.

Then $x_1 - x_2 \equiv 0 \pmod{n_1}$ so $x_1 - x_2 = kn_1$ for some $k \in \mathbb{Z}$. Similarly $n_2|x_1 - x_2 = kn_1$.

Since $gcd(n_1, n_2) = 1$, by Gauss' lemma, $n_2 | k$. So there exists $l \in \mathbb{Z}$ such that $k = n_2 l$. Thus $x_1 - x_2 = l n_1 n_2$ and therefore $x_1 \equiv x_2 \pmod{n_1 n_2}$.