Fermat's little theorem

February $23^{\text {rd }}, 2021$

Binomial coefficients

Given $0 \leq k \leq n$ two natural numbers, we denote by $\binom{n}{k}$ (read as " n choose k ") the number of ways to choose an (unordered) subset of k elements from a fixed set of n elements.

Remember that it satisfies (proved in class, see the video):

- $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
- For $0 \leq k<n$, we have $\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1} \quad$ (Pascal's triangle)
- $\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N},(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \quad$ (Binomial theorem)

Lemma

Let p be a prime number. Then $\forall k \in\{1, \ldots, p-1\},\binom{p}{k} \equiv 0(\bmod p)$.
Proof.
Let $k \in\{1, \ldots, p-1\}$. Then $k\binom{p}{k}=p\binom{p-1}{k-1}$. Hence, $p \left\lvert\, k\binom{p}{k}\right.$.
Since $\operatorname{gcd}(p, k)=1$, by Gauss' lemma, we get that $p \left\lvert\,\binom{ p}{k}\right.$.

Fermat's little theorem, version 1

Fermat's little theorem, version 1

Let p be a prime number and $a \in \mathbb{Z}$. Then $a^{p} \equiv a(\bmod p)$.
Proof. We first prove the theorem for $a \in \mathbb{N}$ by induction.
Base case at $a=0: 0^{p}=0 \equiv 0(\bmod p)$.
Induction step: assume that $a^{p} \equiv a(\bmod p)$ for some $a \in \mathbb{N}$. Then

$$
\begin{aligned}
(a+1)^{p} & =\sum_{n=0}^{p}\binom{p}{n} a^{n} \quad \text { by the binomial formula } \\
& \equiv a^{p}+1(\bmod p) \quad \text { since } p \left\lvert\,\binom{ p}{n}\right. \text { for } 1 \leq n \leq p-1 \\
& \equiv a+1(\bmod p) \quad \text { by the induction hypothesis }
\end{aligned}
$$

Which ends the induction step.
We still need to prove the theorem for $a<0$.
In this case $-a \in \mathbb{N}$, hence, from the first part of the proof, $(-a)^{p} \equiv-a(\bmod p)$.
Multiplying both sides by $(-1)^{p}$ we get that $a^{p} \equiv(-1)^{p+1} a(\bmod p)$.
If $p=2$ then either $a \equiv 0(\bmod 2)$ or $a \equiv 1(\bmod 2)$, and the statement holds for both cases.
Otherwise, p is odd, and hence $(-1)^{p+1}=1$. Thus $a^{p} \equiv a(\bmod p)$.

Fermat's little theorem, version 2

Fermat's little theorem, version 2

Let p be a prime number and $a \in \mathbb{Z}$. If $\operatorname{gcd}(a, p)=1$ then $a^{p-1} \equiv 1(\bmod p)$.
Proof.
By the first version of Fermat's little theorem, $a^{p} \equiv a(\bmod p)$.
Hence $p \mid a^{p}-a=a\left(a^{p-1}-1\right)$.
Since $\operatorname{gcd}(a, p)=1$, by Gauss' lemma, $p \mid a^{p-1}-1$.
Thus $a^{p-1} \equiv 1(\bmod p)$.

Remark

Note that both versions of Fermat's little theorem are equivalent.

