MAT246H1-S - LEC0201/9201

Concepts in Abstract Mathematics

Positional numeral system From the appendix of Chapter 4

February 9th, 2021

Introduction

In our everyday life, we usually use a base ten positional notation (decimal numeral system).

It allows us to write all natural numbers using only 10 digits although $\mathbb N$ is infinite. The idea is that the position of a digit changes its value:

$$590743 = 5 \times 10^5 + 9 \times 10^4 + 0 \times 10^3 + 7 \times 10^2 + 4 \times 10^1 + 3 \times 10^0$$

But it is not the only base that we can use:

- Base 2 (binary) and base 16 (hexadecimal) are quite common nowadays in computer sciences.
- The first known positional numeral system is the Babylonian one using a base 60 (sexagesimal), circa 2000BC.
- In our everyday life, we can observe the influence of bases 60 (1 hour is 60 minutes) or 20 (in French 96 is litterally pronounced $4 \times 20 + 16$).

Theorem

Let $b \ge 2$ be an natural number. Then any natural number $n \in \mathbb{N}$ admits a unique expression

$$n = \sum_{k \ge 0} a_k b^k$$

where $a_k \in \{0, 1, ..., b-1\}$ and $a_k = 0$ for all but finitely many $k \ge 0$.

We write $\overline{a_r a_{r-1} \dots a_1 a_0}^b$ for $\sum_{k=0}^r a_k b^k$.

Theorem

Let $b \ge 2$ be an natural number. Then any natural number $n \in \mathbb{N}$ admits a unique expression

$$n = \sum_{k \ge 0} a_k b^k$$

where $a_k \in \{0, 1, \dots, b-1\}$ and $a_k = 0$ for all but finitely many $k \ge 0$.

We write $\overline{a_r a_{r-1} \dots a_1 a_0}^b$ for $\sum_{k=0}^r a_k b^k$.

Question 2 of PS1 was about the existence of the binary numeral system (i.e. when b = 2).

Remark

In order to pass from a base 10 expression to a base b expression, we can perform successive Euclidean divisions by b.

Example: from base 10 to base 2

$$42 = 2 \times 21 + 0$$

$$= 2 \times (2 \times 10 + 1) + 0$$

$$= 2 \times (2 \times (2 \times 5 + 0) + 1) + 0$$

$$= 2 \times (2 \times (2 \times (2 \times 2 + 1) + 0) + 1) + 0$$

$$= 2 \times (2 \times (2 \times (2 \times (2 \times 1 + 0) + 1) + 0) + 1) + 0$$

$$= 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

Hence
$$\overline{42}^{10} = \overline{101010}^2$$
.

Proof. **Existence.** Let $b \ge 2$. We are going to prove by strong induction that for $n \ge 0$, there exist $a_k \in \{0, 1, \dots, b-1\}$ such that $a_k = 0$ for all but finitely many $k \ge 0$ and $n = \sum_{k \ge 0} a_k b^k$.

Proof. **Existence.** Let $b \ge 2$. We are going to prove by strong induction that for $n \ge 0$, there exist $a_k \in \{0, 1, \dots, b-1\}$ such that $a_k = 0$ for all but finitely many $k \ge 0$ and $n = \sum_{k \ge 0} a_k b^k$.

• Base case at n = 0: $0 = \sum_{k>0} 0b^k$.

Proof. **Existence.** Let $b \ge 2$. We are going to prove by strong induction that for $n \ge 0$, there exist $a_k \in \{0, 1, \dots, b-1\}$ such that $a_k = 0$ for all but finitely many $k \ge 0$ and $n = \sum_{k \ge 0} a_k b^k$.

- Base case at n = 0: $0 = \sum_{k>0} 0b^k$.
- Induction step. Assume that $0, 1, \dots, n$ admit an expression in base b, for some $n \ge 0$.

Proof. **Existence.** Let $b \ge 2$. We are going to prove by strong induction that for $n \ge 0$, there exist $a_k \in \{0, 1, \dots, b-1\}$ such that $a_k = 0$ for all but finitely many $k \ge 0$ and $n = \sum_{k \ge 0} a_k b^k$.

- Base case at n = 0: $0 = \sum_{k>0} 0b^k$.
- Induction step. Assume that 0, 1, ..., n admit an expression in base b, for some $n \ge 0$. By Euclidean division, n + 1 = bq + r where $q, r \in \mathbb{N}$ satisfy $0 \le r < b$.

Proof. **Existence.** Let $b \ge 2$. We are going to prove by strong induction that for $n \ge 0$, there exist $a_k \in \{0, 1, \dots, b-1\}$ such that $a_k = 0$ for all but finitely many $k \ge 0$ and $n = \sum_{k > 0} a_k b^k$.

- Base case at n = 0: $0 = \sum_{k>0} 0b^k$.
- Induction step. Assume that $0, 1, \ldots, n$ admit an expression in base b, for some $n \ge 0$. By Euclidean division, n+1=bq+r where $q,r \in \mathbb{N}$ satisfy $0 \le r < b$. Note that if $q \ne 0$ then $q < bq \le bq+r = n+1$. Thus $0 \le q \le n$.

Proof. **Existence.** Let $b \ge 2$. We are going to prove by strong induction that for $n \ge 0$, there exist $a_k \in \{0, 1, \dots, b-1\}$ such that $a_k = 0$ for all but finitely many $k \ge 0$ and $n = \sum_{k \ge 0} a_k b^k$.

- Base case at n = 0: $0 = \sum_{k>0} 0b^k$.
- Induction step. Assume that $0, 1, \ldots, n$ admit an expression in base b, for some $n \ge 0$. By Euclidean division, n+1=bq+r where $q,r \in \mathbb{N}$ satisfy $0 \le r < b$. Note that if $q \ne 0$ then $q < bq \le bq+r = n+1$. Thus $0 \le q \le n$. Therefore, by the induction hypothesis,

$$q = \sum_{k>0} a_k b^k$$

where $a_k \in \{0, 1, \dots, b-1\}$ and $a_k = 0$ for all but finitely many $k \ge 0$.

Proof. **Existence.** Let $b \ge 2$. We are going to prove by strong induction that for $n \ge 0$, there exist $a_k \in \{0, 1, \dots, b-1\}$ such that $a_k = 0$ for all but finitely many $k \ge 0$ and $n = \sum_{k \ge 0} a_k b^k$.

- Base case at n = 0: $0 = \sum_{k \ge 0} 0b^k$.
- Induction step. Assume that $0, 1, \ldots, n$ admit an expression in base b, for some $n \ge 0$. By Euclidean division, n+1=bq+r where $q,r \in \mathbb{N}$ satisfy $0 \le r < b$. Note that if $q \ne 0$ then $q < bq \le bq+r = n+1$. Thus $0 \le q \le n$. Therefore, by the induction hypothesis,

$$q = \sum_{k>0} a_k b^k$$

where $a_k \in \{0, 1, \dots, b-1\}$ and $a_k = 0$ for all but finitely many $k \ge 0$. Hence.

$$n+1 = bq + r = \sum_{k \ge 0} a_k b^{k+1} + rb^0$$

which ends the induction step.

Proof. Uniqueness.

Proof. Uniqueness.

Assume that
$$\sum_{k>0} a_k b^k = \sum_{k>0} a_k' b^k$$
 where $a_k, a_k' \in \{0, 1, ..., b-1\}$ are zero for all but finitely many.

Proof. Uniqueness.

Assume that $\sum_{k\geq 0} a_k b^k = \sum_{k\geq 0} a_k' b^k$ where $a_k, a_k' \in \{0, 1, \dots, b-1\}$ are zero for all but finitely many.

Assume by contradiction there exists $k \ge 0$ such that $a_k \ne a'_k$.

Proof. Uniqueness.

Assume that $\sum_{k\geq 0} a_k b^k = \sum_{k\geq 0} a_k' b^k$ where $a_k, a_k' \in \{0, 1, \dots, b-1\}$ are zero for all but finitely many.

Assume by contradiction there exists $k \ge 0$ such that $a_k \ne a'_k$.

Since $\{k \in \mathbb{N} : a_k \neq a'_k\}$ is finite and non-empty, it admits a greatest element ℓ .

Proof. Uniqueness.

Assume that $\sum_{k\geq 0} a_k b^k = \sum_{k\geq 0} a_k' b^k$ where $a_k, a_k' \in \{0,1,\dots,b-1\}$ are zero for all but finitely many.

Assume by contradiction there exists $k \ge 0$ such that $a_k \ne a'_k$.

Since $\{k \in \mathbb{N} : a_k \neq a'_k\}$ is finite and non-empty, it admits a greatest element ℓ .

WLOG, we may assume that $a_{\ell} < a_{\ell}'$. Then

$$0 = \sum_{k \ge 0} a_k b^k - \sum_{k \ge 0} a'_k b^k = \sum_{k \ge 0} (a_k - a'_k) b^k = \sum_{k = 0}^{r} (a_k - a'_k) b^k$$

Proof. Uniqueness.

Assume that $\sum_{k\geq 0} a_k b^k = \sum_{k\geq 0} a_k' b^k$ where $a_k, a_k' \in \{0,1,\dots,b-1\}$ are zero for all but finitely many.

Assume by contradiction there exists $k \ge 0$ such that $a_k \ne a'_k$.

Since $\{k \in \mathbb{N} : a_k \neq a'_k\}$ is finite and non-empty, it admits a greatest element ℓ .

WLOG, we may assume that $a_{\ell} < a_{\ell}'$. Then

$$0 = \sum_{k \ge 0} a_k b^k - \sum_{k \ge 0} a'_k b^k = \sum_{k \ge 0} (a_k - a'_k) b^k = \sum_{k = 0}^{\ell} (a_k - a'_k) b^k$$

So that

$$(a'_{\ell} - a_{\ell})b^{\ell} = \sum_{k=0}^{\ell-1} (a_k - a'_k)b^k$$

Proof. Uniqueness.

Assume that $\sum_{k\geq 0} a_k b^k = \sum_{k\geq 0} a_k' b^k$ where $a_k, a_k' \in \{0, 1, \dots, b-1\}$ are zero for all but finitely many.

Assume by contradiction there exists $k \ge 0$ such that $a_k \ne a'_k$.

Since $\{k \in \mathbb{N} : a_k \neq a_k'\}$ is finite and non-empty, it admits a greatest element ℓ .

WLOG, we may assume that $a_{\ell} < a_{\ell}'$. Then

$$0 = \sum_{k \ge 0} a_k b^k - \sum_{k \ge 0} a'_k b^k = \sum_{k \ge 0} (a_k - a'_k) b^k = \sum_{k = 0}^{\ell} (a_k - a'_k) b^k$$

So that

$$(a'_{\ell} - a_{\ell})b^{\ell} = \sum_{k=0}^{\ell-1} (a_k - a'_k)b^k$$

Therefore
$$(a'_{\ell} - a_{\ell})b^{\ell} \leq \sum_{k=0}^{\ell-1} |a_k - a'_k|b^k \leq \sum_{k=0}^{\ell-1} (b-1)b^k = b^{\ell} - 1 < b^{\ell} \leq (a'_{\ell} - a_{\ell})b^{\ell}$$

Hence a contradiction.

Babylonian cuneiform numerals (circa 2000BC)

The first known positional numeral system is the Babylonian one (circa 2000BC) whose base is 60 and whose digits are:

0 _	10	4	20	44	30	444	40	4	50	\$
1 <u>[</u>	11	41	21	44	31	44	41	ÆΥ	51	& T
2 [12	$\prec \parallel$	22	44)T	32	444 TT	42	ATT	52	& TT
3 M	13	A M	23	44 M	33	44 M	43	Æ∭	53	₽ M
4 🕎	14	1 pm	24	44	34	444	44	& PT	54	\$ P
5 \mathred{\Pi}	15	▲無	25	44 W	35	W W	45	A.W	55	全 ₩
6 ∰	16	▲無	26	を選	36	₩ ₩	46	桑 翀	56	多里
7 💆	17	✓₩	27	₩ ₩	37	₩₩ ₩	47	季	57	令無
8 ∰	18	₹	28	₩	38	₩₩	48	₩	58	◆₩
9 #	19	▲無	29	₩	39	**#	49	₩\$	59	安排

Babylonian cuneiform numerals (circa 2000BC)

The first known positional numeral system is the Babylonian one (circa 2000BC) whose base is 60 and whose digits are:

0 _	10 کی	20 🚜	30 🕊	40	Æ.	50	\$
1 [11 🏋	21 4	31 🐠	41	&T	51	& T
2 1	12 ≺∭	22 ⋘∭	32 ///	42	&M	52	& TT
3 ∭	13 ≺∭	23 ≪∭	33 ₩∭	43	Æ ₩	53	&M
4 🖤	14 ⁴ 9	24	34	44	& PT	54	\$ P
5 ₩	15 ≺₩	25 ≪₩	35 ₩₩	45	W.	55	\$\P\$
6 ∰	16 ⁴∰	26 ≪∰	36 ⋘∰	46	ATT.	56	全事
7 💆	17 4	27 4年	37 ₩₩	47	愛 罗	57	令世
8 ∰	18 ≺∰	28 🏎 ₩	38 ₩₩	48	▲₩	58	◆ ₩ ₩
9 #	19 ≺∰	29 ✓∰	39 ₩∰	49	類を	59	學無

We want to write 13655 using Babylonian cuneiform numerals.

We perform successive Euclidean divisions by 60 as follows:

$$13655 = 60 \times 227 + 35 = 60 \times (60 \times 3 + 47) + 35 = \frac{3}{5} \times 60^{2} + \frac{47}{5} \times 60^{1} + \frac{35}{5} \times 60^{0}.$$

YBC 7289, clay tablet, between 1800BC and 1600BC.

YBC 7289, clay tablet, between 1800BC and 1600BC.

YBC 7289, clay tablet, between 1800BC and 1600BC.

It shows (extremely accurate) approximations of

$$\sqrt{2} \simeq 1 + \frac{24}{60} + \frac{51}{60^2} + \frac{10}{60^3}$$

and of

$$30\sqrt{2} \simeq 42 + \frac{25}{60} + \frac{35}{60^2}$$

(diagonal of the square of side length 30, see the 444 above de square)