MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

POSITIONAL NUMERAL SYSTEM From the appendix of Chapter 4

February 9th, 2021

In our everyday life, we usually use a base ten positional notation (decimal numeral system).

It allows us to write all natural numbers using only 10 digits although $\mathbb N$ is infinite. The idea is that the position of a digit changes its value:

$$590743 = 5 \times 10^5 + 9 \times 10^4 + 0 \times 10^3 + 7 \times 10^2 + 4 \times 10^1 + 3 \times 10^0$$

But it is not the only base that we can use:

- Base 2 (binary) and base 16 (hexadecimal) are quite common nowadays in computer sciences.
- The first known positional numeral system is the Babylonian one using a base 60 (sexagesimal), circa 2000BC.
- In our everyday life, we can observe the influence of bases 60 (1 hour is 60 minutes) or 20 (in French 96 is litterally pronounced $4 \times 20 + 16$).

Theorem

Let $b \ge 2$ be an natural number. Then any natural number $n \in \mathbb{N}$ admits a unique expression

$$n = \sum_{k \ge 0} a_k b^k$$

where
$$a_k \in \{0, 1, \dots, b-1\}$$
 and $a_k = 0$ for all but finitely many $k \ge 0$.

We write
$$\overline{a_r a_{r-1} \dots a_1 a_0}^b$$
 for $\sum_{k=0}^r a_k b^k$.

Question 2 of PS1 was about the existence of the binary numeral system (i.e. when b = 2).

Remark

In order to pass from a base 10 expression to a base *b* expression, we can perform successive Euclidean divisions by *b*.

Example: from base 10 to base 2

 $42 = 2 \times 21 + 0$ = 2 × (2 × 10 + 1) + 0 = 2 × (2 × (2 × 5 + 0) + 1) + 0 = 2 × (2 × (2 × (2 × 2 + 1) + 0) + 1) + 0 = 2 × (2 × (2 × (2 × (2 × 1 + 0) + 1) + 0) + 1) + 0 = 1 × 2⁵ + 0 × 2⁴ + 1 × 2³ + 0 × 2² + 1 × 2¹ + 0 × 2⁰

Hence $\overline{42}^{10} = \overline{101010}^2$.

Positional numeral system with base b - 3

Proof. **Existence.** Let $b \ge 2$. We are going to prove by strong induction that for $n \ge 0$, there exist $a_k \in \{0, 1, ..., b-1\}$ such that $a_k = 0$ for all but finitely many $k \ge 0$ and $n = \sum a_k b^k$.

• Base case at
$$n = 0$$
: $0 = \sum_{k \ge 0} 0b^k$.

• *Induction step.* Assume that 0, 1, ..., n admit an expression in base *b*, for some $n \ge 0$. By Euclidean division, n + 1 = bq + r where $q, r \in \mathbb{N}$ satisfy $0 \le r < b$. Note that if $q \ne 0$ then $q < bq \le bq + r = n + 1$. Thus $0 \le q \le n$. Therefore, by the induction hypothesis,

$$q = \sum_{k \ge 0} a_k b^k$$

where $a_k \in \{0, 1, \dots, b-1\}$ and $a_k = 0$ for all but finitely many $k \ge 0$. Hence,

$$n+1 = bq + r = \sum_{k \ge 0} a_k b^{k+1} + r b^0$$

which ends the induction step.

Positional numeral system with base b - 3

0 1

Proof. Uniqueness. Assume that $\sum_{k>0} a_k b^k = \sum_{k>0} a'_k b^k$ where $a_k, a'_k \in \{0, 1, \dots, b-1\}$ are zero for all but finitely many.

Assume by contradiction there exists $k \ge 0$ such that $a_k \ne a'_k$. Since $\{k \in \mathbb{N} : a_k \neq a'_k\}$ is finite and non-empty, it admits a greatest element ℓ . WLOG, we may assume that $a_{\ell} < a'_{\ell}$. Then £

$$0 = \sum_{k \ge 0} a_k b^k - \sum_{k \ge 0} a'_k b^k = \sum_{k \ge 0} (a_k - a'_k) b^k = \sum_{k=0}^{\circ} (a_k - a'_k) b^k$$

So that

$$(a'_{\ell'} - a_{\ell'})b^{\ell'} = \sum_{k=0}^{\ell-1} (a_k - a'_k)b^k$$

refore
$$(a'_{\ell} - a_{\ell})b^{\ell} \le \sum_{k=0}^{\ell-1} |a_k - a'_k|b^k \le \sum_{k=0}^{\ell-1} (b-1)b^k = b^{\ell} - 1 < b^{\ell} \le (a'_{\ell} - a_{\ell})b^{\ell}$$

0 1

Hence a contradiction.

Babylonian cuneiform numerals (circa 2000BC)

The first known positional numeral system is the Babylonian one (circa 2000BC) whose base is 60 and whose digits are:

0		10	4	20	44	30	444	40	Ŕ	50	æ
1	Ţ	11	٨ľ	21	44 T	31	444 T	41	\$T	51	\$T
2	IT	12	∡∏	22	44]]	32	444 TT	42	\$T	52	¢T
3	m	13	∡∭	23	44 M	33	444 III	43	£∭	53	¢₩
4	Ψ	14	٨Ţ	24	44.97	34	444 9	44	\$Ŧ	54	\$ \$
5	₩	15	×₩	25	を相	35	₩₩	45	£₩	55	�₩
6	Ŧ	16	∡₩	26	₹₹	36	₩ ₩	46	¢₩	56	�₩
7	蕪	17	∡₩	27	₩ ₩	37	₩₩	47	▲鬥	57	全 甲
8	₩	18	∡∰	28		38	₩₩	48	&₩	58	&₩
9	#	19	∡∰	29	₩₩	39	₩₩	49	る推	59	�₩

We want to write 13655 using Babylonian cuneiform numerals. We perform successive Euclidean divisions by 60 as follows: $13655 = 60 \times 227 + 35 = 60 \times (60 \times 3 + 47) + 35 = 3 \times 60^2 + 47 \times 60^1 + 35 \times 60^0$. Hence it was written: If 4 for 4 fo

YBC 7289, clay tablet, between 1800BC and 1600BC.

Original picture from https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg

YBC 7289, clay tablet, between 1800BC and 1600BC.

It shows (extremely accurate) approximations of

$$\sqrt{2} \simeq 1 + \frac{24}{60} + \frac{51}{60^2} + \frac{10}{60^3}$$

and of

$$30\sqrt{2} \simeq 42 + \frac{25}{60} + \frac{35}{60^2}$$

(diagonal of the square of side length 30, see the *444* above de square)

Original picture from https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg