MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

Fermat's little theorem

February 23rd, 2021

Binomial coefficients

Given $0 \le k \le n$ two natural numbers, we denote by $\binom{n}{k}$ (read as "*n* choose *k*") the number of ways to choose an (unordered) subset of *k* elements from a fixed set of *n* elements.

Remember that it satisfies (proved in class, see the video):

•
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• For $0 \le k < n$, we have $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$ (Pascal's triangle)
• $\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ (Binomial theorem)

Binomial coefficients

Given $0 \le k \le n$ two natural numbers, we denote by $\binom{n}{k}$ (read as "*n* choose *k*") the number of ways to choose an (unordered) subset of *k* elements from a fixed set of *n* elements.

Remember that it satisfies (proved in class, see the video):

•
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• For $0 \le k < n$, we have $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$ (Pascal's triangle)
• $\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ (Binomial theorem)

Lemma

Let *p* be a prime number. Then $\forall k \in \{1, ..., p-1\}, \binom{p}{k} \equiv 0 \pmod{p}$.

Binomial coefficients

Given $0 \le k \le n$ two natural numbers, we denote by $\binom{n}{k}$ (read as "*n* choose *k*") the number of ways to choose an (unordered) subset of *k* elements from a fixed set of *n* elements.

Remember that it satisfies (proved in class, see the video):

•
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• For $0 \le k < n$, we have $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$ (Pascal's triangle)
• $\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ (Binomial theorem)

Lemma

Let *p* be a prime number. Then
$$\forall k \in \{1, \dots, p-1\}, \binom{p}{k} \equiv 0 \pmod{p}$$
.

Proof.

Let
$$k \in \{1, \dots, p-1\}$$
. Then $k \binom{p}{k} = p \binom{p-1}{k-1}$. Hence, $p \mid k \binom{p}{k}$.

Since gcd(p, k) = 1, by Gauss' lemma, we get that $p | {p \choose k}$.

Fermat's little theorem, version 1

Let *p* be a prime number and $a \in \mathbb{Z}$. Then $a^p \equiv a \pmod{p}$.

Fermat's little theorem, version 1

Let *p* be a prime number and $a \in \mathbb{Z}$. Then $a^p \equiv a \pmod{p}$.

Proof. We first prove the theorem for $a \in \mathbb{N}$ by induction.

Base case at a = 0: $0^p = 0 \equiv 0 \pmod{p}$.

Induction step: assume that $a^p \equiv a \pmod{p}$ for some $a \in \mathbb{N}$. Then

 $(a+1)^{p} = \sum_{n=0}^{p} {p \choose n} a^{n} \text{ by the binomial formula}$ $\equiv a^{p} + 1 \pmod{p} \text{ since } p | {p \choose n} \text{ for } 1 \le n \le p-1$ $\equiv a+1 \pmod{p} \text{ by the induction hypothesis}$

Which ends the induction step.

We still need to prove the theorem for a < 0. In this case $-a \in \mathbb{N}$, hence, from the first part of the proof, $(-a)^p \equiv -a \pmod{p}$. Multiplying both sides by $(-1)^p$ we get that $a^p \equiv (-1)^{p+1}a \pmod{p}$. If p = 2 then either $a \equiv 0 \pmod{2}$ or $a \equiv 1 \pmod{2}$, and the statement holds for both cases. Otherwise, p is odd, and hence $(-1)^{p+1} = 1$. Thus $a^p \equiv a \pmod{p}$.

Let *p* be a prime number and $a \in \mathbb{Z}$. If gcd(a, p) = 1 then $a^{p-1} \equiv 1 \pmod{p}$.

Let *p* be a prime number and $a \in \mathbb{Z}$. If gcd(a, p) = 1 then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. By the first version of Fermat's little theorem, $a^p \equiv a \pmod{p}$. Hence $p|a^p - a = a(a^{p-1} - 1)$. Since gcd(a, p) = 1, by Gauss' lemma, $p|a^{p-1} - 1$. Thus $a^{p-1} \equiv 1 \pmod{p}$.

Let *p* be a prime number and $a \in \mathbb{Z}$. If gcd(a, p) = 1 then $a^{p-1} \equiv 1 \pmod{p}$.

```
Proof.
By the first version of Fermat's little theorem, a^p \equiv a \pmod{p}.
Hence p|a^p - a = a(a^{p-1} - 1).
Since gcd(a, p) = 1, by Gauss' lemma, p|a^{p-1} - 1.
Thus a^{p-1} \equiv 1 \pmod{p}.
```

Remark

Note that both versions of Fermat's little theorem are equivalent.