MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

January 21st, 2021

You already used to negative integers. But they are missing in the set \mathbb{N} from Chapter 1.

We are going to construct \mathbb{Z} , the set of integers, by adding negative integers to \mathbb{N} .

There are several ways to do so.

Usually: $\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/\sim$ for $(a, b) \sim (c, d) \Leftrightarrow a + d = b + c$. Intuitively (a, b) stands for a - b, but, since such an expression is not unique (e.g. 7 - 5 = 10 - 8), we need to "identify" some couples giving the same integer (e.g. (7, 5) = (10, 8)). Note that we use a + d = b + c and not a - b = c - d because "-" is not defined yet! You already used to negative integers. But they are missing in the set \mathbb{N} from Chapter 1.

We are going to construct \mathbb{Z} , the set of integers, by adding negative integers to \mathbb{N} .

There are several ways to do so.

Usually: $\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/\sim$ for $(a, b) \sim (c, d) \Leftrightarrow a + d = b + c$. Intuitively (a, b) stands for a - b, but, since such an expression is not unique (e.g. 7 - 5 = 10 - 8), we need to "identify" some couples giving the same integer (e.g. (7, 5) = (10, 8)). Note that we use a + d = b + c and not a - b = c - d because "-" is not defined yet!

Today, I will use a more naive approach. The counterpart is that the definitions of + and \times are going to be more tedious.

It took centuries for negative integers to be widely accepted and used: during the 18th century, most mathematicians were still reluctant about using them.

« Il faut avouer qu'il n'est pas facile de fixer l'idée des quantités négatives, & que quelques habiles gens ont même contribué à l'embrouiller par les notions peu exactes qu'ils en ont données. Dire que la quantité négative est au-dessous du rien, c'est avancer une chose qui ne se peut pas concevoir. Ceux qui prétendent que 1 n'est pas comparable à –1, & que le rapport entre 1 & –1 est différent du rapport entre –1 & 1, sont dans une double erreur [...] Il n'y a donc point réellement & absolument de quantité négative isolée : –3 pris abstraitement ne présente à l'esprit aucune idée. »

Jean Le Rond d'Alembert, 1751.

« [Negative numbers] darken the very whole doctrines of the equations and make dark of the things which are in their nature excessively obvious and simple. »

Francis Maseres, 1758.

Notations

• Given $n \in \mathbb{N} \setminus \{0\}$, we introduce the symbol -n read as *minus* n.

Notations

- Given $n \in \mathbb{N} \setminus \{0\}$, we introduce the symbol -n read as *minus* n.
- We fix the convention that -0 = 0.

Notations

- Given $n \in \mathbb{N} \setminus \{0\}$, we introduce the symbol -n read as *minus* n.
- We fix the convention that -0 = 0.
- We define the set $-\mathbb{N} := \{-n : n \in \mathbb{N}\}.$

Notations

- Given $n \in \mathbb{N} \setminus \{0\}$, we introduce the symbol -n read as *minus* n.
- We fix the convention that -0 = 0.
- We define the set $-\mathbb{N} := \{-n : n \in \mathbb{N}\}.$
- Then the set of integers is $\mathbb{Z} := (-\mathbb{N}) \cup \mathbb{N}$.

Notations

- Given $n \in \mathbb{N} \setminus \{0\}$, we introduce the symbol -n read as *minus* n.
- We fix the convention that -0 = 0.
- We define the set $-\mathbb{N} := \{-n : n \in \mathbb{N}\}.$
- Then the set of integers is $\mathbb{Z} := (-\mathbb{N}) \cup \mathbb{N}$.

 \mathbb{Z}

Remarks

•
$$(-\mathbb{N}) \cap \mathbb{N} = \{0\}$$
 • $\mathbb{N} \subset$

Addition

Definition: addition

For $m, n \in \mathbb{N}$, we set:

• m + n for the usual addition in \mathbb{N}

•
$$(-m) + (-n) = -(m+n)$$

• $m + (-n) = \begin{cases} k \text{ where } k \text{ is the unique natural integer such that } m = n + k \text{ if } n \le m \\ -k \text{ where } k \text{ is the unique natural integer such that } n = m + k \text{ if } m \le n \end{cases}$

• (-m) + n = n + (-m) where n + (-m) is defined above

We've just defined + : $\begin{array}{ccc} \mathbb{Z} \times \mathbb{Z} & \to & \mathbb{Z} \\ (a,b) & \mapsto & a+b \end{array}$

Addition

Definition: addition

For $m, n \in \mathbb{N}$, we set:

• m + n for the usual addition in \mathbb{N}

•
$$(-m) + (-n) = -(m+n)$$

• $m + (-n) = \begin{cases} k \text{ where } k \text{ is the unique natural integer such that } m = n + k \text{ if } n \le m \\ -k \text{ where } k \text{ is the unique natural integer such that } n = m + k \text{ if } m \le n \end{cases}$

• (-m) + n = n + (-m) where n + (-m) is defined above

We've just defined + : $\begin{array}{ccc} \mathbb{Z} \times \mathbb{Z} & \to & \mathbb{Z} \\ (a,b) & \mapsto & a+b \end{array}$

Remark

There is no contradiction for the overlapping cases m = 0 or n = 0.

Definition: multiplication

For $m, n \in \mathbb{N}$, we set:

- $m \times n$ for the usual product in \mathbb{N}
- $(-m) \times (-n) = m \times n$
- $m \times (-n) = -(m \times n)$
- $(-m) \times n = -(m \times n)$

We've just defined \times : $\begin{array}{ccc} \mathbb{Z} \times \mathbb{Z} & \rightarrow & \mathbb{Z} \\ (a,b) & \mapsto & a \times b \end{array}$.

Remark

We may simply write ab for $a \times b$ when there is no possible confusion.

Notation

For $n \in \mathbb{N}$, we set -(-n) = n. Then -a is well-defined for any $a \in \mathbb{Z}$.

Properties

- + is associative: $\forall a, b, c \in \mathbb{Z}$, (a + b) + c = a + (b + c)
- 0 is the unit of +: $\forall a \in \mathbb{Z}, a + 0 = 0 + a = a$
- -a is the additive inverse of a: $\forall a \in \mathbb{Z}, a + (-a) = (-a) + a = 0$
- + is commutative: $\forall a, b \in \mathbb{Z}, a + b = b + a$
- × is associative: $\forall a, b, c \in \mathbb{Z}$, (ab)c = a(bc)
- × is distributive with respect to +: $\forall a, b, c \in \mathbb{Z}, a \times (b + c) = ab + ac$ et (a + b)c = ac + bc
- 1 is the unit of \times : $\forall a \in \mathbb{Z}$, $1 \times a = a \times 1 = a$
- × is commutative: $\forall a, b \in \mathbb{Z}, ab = ba$
- $\forall a, b \in \mathbb{Z}, ab = 0 \Rightarrow (a = 0 \text{ or } b = 0)$

Notation

From now on, we may simply write a - b for a + (-b) and -a + b for (-a) + b.

Definition

We extend the binary relation \leq from \mathbb{N} to \mathbb{Z} with

 $\forall a, b \in \mathbb{Z}, a \le b \Leftrightarrow b - a \in \mathbb{N}.$

Proposition

 \leq defines a total order on \mathbb{Z} .

Definition

We extend the binary relation \leq from \mathbb{N} to \mathbb{Z} with

$\forall a, b \in \mathbb{Z}, a \le b \Leftrightarrow b - a \in \mathbb{N}.$

Proposition

 \leq defines a total order on \mathbb{Z} .

Proof.

- *Reflexivity.* Let $a \in \mathbb{Z}$, then $a a = 0 \in \mathbb{N}$ so $a \le a$.
- Antisymmetry. Let $a, b \in \mathbb{Z}$. Assume that $a \leq b$ and that $b \leq a$. Then $b a \in \mathbb{N}$ and $a b \in \mathbb{N}$. So $a - b = -(b - a) \in (-\mathbb{N})$. Hence $a - b \in (-\mathbb{N}) \cap \mathbb{N} = \{0\}$ and thus a = b.
- *Transitivity.* Let $a, b, c \in \mathbb{Z}$. Assume that $a \le b$ and that $b \le c$. Then $b a \in \mathbb{N}$ and $c b \in \mathbb{N}$. Thus $c - a = (c - b) + (b - a) \in \mathbb{N}$, i.e. $a \le c$.
- Let a, b ∈ Z. Then b a ∈ Z = (-N) ∪ (N). *First case:* b a ∈ N then a ≤ b. *Second case:* b a ∈ (-N), then a b = -(b a) ∈ N and b ≤ a.
 Hence the order is total.

Properties of the order

Proposition

- $\bigcirc \mathbb{N} = \{a \in \mathbb{Z}, 0 \le a\}$
- 2 $\forall a, b, c \in \mathbb{Z}, a \le b \Leftrightarrow a + c \le b + c$
- **3** $\forall a, b, c, d \in \mathbb{Z}, (a \le b \text{ and } c \le d) \Rightarrow a + c \le b + d$
- **5** $\forall a, b \in \mathbb{Z}, \forall c \in (-\mathbb{N}) \setminus \{0\}, a \le b \Leftrightarrow bc \le ac$

Properties of the order

Proposition

- $\bigcirc \mathbb{N} = \{a \in \mathbb{Z}, 0 \le a\}$
- 2 $\forall a, b, c \in \mathbb{Z}, a \le b \Leftrightarrow a + c \le b + c$
- **3** $\forall a, b, c, d \in \mathbb{Z}, (a \le b \text{ and } c \le d) \Rightarrow a + c \le b + d$
- **5** $\forall a, b \in \mathbb{Z}, \forall c \in (-\mathbb{N}) \setminus \{0\}, a \leq b \Leftrightarrow bc \leq ac$

Proof.

- **1** Let $a \in \mathbb{Z}$. Then $0 \le a \Leftrightarrow a = a 0 \in \mathbb{N}$.
- 2 Let $a, b, c \in \mathbb{Z}$. Then $a \le b \Leftrightarrow b a \in \mathbb{N} \Leftrightarrow (b + c) (a + c) \in \mathbb{N} \Leftrightarrow a + c \le b + c$.
- 3 Let $a, b, c, d \in \mathbb{Z}$. Assume that $a \le b$ and that $c \le d$. Then $b a \in \mathbb{N}$ and $d c \in \mathbb{N}$. Hence $(b + d) - (a + c) = (b - a) + (d - c) \in \mathbb{N}$, i.e. $a + c \le b + d$.
- 4 Let $a, b \in \mathbb{Z}$ and $c \in \mathbb{N}$.
 - ⇒: Assume that $a \le b$. Then $b a \in \mathbb{N}$, thus $bc ac = (b a)c \in \mathbb{N}$. Therefore $ac \le bc$.

⇐: Assume that $c \neq 0$ and that $ac \leq bc$. Then $bc - ac = (b - a)c \in \mathbb{N}$. Assume by contradiction that $(b - a) \in (-\mathbb{N}) \setminus \{0\}$ then, by definition of the multiplication, $(b - a)c \in (-\mathbb{N}) \setminus \{0\}$, which is a contradiction. Hence $b - a \in \mathbb{N}$, i.e. $a \leq b$.

Consequences of the well-ordering principle

Theorem

1 A non-empty subset A of \mathbb{Z} which is bounded from below has a least element, i.e.

 $\exists m \in A, \forall a \in A, m \leq a$

2 A non-empty subset A of \mathbb{Z} which is bounded from above has a greatest element, i.e.

 $\exists m \in A, \forall a \in A, a \leq m$

Consequences of the well-ordering principle

Theorem

1 A non-empty subset A of \mathbb{Z} which is bounded from below has a least element, i.e.

 $\exists m \in A, \forall a \in A, m \leq a$

2 A non-empty subset A of \mathbb{Z} which is bounded from above has a greatest element, i.e.

 $\exists m \in A, \forall a \in A, a \leq m$

Proof.

1 Assume that *A* is a non-empty subset of \mathbb{Z} which is bounded from below. Then there exists $k \in \mathbb{Z}$ such that $\forall a \in A, k \leq a$. Define $S = \{a - k : a \in A\}$. Then *S* is a non-empty subset of \mathbb{N} (indeed, $\forall a \in A, 0 \leq a - k$). By the well-ordering principle, there exists $\tilde{m} \in S$ such that $\forall a \in A, \tilde{m} \leq a - k$. Then $m = \tilde{m} + k$ is the least element of *A* (note that $\tilde{m} \in S$ so $m = \tilde{m} + k \in A$).