MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

January 28th, 2021

Divisibility – 1

Definition: divisibility

Given $a, b \in \mathbb{Z}$, we write b|a if $\exists k \in \mathbb{Z}$, a = bk.

We say that "a is divisible by b" or "b is divisor of a" or "a is a multiple of b".

Divisibility – 1

Definition: divisibility

Given $a, b \in \mathbb{Z}$, we write b|a if $\exists k \in \mathbb{Z}$, a = bk.

We say that "a is divisible by b" or "b is divisor of a" or "a is a multiple of b".

Divisibility - 1

Definition: divisibility

Given $a, b \in \mathbb{Z}$, we write b|a if $\exists k \in \mathbb{Z}$, a = bk. We say that "a is divisible by b" or "b is divisor of a" or "a is a multiple of b".

,	•	
Evemples		
Examples		

• (-5)|10 • 5 \neq (-11)

Remarks

- When $b \neq 0$, b|a if and only if the remainder of the Euclidean division of a by b is 0.
- Any integer is a divisor of 0, i.e $\forall b \in \mathbb{Z}, b | 0$. Indeed, $0 = b \times 0$.
- Any integer is divisible by 1 and itself, i.e. ∀a ∈ Z, 1|a and a|a. Indeed, a = 1 × a = a × 1.
- The only integer divisible by 0 is 0, i.e. ∀a ∈ Z, 0|a ⇒ a = 0.
 Indeed, then a = 0 × k for some k ∈ Z and hence a = 0.

Proposition

1 $\forall a, b \in \mathbb{Z}$, $(a|b \text{ and } b|a) \implies |a| = |b|$ **2** $\forall a, b, c \in \mathbb{Z}$, $(a|b \text{ and } b|c) \implies a|c$ **3** $\forall a, b, c, d \in \mathbb{Z}$, $(a|b \text{ and } c|d) \implies ac|bd$ **4** $\forall a, b, c, \lambda, \mu \in \mathbb{Z}$, $(a|b \text{ and } a|c) \implies a|(\lambda b + \mu c)$ **5** $\forall a \in \mathbb{Z}$, $a|1 \implies |a| = 1$

Divisibility – 3

Proof.

- **1** $\forall a, b \in \mathbb{Z}, (a|b \text{ and } b|a) \implies |a| = |b|$ Let $a, b \in \mathbb{Z}$ satisfying a|b and b|a. If a = 0 then b = 0 (from 0|b). So we may assume that $a \neq 0$. There exist $k, l \in \mathbb{Z}$ such that b = ak and a = bl. Then a = bl = akl, thus 1 = kl since $a \neq 0$. Therefore, $1 = |1| = |kl| = |k| \times |l|$. Since $|k|, |l| \in \mathbb{N}$, we get that |k| = |l| = 1. Finally, $|a| = |bl| = |b| \times |l| = |b| \times 1 = |b|$.
- **2** $\forall a, b, c \in \mathbb{Z}, (a|b \text{ and } b|c) \implies a|c$ Let $a, b, c \in \mathbb{Z}$ satisfying a|b and b|c. Then b = ak and c = bl for some $k, l \in \mathbb{Z}$. Therefore c = bl = akl, so a|c.
- **3** $\forall a, b, c, d \in \mathbb{Z}$, $(a|b \text{ and } c|d) \implies ac|bd$ Let $a, b, c, d \in \mathbb{Z}$ satisfying a|b and c|d. Then b = ak and d = cl for some $k, l \in \mathbb{Z}$. Therefore bd = ackl, so ac|bd.
- **4** $\forall a, b, c, \lambda, \mu \in \mathbb{Z}, (a|b \text{ and } a|c) \implies a|(\lambda b + \mu c)$ Let $a, b, c \in \mathbb{Z}$ satisfying a|b and a|c. Then b = ka and c = la for some $k, l \in \mathbb{Z}$. Hence $\lambda b + \mu c = \lambda ka + \mu la = (\lambda k + \mu l)a$. Thus $a|(\lambda b + \mu c)$.
- **5** $\forall a \in \mathbb{Z}, a | 1 \implies |a| = 1$ Let $a \in \mathbb{Z}$. Assume that a | 1. Then a | 1 and 1 | a. So by the first item, |a| = 1.

Theorem

Given $a, b \in \mathbb{Z}$ not both zero, the set common divisors of *a* and *b* admits a greatest element denoted gcd(a, b) and called the *greatest common divisor of a and b*.

Theorem

Given $a, b \in \mathbb{Z}$ not both zero, the set common divisors of *a* and *b* admits a greatest element denoted gcd(a, b) and called the *greatest common divisor of a and b*.

Proof. Let $a, b \in \mathbb{Z}$ not both zero. We set $S = \{d \in \mathbb{Z} : d | a \text{ and } d | b\}$.

- *S* is non-empty since it contains 1.
- Without loss of generality, let assume that a ≠ 0.
 Let d ∈ S then a = dk for some k ∈ Z. Note that k ≠ 0 (otherwise a = dk = 0), hence 1 ≤ |k|.
 Thus d ≤ |d| ≤ |d| × |k| = |dk| = |a|.
 Hence S is bounded from above by |a|.

Therefore, *S* admits a greatest element (as an non-empty subset of \mathbb{Z} bounded from above).

Theorem

Given $a, b \in \mathbb{Z}$ not both zero, the set common divisors of *a* and *b* admits a greatest element denoted gcd(a, b) and called the *greatest common divisor of a and b*.

Proof. Let $a, b \in \mathbb{Z}$ not both zero. We set $S = \{d \in \mathbb{Z} : d | a \text{ and } d | b\}$.

- *S* is non-empty since it contains 1.
- Without loss of generality, let assume that a ≠ 0.
 Let d ∈ S then a = dk for some k ∈ Z. Note that k ≠ 0 (otherwise a = dk = 0), hence 1 ≤ |k|.
 Thus d ≤ |d| ≤ |d| × |k| = |dk| = |a|.
 Hence S is bounded from above by |a|.

Therefore, *S* admits a greatest element (as an non-empty subset of \mathbb{Z} bounded from above).

Remark

Note that $gcd(a, b) \ge 1$ since 1 is a common divisor of *a* and *b* (particularly $gcd(a, b) \in \mathbb{N}$).

Given $a, b \in \mathbb{Z}$ not both zero and $d \in \mathbb{N} \setminus \{0\}$, how do we prove that d = gcd(a, b)?

Quite often the strategy is the following:

- **1** Prove: d|a.
- 2 Prove: d|b.
- **3** Prove: $\forall \delta \in \mathbb{N}$, $(\delta | a \text{ and } \delta | b) \implies \delta | d$.

Indeed, then *d* is a common divisor of *a* and *b* by the first two steps. And it is the greatest one by the last step, as we show below. Let $\delta \in \mathbb{Z}$ be a common divisor of *a* and *b*.

- If $\delta \leq 0$ then $\delta \leq d$.
- If $\delta > 0$ then $d = \delta k$ for some $k \in \mathbb{Z}$. Note that $k \ge 1$ since $d, \delta > 0$. Thus $\delta \le \delta k = d$

Theorem: Bézout's identity

Given $a, b \in \mathbb{Z}$ not both zero, there exist $u, v \in \mathbb{Z}$ such that au + bv = gcd(a, b).

Theorem: Bézout's identity

Given $a, b \in \mathbb{Z}$ not both zero, there exist $u, v \in \mathbb{Z}$ such that au + bv = gcd(a, b).

Example

 $gcd(15, 25) = 5 = 15 \times 2 + 25 \times (-1)$

Theorem: Bézout's identity

Given $a, b \in \mathbb{Z}$ not both zero, there exist $u, v \in \mathbb{Z}$ such that au + bv = gcd(a, b).

Example

 $gcd(15, 25) = 5 = 15 \times 2 + 25 \times (-1)$

Remarks

• The couple (*u*, *v*) is not unique:

$$5 = 15 \times 27 + 25 \times (-16)$$

= 15 \times 2 + 25 \times (-1)

The converse is false: 2 = 3 × 4 + 5 × (-2) but gcd(3,5) = 1 ≠ 2.
 Nonetheless, we will see later that there is a partial converse when gcd(a, b) = 1.

Proof of Bézout's identity. Let $a, b \in \mathbb{Z}$ not both zero. We want to show $\exists u, v \in \mathbb{Z}$, $au + bv = \gcd(a, b)$.

• Set $S = \{n \in \mathbb{N} \setminus \{0\} : \exists u, v \in \mathbb{Z}, n = au + bv\}.$

- Set $S = \{n \in \mathbb{N} \setminus \{0\} : \exists u, v \in \mathbb{Z}, n = au + bv\}.$
- Note that |a| + |b| > 0 since at least one is non-zero. Then $|a| + |b| = a \times (\pm 1) + b \times (\pm 1) \in S$. So $S \neq \emptyset$. Thus, by the well-ordering principle, *S* admits a least element *d*. Since $d \in S$, d = au + bv for some $u, v \in \mathbb{Z}$.

- Set $S = \{n \in \mathbb{N} \setminus \{0\} : \exists u, v \in \mathbb{Z}, n = au + bv\}.$
- Note that |a| + |b| > 0 since at least one is non-zero. Then $|a| + |b| = a \times (\pm 1) + b \times (\pm 1) \in S$. So $S \neq \emptyset$. Thus, by the well-ordering principle, *S* admits a least element *d*. Since $d \in S$, d = au + bv for some $u, v \in \mathbb{Z}$.
- Let's prove that $d = \gcd(a, b)$.

- Set $S = \{n \in \mathbb{N} \setminus \{0\} : \exists u, v \in \mathbb{Z}, n = au + bv\}.$
- Note that |a| + |b| > 0 since at least one is non-zero. Then $|a| + |b| = a \times (\pm 1) + b \times (\pm 1) \in S$. So $S \neq \emptyset$. Thus, by the well-ordering principle, *S* admits a least element *d*. Since $d \in S$, d = au + bv for some $u, v \in \mathbb{Z}$.
- Let's prove that $d = \gcd(a, b)$.
 - Euclidean division: ∃q, r ∈ Z such that a = dq + r and 0 ≤ r < |d| = d. Assume by contradiction that r ≠ 0. Then r = a - qd = a - q(au + bv) = a × (1 - qu) + b × (-qv) is in S. Contradiction with d being the least element of S. Hence r = 0 and a = dq, i.e. d|a.

- Set $S = \{n \in \mathbb{N} \setminus \{0\} : \exists u, v \in \mathbb{Z}, n = au + bv\}.$
- Note that |a| + |b| > 0 since at least one is non-zero. Then $|a| + |b| = a \times (\pm 1) + b \times (\pm 1) \in S$. So $S \neq \emptyset$. Thus, by the well-ordering principle, *S* admits a least element *d*. Since $d \in S$, d = au + bv for some $u, v \in \mathbb{Z}$.
- Let's prove that $d = \gcd(a, b)$.
 - Euclidean division: $\exists q, r \in \mathbb{Z}$ such that a = dq + r and $0 \le r < |d| = d$. Assume by contradiction that $r \ne 0$. Then $r = a - qd = a - q(au + bv) = a \times (1 - qu) + b \times (-qv)$ is in *S*. Contradiction with *d* being the least element of *S*. Hence r = 0 and a = dq, i.e. d|a.
 - Similarly *d*|*b*.

Proof of Bézout's identity. Let $a, b \in \mathbb{Z}$ not both zero. We want to show $\exists u, v \in \mathbb{Z}$, $au + bv = \gcd(a, b)$.

- Set $S = \{n \in \mathbb{N} \setminus \{0\} : \exists u, v \in \mathbb{Z}, n = au + bv\}.$
- Note that |a| + |b| > 0 since at least one is non-zero. Then $|a| + |b| = a \times (\pm 1) + b \times (\pm 1) \in S$. So $S \neq \emptyset$. Thus, by the well-ordering principle, *S* admits a least element *d*. Since $d \in S$, d = au + bv for some $u, v \in \mathbb{Z}$.
- Let's prove that $d = \gcd(a, b)$.
 - Euclidean division: ∃q, r ∈ Z such that a = dq + r and 0 ≤ r < |d| = d. Assume by contradiction that r ≠ 0. Then r = a - qd = a - q(au + bv) = a × (1 - qu) + b × (-qv) is in S.

Contradiction with d being the least element of S.

Hence r = 0 and a = dq, i.e. d|a.

- Similarly d|b.
- Let δ ∈ N be another common divisor of a and b. Then there ∃k, l ∈ Z, a = δk, b = δl. Hence d = au + bv = δ(ku + lv). Therefore δ|d.

Proof of Bézout's identity. Let $a, b \in \mathbb{Z}$ not both zero. We want to show $\exists u, v \in \mathbb{Z}$, $au + bv = \gcd(a, b)$.

- Set $S = \{n \in \mathbb{N} \setminus \{0\} : \exists u, v \in \mathbb{Z}, n = au + bv\}.$
- Note that |a| + |b| > 0 since at least one is non-zero. Then $|a| + |b| = a \times (\pm 1) + b \times (\pm 1) \in S$. So $S \neq \emptyset$. Thus, by the well-ordering principle, *S* admits a least element *d*. Since $d \in S$, d = au + bv for some $u, v \in \mathbb{Z}$.
- Let's prove that $d = \gcd(a, b)$.
 - Euclidean division: $\exists q, r \in \mathbb{Z}$ such that a = dq + r and $0 \le r < |d| = d$. Assume by contradiction that $r \ne 0$. Then $r = a - qd = a - q(au + bv) = a \times (1 - qu) + b \times (-qv)$ is in *S*.

Contradiction with d being the least element of S.

Hence r = 0 and a = dq, i.e. d|a.

- Similarly d|b.
- Let δ ∈ N be another common divisor of a and b. Then there ∃k, l ∈ Z, a = δk, b = δl. Hence d = au + bv = δ(ku + lv). Therefore δ|d.
- According to Slide 6, we proved that *d* is the greatest common divisor of *a* and *b*.

Properties of the gcd – 1

Proposition

 $\forall a \in \mathbb{Z} \setminus \{0\}, \ \gcd(a, 0) = |a|$

Properties of the gcd – 1

Proposition

 $\forall a \in \mathbb{Z} \setminus \{0\}, \gcd(a, 0) = |a|$

Proof.

By definition, gcd(a, 0) is the greatest divisor of *a*.

Since $a = |a| \times (\pm 1)$, we know that |a| is a divisor of *a*. We have to check that it is the greatest one.

Let *d* be a non-negative divisor of *a*, then a = dk for some $k \in \mathbb{Z}$.

Since $a \neq 0$, we know that $k \neq 0$.

Hence $1 \le |k|$ from which we get that $d \le d|k| = |d| \times |k| = |dk| = |a|$.

Properties of the gcd - 2

Proposition

Let $a, b \in \mathbb{Z}$ not both zero, then

2
$$gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b)$$

- **3** $\forall \delta \in \mathbb{Z}, (\delta | a \text{ and } \delta | b) \implies \delta | \gcd(a, b)$
- **5** $\forall k \in \mathbb{Z}, \operatorname{gcd}(a + kb, b) = \operatorname{gcd}(a, b)$

Properties of the gcd - 2

Proposition

Let $a, b \in \mathbb{Z}$ not both zero, then

$$\bigcirc \gcd(a,b) = \gcd(b,a)$$

2
$$gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b)$$

- **3** $\forall \delta \in \mathbb{Z}, (\delta | a \text{ and } \delta | b) \implies \delta | \gcd(a, b)$

5 $\forall k \in \mathbb{Z}, \operatorname{gcd}(a + kb, b) = \operatorname{gcd}(a, b)$

Proof.

3 Let $a, b \in \mathbb{Z}$. Let $\delta \in \mathbb{Z}$. Assume that $\delta | a$ and $\delta | b$. By Bézout's theorem, gcd(a, b) = au + bv for some $u, v \in \mathbb{Z}$. Since $\delta | a$ and $\delta | b$, we have that $\delta | au + bv = gcd(a, b)$.

4 Let $a, b \in \mathbb{Z}$ let $\lambda \in \mathbb{Z} \setminus \{0\}$. Since $|\lambda|$ divides λa and λb , then it divides $gcd(\lambda a, \lambda b)$ by the third item. Hence $gcd(\lambda a, \lambda b) = |\lambda| \times d$ for some $d \in \mathbb{Z}$. Let's prove that d = gcd(a, b). Let $n \in \mathbb{Z}$, then $n|a, b \Leftrightarrow |\lambda|n|\lambda a, \lambda b \Leftrightarrow |\lambda|n| gcd(\lambda a, \lambda b) \Leftrightarrow n|d$.

5 Let $a, b, k \in \mathbb{Z}$. gcd(a, b)|a, b hence gcd(a, b)|a + kb. Thus gcd(a, b)|gcd(a + kb, b). Similarly, gcd(a + kb, b)|a + kb, b hence gcd(a + kb, b)|a + kb - kb = a. Thus gcd(a + kb, b)|gcd(a, b). Hence |gcd(a + kb, b)| = |gcd(a, b)|. Since they are both non-negative, we get gcd(a + kb, b) = gcd(a, b).

How to compute the gcd? Euclid's algorithm! -1

```
Result: gcd(a, b) where a, b \in \mathbb{Z} not both zero.

a \leftarrow |a|

b \leftarrow |b|

while b \neq 0 do

\begin{vmatrix} r \leftarrow a\%b \ (the remainder of the Euclidean division \ a = bq + r \ with \ 0 \le r < b) \\ a \leftarrow b

b \leftarrow r

end

return a
```

How to compute the gcd? Euclid's algorithm ! - 1

```
Result: gcd(a, b) where a, b \in \mathbb{Z} not both zero.

a \leftarrow |a|

b \leftarrow |b|

while b \neq 0 do

\begin{vmatrix} r \leftarrow a\%b \ (the remainder of the Euclidean division \ a = bq + r \ with \ 0 \le r < b) \\ a \leftarrow b \\ b \leftarrow r \\ end

return a
```

Why does it work?

- **1** Initialization: gcd(|a|, |b|) = gcd(a, b) so we reduce to the case $a, b \ge 0$.
- **2** Inductive step: gcd(a, b) = gcd(bq + r, b) = gcd(r, b) = gcd(b, r). At the end of the loop, a > 0 and $b \ge 0$ is decreasing since $0 \le b < r$. So b = 0 after finitely many steps.
- **3 Termination:** then gcd(a, b) = gcd(a, 0) = a since a > 0.

How to compute the gcd? Euclid's algorithm ! - 1

```
Result: gcd(a, b) where a, b \in \mathbb{Z} not both zero.

a \leftarrow |a|

b \leftarrow |b|

while b \neq 0 do

\begin{vmatrix} r \leftarrow a\%b \ (the remainder of the Euclidean division \ a = bq + r \ with \ 0 \le r < b) \\ a \leftarrow b

b \leftarrow r

end

return a
```

Why does it work?

- **1** Initialization: gcd(|a|, |b|) = gcd(a, b) so we reduce to the case $a, b \ge 0$.
- **2** Inductive step: gcd(a, b) = gcd(bq + r, b) = gcd(r, b) = gcd(b, r). At the end of the loop, a > 0 and $b \ge 0$ is decreasing since $0 \le b < r$. So b = 0 after finitely many steps.
- **3 Termination:** then gcd(a, b) = gcd(a, 0) = a since a > 0.

See the lecture notes for a version without pseudo-code.

How to compute the gcd? Euclid's algorithm |-2|

We want to compute gcd(600, -136):

Hence gcd(600, -136) = 8.

How to compute the gcd? Euclid's algorithm |-2|

We want to compute gcd(600, -136):

Hence gcd(600, -136) = 8.

Remark

Then it is possible to obtain a suitable Bézout's identity going backward.

$$8 = 56 + 24 \times (-2)$$

$$= 56 + (136 + 56 \times (-2)) \times (-2)$$

$$= 136 \times (-2) + 56 \times 5$$

$$= 136 \times (-2) + (600 + 136 \times (-4)) \times 5$$

$$8 = 600 \times 5 + (-136) \times 22$$

since $8 = 56 - 24 \times 2$
since $24 = 136 - 56 \times 2$

$$= 136 - 56 \times 2$$

since $56 = 600 - 136 \times 4$