Euclidean division

January $26^{\text {th }}, 2021$

Absolute value - 1

Definition: absolute value of an integer

 For $n \in \mathbb{Z}$, we define the absolute value of n by $|n|:=\left\{\begin{array}{cl}n & \text { if } n \in \mathbb{N} \\ -n & \text { if } n \in(-\mathbb{N})\end{array}\right.$.
Absolute value - 2

Proposition

(1) $\forall n \in \mathbb{Z},|n| \in \mathbb{N}$
(2) $\forall n \in \mathbb{Z}, n \leq|n|$
(3) $\forall n \in \mathbb{Z},|n|=0 \Leftrightarrow n=0$
(4) $\forall a, b \in \mathbb{Z},|a b|=|a||b|$
(5) $\forall a, b \in \mathbb{Z},|a| \leq b \Leftrightarrow-b \leq a \leq b$

Proof.

(1) If $n \in \mathbb{N}$ then $|n|=n \in \mathbb{N}$.

If $n \in(-\mathbb{N})$ then $n=-m$ for some $m \in \mathbb{N}$ and $|n|=-n=-(-m)=m \in \mathbb{N}$.
(2) First case: $n \in \mathbb{N}$. Then $n \leq n=|n|$.

Second case: $n \in(-\mathbb{N})$. Then $n \leq 0 \leq|n|$.
(3) Note that $|0|=0$ and that if $n \neq 0$ then $|n| \neq 0$.
4. You have to study separately the four cases depending on the signs of a and b.
(5) If $b<0$ then $|a| \leq b$ and $-b \leq a \leq b$ are both false. So we may assume that $b \in \mathbb{N}$. Then First case: $a \in \mathbb{N}$. Then $|a| \leq b \Leftrightarrow a \leq b \Leftrightarrow-b \leq a \leq b$.
Second case: $a \in(-\mathbb{N})$. Then $|a| \leq b \Leftrightarrow-a \leq b \Leftrightarrow-b \leq a \Leftrightarrow-b \leq a \leq b$.

Euclidean division - 1

Theorem: Euclidean division

Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \backslash\{0\}$, there exists a unique couple $(q, r) \in \mathbb{Z}^{2}$ such that

$$
\left\{\begin{array}{l}
a=b q+r \\
0 \leq r<|b|
\end{array}\right.
$$

The integers q and r are respectively the quotient and the remainder of the division of a by b.

The proof doesn't appear in the handout: see either the slides or the lecture notes.

Euclidean division - 2

Examples

- Division of 22 by 5 :

$$
22=5 \times 4+2
$$

The quotient is $q=4$ and the remainder is $r=2$.

- Division of -22 by 5 :

$$
-22=5 \times(-5)+3
$$

The quotient is $q=-5$ and the remainder is $r=3$.

- Division of 22 by -5 :

$$
22=(-5) \times(-4)+2
$$

The quotient is $q=-4$ and the remainder is $r=2$.

- Division of -22 by -5 :

$$
-22=(-5) \times 5+3
$$

The quotient is $q=5$ and the remainder is $r=3$.

Euclidean division - 3

Proposition: parity of an integer

Given $n \in \mathbb{Z}$, exactly one of the followings occurs:

- either $n=2 k$ for some $k \in \mathbb{Z}$ (then we say that n is even),
- or $n=2 k+1$ for some $k \in \mathbb{Z}$ (then we say that n is odd).

Proof. Let $n \in \mathbb{Z}$.
By Euclidean division by 2, there exist $k, r \in \mathbb{Z}$ such that $n=2 k+r$ and $0 \leq r<2$.
Hence either $r=0$ or $r=1$.
And these cases are exclusive by the uniqueness of the Euclidean division.

