Positional numeral system From the appendix of Chapter 4

UNIVERSITY OF

 TORONTOFebruary $9^{\text {th }}, 2021$

Introduction

In our everyday life, we usually use a base ten positional notation (decimal numeral system).
It allows us to write all natural numbers using only 10 digits although \mathbb{N} is infinite.
The idea is that the position of a digit changes its value:

$$
590743=5 \times 10^{5}+9 \times 10^{4}+0 \times 10^{3}+7 \times 10^{2}+4 \times 10^{1}+3 \times 10^{0}
$$

But it is not the only base that we can use:

- Base 2 (binary) and base 16 (hexadecimal) are quite common nowadays in computer sciences.
- The first known positional numeral system is the Babylonian one using a base 60 (sexagesimal), circa 2000BC.
- In our everyday life, we can observe the influence of bases 60 (1 hour is 60 minutes) or 20 (in French 96 is litteraly pronounced $4 \times 20+16$).

Positional numeral system with base $b-1$

Theorem

Let $b \geq 2$ be an natural number. Then any natural number $n \in \mathbb{N}$ admits a unique expression

$$
n=\sum_{k \geq 0} a_{k} b^{k}
$$

where $a_{k} \in\{0,1, \ldots, b-1\}$ and $a_{k}=0$ for all but finitely many $k \geq 0$.
We write ${\overline{a_{r} a_{r-1} \ldots a_{1} a_{0}}}^{b}$ for $\sum_{k=0}^{r} a_{k} b^{k}$.

Positional numeral system with base $b-1$

Theorem

Let $b \geq 2$ be an natural number. Then any natural number $n \in \mathbb{N}$ admits a unique expression

$$
n=\sum_{k \geq 0} a_{k} b^{k}
$$

where $a_{k} \in\{0,1, \ldots, b-1\}$ and $a_{k}=0$ for all but finitely many $k \geq 0$.
We write ${\overline{a_{r} a_{r-1} \ldots a_{1} a_{0}}}^{b}$ for $\sum_{k=0}^{r} a_{k} b^{k}$.
Question 2 of PS1 was about the existence of the binary numeral system (i.e. when $b=2$).

Positional numeral system with base $b-2$

Remark

In order to pass from a base 10 expression to a base b expression, we can perform successive Euclidean divisions by b.

Example: from base 10 to base 2

$$
\begin{aligned}
42 & =2 \times 21+0 \\
& =2 \times(2 \times 10+1)+0 \\
& =2 \times(2 \times(2 \times 5+0)+1)+0 \\
& =2 \times(2 \times(2 \times(2 \times 2+1)+0)+1)+0 \\
& =2 \times(2 \times(2 \times(2 \times(2 \times 1+0)+1)+0)+1)+0 \\
& =1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
\end{aligned}
$$

Hence $\overline{42}^{10}=\overline{101010}^{2}$.

Positional numeral system with base $b-3$

Proof. Existence. Let $b \geq 2$. We are going to prove by strong induction that for $n \geq 0$, there exist $a_{k} \in\{0,1, \ldots, b-1\}$ such that $a_{k}=0$ for all but finitely many $k \geq 0$ and $n=\sum_{k \geq 0} a_{k} b^{k}$.

Positional numeral system with base $b-3$

Proof. Existence. Let $b \geq 2$. We are going to prove by strong induction that for $n \geq 0$, there exist $a_{k} \in\{0,1, \ldots, b-1\}$ such that $a_{k}=0$ for all but finitely many $k \geq 0$ and $n=\sum_{k \geq 0} a_{k} b^{k}$.

- Base case at $n=0: 0=\sum_{k \geq 0} 0 b^{k}$.

Positional numeral system with base $b-3$

Proof. Existence. Let $b \geq 2$. We are going to prove by strong induction that for $n \geq 0$, there exist $a_{k} \in\{0,1, \ldots, b-1\}$ such that $a_{k}=0$ for all but finitely many $k \geq 0$ and $n=\sum_{k \geq 0} a_{k} b^{k}$.

- Base case at $n=0: 0=\sum_{k \geq 0} 0 b^{k}$.
- Induction step. Assume that $0,1, \ldots, n$ admit an expression in base b, for some $n \geq 0$.

Positional numeral system with base $b-3$

Proof. Existence. Let $b \geq 2$. We are going to prove by strong induction that for $n \geq 0$, there exist $a_{k} \in\{0,1, \ldots, b-1\}$ such that $a_{k}=0$ for all but finitely many $k \geq 0$ and $n=\sum_{k \geq 0} a_{k} b^{k}$.

- Base case at $n=0: 0=\sum_{k \geq 0} 0 b^{k}$.
- Induction step. Assume that $0,1, \ldots, n$ admit an expression in base b, for some $n \geq 0$. By Euclidean division, $n+1=b q+r$ where $q, r \in \mathbb{N}$ satisfy $0 \leq r<b$.

Positional numeral system with base $b-3$

Proof. Existence. Let $b \geq 2$. We are going to prove by strong induction that for $n \geq 0$, there exist $a_{k} \in\{0,1, \ldots, b-1\}$ such that $a_{k}=0$ for all but finitely many $k \geq 0$ and $n=\sum_{k \geq 0} a_{k} b^{k}$.

- Base case at $n=0: 0=\sum_{k \geq 0} 0 b^{k}$.
- Induction step. Assume that $0,1, \ldots, n$ admit an expression in base b, for some $n \geq 0$. By Euclidean division, $n+1=b q+r$ where $q, r \in \mathbb{N}$ satisfy $0 \leq r<b$. Note that if $q \neq 0$ then $q<b q \leq b q+r=n+1$. Thus $0 \leq q \leq n$.

Positional numeral system with base $b-3$

Proof. Existence. Let $b \geq 2$. We are going to prove by strong induction that for $n \geq 0$, there exist $a_{k} \in\{0,1, \ldots, b-1\}$ such that $a_{k}=0$ for all but finitely many $k \geq 0$ and $n=\sum_{k \geq 0} a_{k} b^{k}$.

- Base case at $n=0: 0=\sum_{k \geq 0} 0 b^{k}$.
- Induction step. Assume that $0,1, \ldots, n$ admit an expression in base b, for some $n \geq 0$.

By Euclidean division, $n+1=b q+r$ where $q, r \in \mathbb{N}$ satisfy $0 \leq r<b$. Note that if $q \neq 0$ then $q<b q \leq b q+r=n+1$. Thus $0 \leq q \leq n$.
Therefore, by the induction hypothesis,

$$
q=\sum_{k \geq 0} a_{k} b^{k}
$$

where $a_{k} \in\{0,1, \ldots, b-1\}$ and $a_{k}=0$ for all but finitely many $k \geq 0$.

Positional numeral system with base $b-3$

Proof. Existence. Let $b \geq 2$. We are going to prove by strong induction that for $n \geq 0$, there exist $a_{k} \in\{0,1, \ldots, b-1\}$ such that $a_{k}=0$ for all but finitely many $k \geq 0$ and $n=\sum_{k \geq 0} a_{k} b^{k}$.

- Base case at $n=0: 0=\sum_{k \geq 0} 0 b^{k}$.
- Induction step. Assume that $0,1, \ldots, n$ admit an expression in base b, for some $n \geq 0$.

By Euclidean division, $n+1=b q+r$ where $q, r \in \mathbb{N}$ satisfy $0 \leq r<b$.
Note that if $q \neq 0$ then $q<b q \leq b q+r=n+1$. Thus $0 \leq q \leq n$.
Therefore, by the induction hypothesis,

$$
q=\sum_{k \geq 0} a_{k} b^{k}
$$

where $a_{k} \in\{0,1, \ldots, b-1\}$ and $a_{k}=0$ for all but finitely many $k \geq 0$. Hence,

$$
n+1=b q+r=\sum_{k \geq 0} a_{k} b^{k+1}+r b^{0}
$$

which ends the induction step.

Positional numeral system with base $b-3$

Proof. Uniqueness.

Positional numeral system with base $b-3$

Proof. Uniqueness.

Assume that $\sum_{k \geq 0} a_{k} b^{k}=\sum_{k \geq 0} a_{k}^{\prime} b^{k}$ where $a_{k}, a_{k}^{\prime} \in\{0,1, \ldots, b-1\}$ are zero for all but finitely many.

Positional numeral system with base $b-3$

Proof. Uniqueness.

Assume that $\sum_{k \geq 0} a_{k} b^{k}=\sum_{k \geq 0} a_{k}^{\prime} b^{k}$ where $a_{k}, a_{k}^{\prime} \in\{0,1, \ldots, b-1\}$ are zero for all but finitely many.
Assume by contradiction there exists $k \geq 0$ such that $a_{k} \neq a_{k}^{\prime}$.

Positional numeral system with base $b-3$

Proof. Uniqueness.

Assume that $\sum_{k \geq 0} a_{k} b^{k}=\sum_{k \geq 0} a_{k}^{\prime} b^{k}$ where $a_{k}, a_{k}^{\prime} \in\{0,1, \ldots, b-1\}$ are zero for all but finitely many.
Assume by contradiction there exists $k \geq 0$ such that $a_{k} \neq a_{k}^{\prime}$.
Since $\left\{k \in \mathbb{N}: a_{k} \neq a_{k}^{\prime}\right\}$ is finite and non-empty, it admits a greatest element ℓ.

Positional numeral system with base $b-3$

Proof. Uniqueness.

Assume that $\sum_{k \geq 0} a_{k} b^{k}=\sum_{k \geq 0} a_{k}^{\prime} b^{k}$ where $a_{k}, a_{k}^{\prime} \in\{0,1, \ldots, b-1\}$ are zero for all but finitely many.
Assume by contradiction there exists $k \geq 0$ such that $a_{k} \neq a_{k}^{\prime}$.
Since $\left\{k \in \mathbb{N}: a_{k} \neq a_{k}^{\prime}\right\}$ is finite and non-empty, it admits a greatest element ℓ.
WLOG, we may assume that $a_{\ell}<a_{\ell}^{\prime}$. Then

$$
0=\sum_{k \geq 0} a_{k} b^{k}-\sum_{k \geq 0} a_{k}^{\prime} b^{k}=\sum_{k \geq 0}\left(a_{k}-a_{k}^{\prime}\right) b^{k}=\sum_{k=0}^{\ell}\left(a_{k}-a_{k}^{\prime}\right) b^{k}
$$

Positional numeral system with base $b-3$

Proof. Uniqueness.

Assume that $\sum_{k \geq 0} a_{k} b^{k}=\sum_{k \geq 0} a_{k}^{\prime} b^{k}$ where $a_{k}, a_{k}^{\prime} \in\{0,1, \ldots, b-1\}$ are zero for all but finitely many.
Assume by contradiction there exists $k \geq 0$ such that $a_{k} \neq a_{k}^{\prime}$.
Since $\left\{k \in \mathbb{N}: a_{k} \neq a_{k}^{\prime}\right\}$ is finite and non-empty, it admits a greatest element ℓ.
WLOG, we may assume that $a_{\ell}<a_{\ell}^{\prime}$. Then

$$
0=\sum_{k \geq 0} a_{k} b^{k}-\sum_{k \geq 0} a_{k}^{\prime} b^{k}=\sum_{k \geq 0}\left(a_{k}-a_{k}^{\prime}\right) b^{k}=\sum_{k=0}^{\ell}\left(a_{k}-a_{k}^{\prime}\right) b^{k}
$$

So that

$$
\left(a_{\ell}^{\prime}-a_{\ell}\right) b^{\ell}=\sum_{k=0}^{\ell-1}\left(a_{k}-a_{k}^{\prime}\right) b^{k}
$$

Positional numeral system with base $b-3$

Proof. Uniqueness.

Assume that $\sum_{k \geq 0} a_{k} b^{k}=\sum_{k \geq 0} a_{k}^{\prime} b^{k}$ where $a_{k}, a_{k}^{\prime} \in\{0,1, \ldots, b-1\}$ are zero for all but finitely many.
Assume by contradiction there exists $k \geq 0$ such that $a_{k} \neq a_{k}^{\prime}$.
Since $\left\{k \in \mathbb{N}: a_{k} \neq a_{k}^{\prime}\right\}$ is finite and non-empty, it admits a greatest element ℓ.
WLOG, we may assume that $a_{\ell}<a_{\ell}^{\prime}$. Then

$$
0=\sum_{k \geq 0} a_{k} b^{k}-\sum_{k \geq 0} a_{k}^{\prime} b^{k}=\sum_{k \geq 0}\left(a_{k}-a_{k}^{\prime}\right) b^{k}=\sum_{k=0}^{\ell}\left(a_{k}-a_{k}^{\prime}\right) b^{k}
$$

So that

$$
\left(a_{\ell}^{\prime}-a_{\ell}\right) b^{\ell}=\sum_{k=0}^{\ell-1}\left(a_{k}-a_{k}^{\prime}\right) b^{k}
$$

Therefore $\quad\left(a_{\ell}^{\prime}-a_{\ell}\right) b^{\ell} \leq \sum_{k=0}^{\ell-1}\left|a_{k}-a_{k}^{\prime}\right| b^{k} \leq \sum_{k=0}^{\ell-1}(b-1) b^{k}=b^{\ell}-1<b^{\ell} \leq\left(a_{\ell}^{\prime}-a_{\ell}\right) b^{\ell}$
Hence a contradiction.

Babylonian cuneiform numerals（circa 2000BC）

The first known positional numeral system is the Babylonian one（circa 2000BC）whose base is 60 and whose digits are：

10	4
11	$4 T$
12	$4 T$
13	411
14	4\％
15	$4{ }^{\text {F }}$
16	4䨿
17	4 ${ }^{\text {W }}$
18	4 $\frac{4}{4}$
19	4㗊

20	4
21	$4{ }_{4}^{4}$
22	44
23	4 TII
24	$4{ }^{4}$
25	4FITH
26	4䨿
27	4产
28	4呂
29	4采

30	4
31	HTY
32	
33	4 MIII
34	H2F
35	44F
36	4世皆
37	4彆
38	4㯲
39	世喿

40	Q
41	QT
42	Q
43	Q
44	Q
45	Q ${ }^{\text {FF}}$
46	会削
47	國
48	會
49	会無

50	ct
51	cir
52	边 11
53	ci 111
54	碞
55	c
56	边而
57	2
58	边
59	成亚

Babylonian cuneiform numerals（circa 2000BC）

The first known positional numeral system is the Babylonian one（circa 2000BC）whose base is 60 and whose digits are：

0	10	4	20	4	30	4	40	Q	50	\％
1 Y	11	4	21	$4{ }_{4}$	31	\＃4	41	－$\chi^{(1)}$	51	企厂
2 II	12	4π	22	4π	32	4＜1T	42	\＆${ }^{\text {a }}$	52	8
3 II	13	41 T	23	4117	33	\＃4171］	43	（1II	53	边
4	14	4%	24	4	34	\＃	44	（\％）	54	8
5 FIT	15	4 4	25	$4{ }^{4} \mathrm{~F}$	35	$4{ }^{4}$	45	Q WF $^{\text {F }}$	55	为
6 所	16	4	26	4 4 型	36	\＃4．fif	46	（2FIF	56	为平
7 断	17	4 4	27	4 4 \＃	37	44\％	47	既	57	夈严
8 橆	18	4無	28	4 4 年	38	44\％	48	晾	58	迷
9 所	19	4	29		39	4迷算	49	婦	59	处

We want to write 13655 using Babylonian cuneiform numerals．
We perform successive Euclidean divisions by 60 as follows：
$13655=60 \times 227+35=60 \times(60 \times 3+47)+35=3 \times 60^{2}+47 \times 60^{1}+35 \times 60^{0}$ ．
Hence it was written：III \＆

YBC 7289, clay tablet, between 1800BC and 1600BC.

Original picture from https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg

YBC 7289, clay tablet, between 1800BC and 1600BC.

Original picture from https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg

YBC 7289, clay tablet, between 1800BC and 1600BC.

It shows (extremely accurate) approximations of

$$
\sqrt{2} \simeq 1+\frac{24}{60}+\frac{51}{60^{2}}+\frac{10}{60^{3}}
$$

and of

$$
30 \sqrt{2} \simeq 42+\frac{25}{60}+\frac{35}{60^{2}}
$$

(diagonal of the square of side length 30 , see the above de square)

[^0]
[^0]: Original picture from https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg

