MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

EUCLIDEAN DIVISION

January 26th, 2021

Definition: absolute value of an integer

For
$$n \in \mathbb{Z}$$
, we define the *absolute value of* n by $|n| := \begin{cases} n & \text{if } n \in \mathbb{N} \\ -n & \text{if } n \in (-\mathbb{N}) \end{cases}$.

Absolute value – 2

Proposition

- **2** $\forall n \in \mathbb{Z}, n \leq |n|$
- $3 \ \forall n \in \mathbb{Z}, \ |n| = 0 \Leftrightarrow n = 0$
- **5** $\forall a, b \in \mathbb{Z}, |a| \le b \Leftrightarrow -b \le a \le b$

Absolute value – 2

Proposition

- **2** $\forall n \in \mathbb{Z}, n \leq |n|$
- **3** $\forall n \in \mathbb{Z}, |n| = 0 \Leftrightarrow n = 0$
- **5** $\quad \forall a, b \in \mathbb{Z}, \ |a| \le b \Leftrightarrow -b \le a \le b$

Proof.

 If n ∈ N then |n| = n ∈ N. If n ∈ (-N) then n = -m for some m ∈ N and |n| = -n = -(-m) = m ∈ N.

 First case: n ∈ N. Then n ≤ n = |n|. Second case: n ∈ (-N). Then n ≤ 0 ≤ |n|.

 Note that |0| = 0 and that if n ≠ 0 then |n| ≠ 0.

 You have to study separately the four cases depending on the signs of a and b.

 If b < 0 then |a| ≤ b and -b ≤ a ≤ b are both false. So we may assume that b ∈ N. Then *First case:* a ∈ N. Then |a| ≤ b ⇔ a ≤ b ⇔ -b ≤ a ≤ b. *Second case:* a ∈ (-N). Then |a| ≤ b ⇔ -a ≤ b ⇔ -b ≤ a ≤ b.

Theorem: Euclidean division

Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \setminus \{0\}$, there exists a unique couple $(q, r) \in \mathbb{Z}^2$ such that

$$\begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases}$$

The integers q and r are respectively the *quotient* and the *remainder* of the division of a by b.

Theorem: Euclidean division

Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \setminus \{0\}$, there exists a unique couple $(q, r) \in \mathbb{Z}^2$ such that

 $\begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases}$

The integers q and r are respectively the *quotient* and the *remainder* of the division of a by b.

Existence: First case: b > 0. We set $E = \{p \in \mathbb{Z} : bp \le a\}$.

- $E \neq \emptyset$, indeed if $0 \le a$ then $0 \in E$, otherwise $a \in E$.
- |a| is an upper bound of *E* (check it).

Thus *E* is a non-empty subset of \mathbb{Z} which is bounded from above. Hence it admits a greatest element, i.e. there exists $q \in E$ such that $\forall p \in E, p \leq q$. We set r = a - bq. Since $q \in E, r = a - bq \geq 0$. And $q + 1 \notin E$ since q + 1 > q whereas q is the greatest element of *E*. Therefore b(q + 1) > a, so r = a - bq < b = |b|. We wrote a = bq + r with $0 \leq r < |b|$ as expected.

Theorem: Euclidean division

Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \setminus \{0\}$, there exists a unique couple $(q, r) \in \mathbb{Z}^2$ such that

 $\begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases}$

The integers q and r are respectively the *quotient* and the *remainder* of the division of a by b.

Existence:

Second case: assume that b < 0. Then we apply the first case to a and -b > 0: there exists $(q, r) \in \mathbb{Z}^2$ such that a = -bq + r = b(-q) + r with $0 \le r < -b = |b|$.

Theorem: Euclidean division

Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \setminus \{0\}$, there exists a unique couple $(q, r) \in \mathbb{Z}^2$ such that

$$\begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases}$$

The integers q and r are respectively the *quotient* and the *remainder* of the division of a by b.

Uniqueness: Let (q, r) and (q', r') be two suitable couples. Then r' - r = (a - bq') - (a - bq) = b(q - q'). Besides

$$\left\{\begin{array}{cc} 0 \leq r < |b| \\ 0 \leq r' < |b| \end{array} \implies \left\{\begin{array}{c} -|b| < -r \leq 0 \\ 0 \leq r' < |b| \end{array} \implies -|b| < r' - r < |b| \end{array}\right.$$

Thus -|b| < b(q - q') < |b|, from which we get |b||q - q'| = |b(q - q')| < |b|. Since |b| > 0, we obtain $0 \le |q - q'| < 1$. Therefore |q - q'| = 0, which implies that q - q' = 0, i.e. q = q'. Finally, r' = b - aq' = b - aq = r.

Examples

• Division of 22 by 5:

$$22 = 5 \times 4 + 2$$

The quotient is q = 4 and the remainder is r = 2.

• Division of -22 by 5:

$$-22 = 5 \times (-5) + 3$$

The quotient is q = -5 and the remainder is r = 3.

• Division of 22 by -5:

 $22 = (-5) \times (-4) + 2$

The quotient is q = -4 and the remainder is r = 2.

• Division of -22 by -5:

$$-22 = (-5) \times 5 + 3$$

The quotient is q = 5 and the remainder is r = 3.

Proposition: parity of an integer

Given $n \in \mathbb{Z}$, exactly one of the followings occurs:

- either n = 2k for some $k \in \mathbb{Z}$ (then we say that n is even),
- or n = 2k + 1 for some $k \in \mathbb{Z}$ (then we say that *n* is odd).

Proposition: parity of an integer

Given $n \in \mathbb{Z}$, exactly one of the followings occurs:

- either n = 2k for some $k \in \mathbb{Z}$ (then we say that n is even),
- or n = 2k + 1 for some $k \in \mathbb{Z}$ (then we say that *n* is odd).

Proof. Let $n \in \mathbb{Z}$. By Euclidean division by 2, there exist $k, r \in \mathbb{Z}$ such that n = 2k + r and $0 \le r < 2$. Hence either r = 0 or r = 1.

And these cases are exclusive by the uniqueness of the Euclidean division.