MAT246H1-S - LEC0201/9201

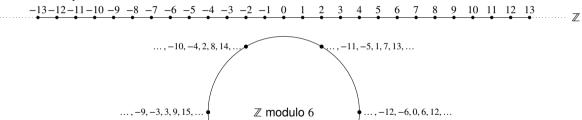
Concepts in Abstract Mathematics

MODULAR ARITHMETIC

February 11th, 2021

Modular arithmetic: introduction

- Introduced by Gauss during the beginning of the 19th century.
- Working modulo $n \in \mathbb{N} \setminus \{0\}$ means that we identify a with its remainder for the Euclidean division by n.
- If a = nq + r where $0 \le r < n$ then we set $a \equiv r \pmod{n}$: a and r are equal modulo n.
- This new layer of abstraction allowed to simplify previous proofs and to prove new theorems.
- Informally, we wind Z on itself as below:



-8 -2 4 10 16

Congruences - 1

Definition: equivalence relation

We say that a binary relation R on a set E is an equivalence relation if

- 1 $\forall x \in E, xRx (reflexivity)$
- 2 $\forall x, y \in E, xRy \implies yRx$ (symmetry)
- 3 $\forall x, y, z \in E$, $(xRy \text{ and } yRz) \implies xRz$ (transitivity)

Congruences – 2

Definition: congruence

Let $n \in \mathbb{N} \setminus \{0\}$ and $a, b \in \mathbb{Z}$.

We say that a and b are congruent modulo n, denoted by $a \equiv b \pmod{n}$, if n|a-b.

Proposition

Congruence modulo n is an equivalence relation on \mathbb{Z} .

Proof.

- Reflexivity. Let $a \in \mathbb{Z}$ then n|0 = a a. Hence $a \equiv a \pmod{n}$.
- Symmetry. Let $a, b \in \mathbb{Z}$ be such that $a \equiv b \pmod{n}$. Then n|b-a=-(a-b) hence $b \equiv a \pmod{n}$.
- Transitivity. Let $a, b, c \in \mathbb{Z}$ be such that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Then n|a-b and n|b-c. Hence n|a-c=(a-b)+(b-c). Thus $a \equiv c \pmod{n}$.

Congruences - 3

Proposition

Let $n \in \mathbb{N} \setminus \{0\}$ and $a, b \in \mathbb{Z}$.

Then $a \equiv b \pmod{n}$ if and only if a and b have same remainder for the Euclidean division by n.

Proof.

 \Rightarrow . Assume that $a \equiv b \pmod{n}$, then b - a = kn for some $k \in \mathbb{Z}$.

By Euclidean division, a = nq + r for $q, r \in \mathbb{Z}$ satisfying $0 \le r < n$.

Hence b = a + kn = nq + r + kn = (q + k)n + r.

 \Leftarrow . Assume that a and b have same remainder for the Euclidean division by n.

Then $a = nq_1 + r$ and $b = nq_2 + r$ where $q_1, q_2, r \in \mathbb{Z}$ with $0 \le r < n$.

Hence $a - b = nq_1 + r - (nq_2 + r) = n(q_1 - q_2)$.

Thus n|a-b, i.e. $a \equiv b \pmod{n}$.

Corollary

Let $n \in \mathbb{N} \setminus \{0\}$ and $a \in \mathbb{Z}$. Then a is congruent modulo n to exactly one element of $\{0, 1, \dots, n-1\}$.

Modular arithmetic

Proposition: addition and multiplication are well-defined modulo n

Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N} \setminus \{0\}$. Assume that $a \equiv b \pmod{n}$ and that $c \equiv d \pmod{n}$ then

- $a + c \equiv b + d \pmod{n}$
- $ac \equiv bd \pmod{n}$

Proof. Let $a,b,c,d\in\mathbb{Z}$ and $n\in\mathbb{N}\setminus\{0\}$. Assume that $a\equiv b\pmod n$ and that $c\equiv d\pmod n$. Hence a-b=nk and c-d=nl for some $k,l\in\mathbb{Z}$. Then

- (a+c)-(b+d)=(a-b)+(c-d)=nk+nl=n(k+l), hence $a+c\equiv b+d \pmod n$.
- $ac bd = (b + nk)(d + nl) bd = bnl + dnk + n^2kl = n(bl + dk + nkl)$, hence $ac \equiv bd \pmod{n}$.

Corollary

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N} \setminus \{0\}$. Then $\forall k \in \mathbb{N}$, $a \equiv b \pmod{n} \implies a^k \equiv b^k \pmod{n}$.

Proof. We prove the statement by induction on k.

Base case at k = 0: $a^0 = b^0 = 1$ hence $a^0 \equiv b^0 \pmod{n}$.

Induction step: assume that $a \equiv b \pmod{n} \implies a^k \equiv b^k \pmod{n}$ for some $k \in \mathbb{N}$.

If $a \equiv b \pmod{n}$ then by the IH we also have $a^k \equiv b^k \pmod{n}$. Hence $a^k a \equiv b^k b \pmod{n}$.

Modular multiplicative inverse

Proposition

Let $a \in \mathbb{Z}$ and $n \in \mathbb{N} \setminus \{0\}$. Then a has a multiplicative inverse modulo n if and only if $\gcd(a, n) = 1$. Otherwise stated.

$$\exists b \in \mathbb{Z}, ab \equiv 1 \pmod{n} \Leftrightarrow \gcd(a, n) = 1$$

Proof. $\exists b \in \mathbb{Z}$, $ab \equiv 1 \pmod{n} \Leftrightarrow \exists b, c \in \mathbb{Z}$, $ab + nc = 1 \Leftrightarrow \gcd(a, n) = 1$

Remark

When it exists, the multiplicative inverse is unique modulo n.

Indeed, assume that $ab \equiv 1 \pmod{n}$ and $ab' \equiv 1 \pmod{n}$ then $ab \equiv ab' \pmod{n}$ so n|a(b-b').

Since gcd(a, n) = 1, by Gauss' lemma we get n|b - b'.

Therefore $b' \equiv b \pmod{n}$.

Note that gcd(4, 25) = 1 so 4 has a multiplicative inverse modulo 25.

We may find one representative of the inverse from a Bézout's identity: $4 \times (-6) + 25 \times 1 = 1$.

So $4 \times (-6) \equiv 1 \pmod{25}$.

Application: divisibility criterion for 3

Proposition

$$3|\overline{a_ra_{r-1}\dots a_0}^{10}$$
 if and only if $3|\sum_{k=0}^r a_k$

Proof. Note that $10 \equiv 1 \pmod{3}$, hence

$$\overline{a_r a_{r-1} \dots a_0}^{10} = \sum_{k=0}^r a_k 10^k \equiv \sum_{k=0}^r a_k 1^k \pmod{3} \equiv \sum_{k=0}^r a_k \pmod{3}$$

Thus.

$$3|\overline{a_r a_{r-1} \dots a_0}^{10} \Leftrightarrow \overline{a_r a_{r-1} \dots a_0}^{10} \equiv 0 \pmod{3} \Leftrightarrow \sum_{k=0}^r a_k \equiv 0 \pmod{3} \Leftrightarrow 3|\sum_{k=0}^r a_k|$$

Examples

- 91524 is divisible by 3 since $9 + 1 + 5 + 2 + 4 = 21 = 7 \times 3$ is.
- Let's study whether 8546921469 is a multiple of 3 or not: $3|8546921469 \Leftrightarrow 3|8+5+4+6+9+2+1+4+6+9=54 \Leftrightarrow 3|5+4=9$. But $9=3\times3$, hence 3|8546921469.

Application: divisibility criterion for 9

Note that $10 \equiv 1 \pmod{9}$, hence we have a similar result:

Proposition

$$9|\overline{a_ra_{r-1}\dots a_0}^{10}$$
 if and only if $9|\sum_{k=0}^r a_k$

Application: divisibility criterion for 4

Proposition

 $4|\overline{a_ra_{r-1}\dots a_0}^{10}$ if and only if $4|\overline{a_1a_0}^{10}$.

Proof. Note that $10^2 = 4 \times 25$ hence $10^k \equiv 0 \pmod{4}$ for $k \ge 2$. Hence

$$4|\overline{a_r a_{r-1} \dots a_0}|^{10} \Leftrightarrow \overline{a_r a_{r-1} \dots a_0}|^{10} \equiv 0 \pmod{4}$$

$$\Rightarrow \sum_{r=1}^{r} a_r 10^k \equiv 0 \pmod{4}$$

$$\Leftrightarrow \sum_{k=0}^{\infty} a_k 10^k \equiv 0 \pmod{4}$$

$$\Leftrightarrow a_1 \times 10 + a_0 \equiv 0 \pmod{4}$$

$$\Leftrightarrow \overline{a_1 a_0}^{10} \equiv 0 \pmod{4}$$

$$\Leftrightarrow 4|\overline{a_1a_0}^{10}$$

Example

- 4 ∤ 856987454251100125 since 4 ∤ 25.
- 4|98854558715580 since $4|80 = 4 \times 20$.