MAT246H1-S - LEC0201/9201

Concepts in Abstract Mathematics

INTEGERS

January $21^{\text {st }}, 2021$

Introduction - 1

You already used to negative integers. But they are missing in the set \mathbb{N} from Chapter 1.

We are going to construct \mathbb{Z}, the set of integers, by adding negative integers to \mathbb{N}.
There are several ways to do so.
Usually: $\mathbb{Z}=(\mathbb{N} \times \mathbb{N}) / \sim$ for $(a, b) \sim(c, d) \Leftrightarrow a+d=b+c$.
Intuitively (a, b) stands for $a-b$, but, since such an expression is not unique (e.g. $7-5=10-8$), we need to "identify" some couples giving the same integer (e.g. $(7,5)=(10,8)$). Note that we use $a+d=b+c$ and not $a-b=c-d$ because " - " is not defined yet!

Introduction - 1

You already used to negative integers. But they are missing in the set \mathbb{N} from Chapter 1.

We are going to construct \mathbb{Z}, the set of integers, by adding negative integers to \mathbb{N}.
There are several ways to do so.
Usually: $\mathbb{Z}=(\mathbb{N} \times \mathbb{N}) / \sim$ for $(a, b) \sim(c, d) \Leftrightarrow a+d=b+c$.
Intuitively (a, b) stands for $a-b$, but, since such an expression is not unique (e.g. $7-5=10-8$),
we need to "identify" some couples giving the same integer (e.g. $(7,5)=(10,8)$).
Note that we use $a+d=b+c$ and not $a-b=c-d$ because " - " is not defined yet!
Today, I will use a more naive approach. The counterpart is that the definitions of + and \times are going to be more tedious.

Introduction - 2

It took centuries for negative integers to be widely accepted and used: during the 18th century, most mathematicians were still reluctant about using them.
«II faut avouer qu'il n'est pas facile de fixer l'idée des quantités négatives, \& que quelques habiles gens ont même contribué à l'embrouiller par les notions peu exactes qu'ils en ont données. Dire que la quantité négative est au-dessous du rien, c'est avancer une chose qui ne se peut pas concevoir. Ceux qui prétendent que 1 n'est pas comparable à $-1, \&$ que le rapport entre $1 \&-1$ est différent du rapport entre -1 \& 1, sont dans une double erreur [...] II n'y a donc point réellement \& absolument de quantité négative isolée : -3 pris abstraitement ne présente à l'esprit aucune idée. "

Jean Le Rond d'Alembert, 1751.
" [Negative numbers] darken the very whole doctrines of the equations and make dark of the things which are in their nature excessively obvious and simple. "

$$
\text { Francis Maseres, } 1758 .
$$

Negative integers

Notations

- Given $n \in \mathbb{N} \backslash\{0\}$, we introduce the symbol $-n$ read as minus n.

Negative integers

Notations

- Given $n \in \mathbb{N} \backslash\{0\}$, we introduce the symbol $-n$ read as minus n.
- We fix the convention that $-0=0$.

Negative integers

Notations

- Given $n \in \mathbb{N} \backslash\{0\}$, we introduce the symbol $-n$ read as minus n.
- We fix the convention that $-0=0$.
- We define the set $-\mathbb{N}:=\{-n: n \in \mathbb{N}\}$.

Negative integers

Notations

- Given $n \in \mathbb{N} \backslash\{0\}$, we introduce the symbol $-n$ read as minus n.
- We fix the convention that $-0=0$.
- We define the set $-\mathbb{N}:=\{-n: n \in \mathbb{N}\}$.
- Then the set of integers is $\mathbb{Z}:=(-\mathbb{N}) \cup \mathbb{N}$.

Negative integers

Notations

- Given $n \in \mathbb{N} \backslash\{0\}$, we introduce the symbol $-n$ read as minus n.
- We fix the convention that $-0=0$.
- We define the set $-\mathbb{N}:=\{-n: n \in \mathbb{N}\}$.
- Then the set of integers is $\mathbb{Z}:=(-\mathbb{N}) \cup \mathbb{N}$.

Remarks

$\bullet(-\mathbb{N}) \cap \mathbb{N}=\{0\} \quad \bullet \mathbb{N} \subset \mathbb{Z}$

Addition

Definition: addition

For $m, n \in \mathbb{N}$, we set:

- $m+n$ for the usual addition in \mathbb{N}
- $(-m)+(-n)=-(m+n)$
- $m+(-n)=\left\{\begin{array}{c}k \text { where } k \text { is the unique natural integer such that } m=n+k \text { if } n \leq m \\ -k \text { where } k \text { is the unique natural integer such that } n=m+k \text { if } m \leq n\end{array}\right.$
- $(-m)+n=n+(-m)$ where $n+(-m)$ is defined above

We've just defined $+: \begin{array}{ccc}\mathbb{Z} \times \mathbb{Z} & \rightarrow & \mathbb{Z} \\ (a, b) & \mapsto & a+b\end{array}$.

Addition

Definition: addition

For $m, n \in \mathbb{N}$, we set:

- $m+n$ for the usual addition in \mathbb{N}
- $(-m)+(-n)=-(m+n)$
- $m+(-n)=\left\{\begin{array}{c}k \text { where } k \text { is the unique natural integer such that } m=n+k \text { if } n \leq m \\ -k \text { where } k \text { is the unique natural integer such that } n=m+k \text { if } m \leq n\end{array}\right.$
- $(-m)+n=n+(-m)$ where $n+(-m)$ is defined above

We've just defined $+: \begin{array}{ccc}\mathbb{Z} \times \mathbb{Z} & \rightarrow & \mathbb{Z} \\ (a, b) & \mapsto & a+b\end{array}$.

Remark

There is no contradiction for the overlapping cases $m=0$ or $n=0$.

Multiplication

Definition: multiplication

For $m, n \in \mathbb{N}$, we set:

- $m \times n$ for the usual product in \mathbb{N}
- $(-m) \times(-n)=m \times n$
- $m \times(-n)=-(m \times n)$
- $(-m) \times n=-(m \times n)$

We've just defined $\times: \begin{array}{ccc}\mathbb{Z} \times \mathbb{Z} & \rightarrow & \mathbb{Z} \\ (a, b) & \mapsto & a \times b\end{array}$.

Remark

We may simply write $a b$ for $a \times b$ when there is no possible confusion.

Notation

For $n \in \mathbb{N}$, we set $-(-n)=n$. Then $-a$ is well-defined for any $a \in \mathbb{Z}$.

Properties

- + is associative: $\forall a, b, c \in \mathbb{Z},(a+b)+c=a+(b+c)$
- 0 is the unit of $+: \forall a \in \mathbb{Z}, a+0=0+a=a$
- $-a$ is the additive inverse of $a: \forall a \in \mathbb{Z}, a+(-a)=(-a)+a=0$
- + is commutative: $\forall a, b \in \mathbb{Z}, a+b=b+a$
- \times is associative: $\forall a, b, c \in \mathbb{Z},(a b) c=a(b c)$
- \times is distributive with respect to $+: \forall a, b, c \in \mathbb{Z}, a \times(b+c)=a b+a c$ et $(a+b) c=a c+b c$
- 1 is the unit of $\times: \forall a \in \mathbb{Z}, 1 \times a=a \times 1=a$
- \times is commutative: $\forall a, b \in \mathbb{Z}, a b=b a$
- $\forall a, b \in \mathbb{Z}, a b=0 \Rightarrow(a=0$ or $b=0)$

Notation

From now on, we may simply write $a-b$ for $a+(-b)$ and $-a+b$ for $(-a)+b$.

Order

Definition

We extend the binary relation \leq from \mathbb{N} to \mathbb{Z} with $\quad \forall a, b \in \mathbb{Z}, a \leq b \Leftrightarrow b-a \in \mathbb{N}$.

Proposition

\leq defines a total order on \mathbb{Z}.

Order

Definition

We extend the binary relation \leq from \mathbb{N} to \mathbb{Z} with $\quad \forall a, b \in \mathbb{Z}, a \leq b \Leftrightarrow b-a \in \mathbb{N}$.

Proposition

\leq defines a total order on \mathbb{Z}.

Proof.

- Reflexivity. Let $a \in \mathbb{Z}$, then $a-a=0 \in \mathbb{N}$ so $a \leq a$.
- Antisymmetry. Let $a, b \in \mathbb{Z}$. Assume that $a \leq b$ and that $b \leq a$. Then $b-a \in \mathbb{N}$ and $a-b \in \mathbb{N}$. So $a-b=-(b-a) \in(-\mathbb{N})$. Hence $a-b \in(-\mathbb{N}) \cap \mathbb{N}=\{0\}$ and thus $a=b$.
- Transitivity. Let $a, b, c \in \mathbb{Z}$. Assume that $a \leq b$ and that $b \leq c$. Then $b-a \in \mathbb{N}$ and $c-b \in \mathbb{N}$. Thus $c-a=(c-b)+(b-a) \in \mathbb{N}$, i.e. $a \leq c$.
- Let $a, b \in \mathbb{Z}$. Then $b-a \in \mathbb{Z}=(-\mathbb{N}) \cup(\mathbb{N})$.

First case: $b-a \in \mathbb{N}$ then $a \leq b$.
Second case: $b-a \in(-\mathbb{N})$, then $a-b=-(b-a) \in \mathbb{N}$ and $b \leq a$. Hence the order is total.

Properties of the order

Proposition

(1) $\mathbb{N}=\{a \in \mathbb{Z}, 0 \leq a\}$
(2) $\forall a, b, c \in \mathbb{Z}, a \leq b \Leftrightarrow a+c \leq b+c$
(3) $\forall a, b, c, d \in \mathbb{Z},(a \leq b$ and $c \leq d) \Rightarrow a+c \leq b+d$
(4) $\forall a, b \in \mathbb{Z}, \forall c \in \mathbb{N} \backslash\{0\}, a \leq b \Leftrightarrow a c \leq b c$
(5) $\forall a, b \in \mathbb{Z}, \forall c \in(-\mathbb{N}) \backslash\{0\}, a \leq b \Leftrightarrow b c \leq a c$

Properties of the order

Proposition

(1) $\mathbb{N}=\{a \in \mathbb{Z}, 0 \leq a\}$
(2) $\forall a, b, c \in \mathbb{Z}, a \leq b \Leftrightarrow a+c \leq b+c$
(3) $\forall a, b, c, d \in \mathbb{Z},(a \leq b$ and $c \leq d) \Rightarrow a+c \leq b+d$
(4) $\forall a, b \in \mathbb{Z}, \forall c \in \mathbb{N} \backslash\{0\}, a \leq b \Leftrightarrow a c \leq b c$
(5) $\forall a, b \in \mathbb{Z}, \forall c \in(-\mathbb{N}) \backslash\{0\}, a \leq b \Leftrightarrow b c \leq a c$

Proof.

(1) Let $a \in \mathbb{Z}$. Then $0 \leq a \Leftrightarrow a=a-0 \in \mathbb{N}$.
(2) Let $a, b, c \in \mathbb{Z}$. Then $a \leq b \Leftrightarrow b-a \in \mathbb{N} \Leftrightarrow(b+c)-(a+c) \in \mathbb{N} \Leftrightarrow a+c \leq b+c$.
(3) Let $a, b, c, d \in \mathbb{Z}$. Assume that $a \leq b$ and that $c \leq d$. Then $b-a \in \mathbb{N}$ and $d-c \in \mathbb{N}$. Hence $(b+d)-(a+c)=(b-a)+(d-c) \in \mathbb{N}$, i.e. $a+c \leq b+d$.
(4) Let $a, b \in \mathbb{Z}$ and $c \in \mathbb{N}$.
\Rightarrow : Assume that $a \leq b$. Then $b-a \in \mathbb{N}$, thus $b c-a c=(b-a) c \in \mathbb{N}$. Therefore $a c \leq b c$.
\Leftarrow : Assume that $c \neq 0$ and that $a c \leq b c$. Then $b c-a c=(b-a) c \in \mathbb{N}$. Assume by contradiction that $(b-a) \in(-\mathbb{N}) \backslash\{0\}$ then, by definition of the multiplication, $(b-a) c \in(-\mathbb{N}) \backslash\{0\}$, which is a contradiction. Hence $b-a \in \mathbb{N}$, i.e. $a \leq b$.

Consequences of the well-ordering principle

Theorem

(1) A non-empty subset A of \mathbb{Z} which is bounded from below has a least element, i.e.

$$
\exists m \in A, \forall a \in A, m \leq a
$$

(2) A non-empty subset A of \mathbb{Z} which is bounded from above has a greatest element, i.e.

$$
\exists m \in A, \forall a \in A, a \leq m
$$

Consequences of the well-ordering principle

Theorem

(1) A non-empty subset A of \mathbb{Z} which is bounded from below has a least element, i.e.

$$
\exists m \in A, \forall a \in A, m \leq a
$$

(2) A non-empty subset A of \mathbb{Z} which is bounded from above has a greatest element, i.e.

$$
\exists m \in A, \forall a \in A, a \leq m
$$

Proof.

(1) Assume that A is a non-empty subset of \mathbb{Z} which is bounded from below. Then there exists $k \in \mathbb{Z}$ such that $\forall a \in A, k \leq a$. Define $S=\{a-k: a \in A\}$. Then S is a non-empty subset of \mathbb{N} (indeed, $\forall a \in A, 0 \leq a-k$).
By the well-ordering principle, there exists $\tilde{m} \in S$ such that $\forall a \in A, \tilde{m} \leq a-k$. Then $m=\tilde{m}+k$ is the least element of A (note that $\tilde{m} \in S$ so $m=\tilde{m}+k \in A$).

