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From last Tuesday: Peano’s axioms

Theorem: Peano axioms
There exists a set ℕ together with an element 0 ∈ ℕ ”zero” and a function 𝑠 ∶ ℕ → ℕ ”successor” such that:

1 0 is not the successor of any element of ℕ, i.e. 0 is not in the image of 𝑠:

0 ∉ 𝑠(ℕ)

2 If the successor of 𝑛 equals the successor of 𝑚 then 𝑛 = 𝑚, i.e. 𝑠 is injective:

∀𝑛, 𝑚 ∈ ℕ, 𝑠(𝑛) = 𝑠(𝑚) ⟹ 𝑛 = 𝑚

3 The induction principle. If a subset of ℕ contains 0 and is closed under 𝑠 then it is ℕ:

∀𝐴 ⊂ ℕ, {
0 ∈ 𝐴
𝑠(𝐴) ⊂ 𝐴 ⟹ 𝐴 = ℕ

0ℕ 𝑠 1 𝑠 2 𝑠 3 𝑠 4
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The addition – 1
We are going to define ℕ → ℕ

𝑏 ↦ 𝑎 + 𝑏 for a given 𝑎 ∈ ℕ.

How to do so? What would be a good definition to obtain what you intuitively know about +?

The idea is to define it inductively using the following properties we would like to have:
• 𝑎 + 0 = 𝑎
• For 𝑏 ∈ ℕ, 𝑎 + (𝑏 + 1) = (𝑎 + 𝑏) + 1

So if 𝑎 + 𝑏 is already defined, then we can define 𝑎 + (𝑏 + 1).
Remember that intuitively +1 is ”taking the successor”.

Formally, we prove:

Proposition

Let 𝑎 ∈ ℕ. Then there exists a unique function (𝑎 + •) ∶ ℕ → ℕ
𝑏 ↦ 𝑎 + 𝑏 such that

1 𝑎 + 0 = 𝑎 2 ∀𝑏 ∈ ℕ, 𝑎 + 𝑠(𝑏) = 𝑠(𝑎 + 𝑏)

The above result is a consequence of the induction principle.
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The addition – 2

Remark
Set 1 ≔ 𝑠(0). Then, as expected, for 𝑛 ∈ ℕ, we have

𝑛 + 1 = 𝑛 + 𝑠(0) = 𝑠(𝑛 + 0) = 𝑠(𝑛)

Hence, from now on, I will use indistinctively 𝑛 + 1 or 𝑠(𝑛).

We can prove the following properties.

Proposition
• ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (the addition is associative)
• ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 𝑏 + 𝑎 (the addition is commutative)
• ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑏 = 𝑎 + 𝑐 ⟹ 𝑏 = 𝑐 (cancellation)
• ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 0 ⟹ 𝑎 = 𝑏 = 0
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The addition – 3

Proof that ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐.

Let 𝑎, 𝑏 ∈ ℕ. Set 𝐴 = {𝑐 ∈ ℕ ∶ 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐}. Then
• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴. Indeed, 𝑎 + (𝑏 + 0) = 𝑎 + 𝑏 = (𝑎 + 𝑏) + 0.
• 𝑠(𝐴) ⊂ 𝐴. Indeed, let 𝑛 ∈ 𝑠(𝐴) then 𝑛 = 𝑠(𝑐) for some 𝑐 ∈ 𝐴. Therefore

𝑎 + (𝑏 + 𝑛) = 𝑎 + (𝑏 + 𝑠(𝑐)) = 𝑎 + 𝑠(𝑏 + 𝑐) = 𝑠(𝑎 + (𝑏 + 𝑐)) = 𝑠((𝑎 + 𝑏) + 𝑐) = (𝑎 + 𝑏) + 𝑠(𝑐) = (𝑎 + 𝑏) + 𝑛.
Hence 𝑛 ∈ 𝐴.

Thus, by the induction principle, 𝐴 = ℕ and for any 𝑐 ∈ ℕ, 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐. ■

Proof that ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 0 ⟹ 𝑎 = 𝑏 = 0.
Let 𝑎, 𝑏 ∈ ℕ be such that 𝑎 + 𝑏 = 0. Assume by contradiction that 𝑎 ≠ 0 or 𝑏 ≠ 0.
Without lost of generality, we may assume that 𝑏 ≠ 0 (using commutativity).
Then 𝑏 = 𝑠(𝑛) for some 𝑛 ∈ ℕ.
So 0 = 𝑎 + 𝑏 = 𝑎 + 𝑠(𝑛) = 𝑠(𝑎 + 𝑛).
Which is a contradiction since 0 ∉ 𝑠(ℕ). ■
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The multiplication – 1

We define inductively ℕ → ℕ
𝑏 ↦ 𝑎 × 𝑏 for a given 𝑎 ∈ ℕ using the following desired properties:

• 𝑎 × 0 = 0
• For 𝑏 ∈ ℕ, 𝑎 × (𝑏 + 1) = (𝑎 × 𝑏) + 𝑎

So if 𝑎 × 𝑏 is already defined, then we can define 𝑎 × (𝑏 + 1).

Formally, we prove:
Proposition

Let 𝑎 ∈ ℕ. Then there exists a unique function (𝑎 × •) ∶ ℕ → ℕ
𝑏 ↦ 𝑎 × 𝑏 such that

1 𝑎 × 0 = 0 2 ∀𝑏 ∈ ℕ, 𝑎 × 𝑠(𝑏) = (𝑎 × 𝑏) + 𝑎

Remark
It is common to simply write 𝑎𝑏 for 𝑎 × 𝑏 when there is no possible confusion.
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The multiplication – 2

Proposition
• ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × (𝑏 × 𝑐) = (𝑎 × 𝑏) × 𝑐 (the multiplication is associative)
• ∀𝑎, 𝑏 ∈ ℕ, 𝑎 × 𝑏 = 𝑏 × 𝑎 (the multiplication is commutative)
• ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 and (𝑎 + 𝑏) × 𝑐 = 𝑎 × 𝑐 + 𝑏 × 𝑐 (× is distributive over +)
• ∀𝑎 ∈ ℕ, 𝑎 × 1 = 𝑎
• ∀𝑎, 𝑏 ∈ ℕ, 𝑎 × 𝑏 = 0 ⟹ (𝑎 = 0 or 𝑏 = 0)

• ∀𝑎, 𝑏, 𝑐 ∈ ℕ, {
𝑎 × 𝑏 = 𝑎 × 𝑐
𝑎 ≠ 0 ⟹ 𝑏 = 𝑐 (cancellation)
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Order – 1

Definition: binary relation
A binary relation ℛ on a set 𝐸 consists in associating a truth value to every couple (𝑥, 𝑦) ∈ 𝐸2.
We say that 𝑥 is related to 𝑦 by ℛ, denoted 𝑥ℛ𝑦, if the value true is assigned to (𝑥, 𝑦).

Examples
1 Let 𝐸 = {𝑎, 𝑏, 𝑐}. We can define a binary relation ℛ using a truth table as below:

𝑦
𝑥 𝑎 𝑏 𝑐

𝑎 3 7 7

𝑏 7 7 3

𝑐 3 3 7

Here 𝑎ℛ𝑎, 𝑎ℛ𝑐, 𝑏ℛ𝑐 and 𝑐ℛ𝑏.
2 For 𝐸 = ℝ, we can define a binary relation as follows: ∀(𝑥, 𝑦) ∈ ℝ2, 𝑥ℛ𝑦 ⇔ 𝑥2 − 𝑦2 = 𝑥 − 𝑦.
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Order – 2

Definition: order
We say that a binary relation ℛ on a set 𝐸 is an order if

1 ∀𝑥 ∈ 𝐸, 𝑥ℛ𝑥 (reflexivity)
2 ∀𝑥, 𝑦 ∈ 𝐸, (𝑥ℛ𝑦 and 𝑦ℛ𝑥) ⟹ 𝑥 = 𝑦 (antisymmetry)
3 ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥ℛ𝑦 and 𝑦ℛ𝑧) ⟹ 𝑥ℛ𝑧 (transitivity)

We say that the order ℛ is total if additionaly ∀𝑥, 𝑦 ∈ 𝐸, 𝑥ℛ𝑦 or 𝑦ℛ𝑥.

Definition: the usual order ≤ on ℕ
We define the binary relation ≤ on ℕ by ∀𝑎, 𝑏 ∈ ℕ, (𝑎 ≤ 𝑏 ⇔ ∃𝑘 ∈ ℕ, 𝑏 = 𝑎 + 𝑘).

The intuition behind this definition is that 𝑎 ≤ 𝑏 if we need to add some 𝑘 to 𝑎 in order to reach 𝑏.

Notation
We write 𝑎 < 𝑏 for (𝑎 ≤ 𝑏 and 𝑎 ≠ 𝑏).
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Order – 3
Theorem
The set of natural numbers ℕ is totally ordered for ≤.

Proof.
1 Reflexivity. Let 𝑎 ∈ ℕ, then 𝑎 = 𝑎 + 0 with 0 ∈ ℕ, hence 𝑎 ≤ 𝑎.
2 Antisymmetry. Let 𝑎, 𝑏 ∈ ℕ be such that 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎.

Then there exists 𝑘, 𝑙 ∈ ℕ such that 𝑏 = 𝑎 + 𝑘 and 𝑎 = 𝑏 + 𝑙.
Therefore 𝑎 = 𝑏 + 𝑙 = 𝑎 + 𝑘 + 𝑙. Hence 0 = 𝑘 + 𝑙 and thus 𝑙 = 𝑘 = 0 so that 𝑎 = 𝑏.

3 Transitivity. Let 𝑎, 𝑏, 𝑐 ∈ ℕ be such that 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐.
Then there exists 𝑘, 𝑙 ∈ ℕ such that 𝑏 = 𝑎 + 𝑘 and 𝑐 = 𝑏 + 𝑙.
Therefore 𝑐 = 𝑏 + 𝑙 = 𝑎 + (𝑘 + 𝑙) with 𝑘 + 𝑙 ∈ ℕ, i.e. 𝑎 ≤ 𝑐.

4 ≤ is total. Let 𝑎 ∈ ℕ. Set 𝐴 = {𝑏 ∈ ℕ ∶ 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎}. Then
• 𝐴 ⊂ ℕ • 0 ∈ 𝐴, indeed 𝑎 = 0 + 𝑎 so that 0 ≤ 𝑎. • 𝑠(𝐴) ⊂ 𝐴

Indeed, let 𝑛 ∈ 𝑠(𝐴). Then 𝑛 = 𝑠(𝑏) for some 𝑏 ∈ 𝐴, i.e. 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎.
- If 𝑎 ≤ 𝑏 then 𝑏 = 𝑎 + 𝑘 for some 𝑘 ∈ ℕ, 𝑛 = 𝑠(𝑏) = 𝑏 + 1 = 𝑎 + 𝑘 + 1 with 𝑘 + 1 ∈ ℕ, so that 𝑎 ≤ 𝑛.
- If 𝑏 ≤ 𝑎 then 𝑎 = 𝑏 + 𝑙 for some 𝑙 ∈ ℕ. We may assume that 𝑙 ≠ 0 (since 𝑎 = 𝑏 was in the above case).
Then 𝑙 = ̃𝑙 + 1 for some ̃𝑙 ∈ ℕ. Hence 𝑎 = 𝑏 + 𝑙 = 𝑏 + ̃𝑙 + 1 = 𝑏 + 1 + ̃𝑙 = 𝑛 + ̃𝑙, i.e. 𝑛 ≤ 𝑎.

In both cases 𝑛 ∈ 𝐴.
Therefore, by the induction principle, 𝐴 = ℕ. So, for all 𝑏 ∈ ℕ, either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎. ■
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Order – 4
Proposition

1 ∀𝑎 ∈ ℕ, 𝑎 ≤ 0 ⟹ 𝑎 = 0
2 ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑏 ≤ 𝑎 + 𝑐 ⟹ 𝑏 ≤ 𝑐
3 There is no 𝑎 ∈ ℕ such that 0 < 𝑎 < 1.
4 There is no 𝑎 ∈ ℕ such that ∀𝑏 ∈ ℕ, 𝑏 ≤ 𝑎.
5 ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 ≤ 𝑏 ⟹ 𝑎𝑐 ≤ 𝑏𝑐

Proof.
1 Let 𝑎 ∈ ℕ be such that 𝑎 ≤ 0. Then there exists 𝑘 ∈ ℕ such that 0 = 𝑎 + 𝑘. Hence 𝑎 = 𝑘 = 0.
2 Let 𝑎, 𝑏, 𝑐 ∈ ℕ. Assume that 𝑎 + 𝑏 ≤ 𝑎 + 𝑐. Then there exists 𝑘 ∈ ℕ such that 𝑎 + 𝑐 = 𝑎 + 𝑏 + 𝑘.

Thus 𝑐 = 𝑏 + 𝑘 so that 𝑏 ≤ 𝑐 as expected.
3 Let 𝑎 ∈ ℕ. Assume that 𝑎 < 1, then there exists 𝑙 ∈ ℕ ⧵ {0} such that 1 = 𝑎 + 𝑙.

Since 𝑙 ≠ 0, 𝑙 = 𝑘 + 1 for some 𝑘 ∈ ℕ, and 1 = 𝑎 + 𝑘 + 1 so that 0 = 𝑎 + 𝑘. Therefore 𝑎 = 0.
4 Assume by contradiction that there exists 𝑎 ∈ ℕ such that ∀𝑏 ∈ ℕ, 𝑏 ≤ 𝑎. Then 𝑎 + 1 ≤ 𝑎 hence 1 ≤ 0,

i.e. 0 = 1 + 𝑘 for some 𝑘 ∈ ℕ. Therefore 1 = 0 which is a contradiction (otherwise 0 = 𝑠(0)).
5 Let 𝑎, 𝑏, 𝑐 ∈ ℕ. Assume that 𝑎 ≤ 𝑏. Then 𝑏 = 𝑎 + 𝑘 for some 𝑘 ∈ ℕ.

Thus 𝑏𝑐 = (𝑎 + 𝑘)𝑐 = 𝑎𝑐 + 𝑘𝑐 with 𝑘𝑐 ∈ ℕ. Therefore 𝑎𝑐 ≤ 𝑏𝑐. ■

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Jan 14, 2021 11 / 12



Order – 4
Proposition

1 ∀𝑎 ∈ ℕ, 𝑎 ≤ 0 ⟹ 𝑎 = 0
2 ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑏 ≤ 𝑎 + 𝑐 ⟹ 𝑏 ≤ 𝑐
3 There is no 𝑎 ∈ ℕ such that 0 < 𝑎 < 1.
4 There is no 𝑎 ∈ ℕ such that ∀𝑏 ∈ ℕ, 𝑏 ≤ 𝑎.
5 ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 ≤ 𝑏 ⟹ 𝑎𝑐 ≤ 𝑏𝑐

Proof.
1 Let 𝑎 ∈ ℕ be such that 𝑎 ≤ 0. Then there exists 𝑘 ∈ ℕ such that 0 = 𝑎 + 𝑘. Hence 𝑎 = 𝑘 = 0.
2 Let 𝑎, 𝑏, 𝑐 ∈ ℕ. Assume that 𝑎 + 𝑏 ≤ 𝑎 + 𝑐. Then there exists 𝑘 ∈ ℕ such that 𝑎 + 𝑐 = 𝑎 + 𝑏 + 𝑘.

Thus 𝑐 = 𝑏 + 𝑘 so that 𝑏 ≤ 𝑐 as expected.
3 Let 𝑎 ∈ ℕ. Assume that 𝑎 < 1, then there exists 𝑙 ∈ ℕ ⧵ {0} such that 1 = 𝑎 + 𝑙.

Since 𝑙 ≠ 0, 𝑙 = 𝑘 + 1 for some 𝑘 ∈ ℕ, and 1 = 𝑎 + 𝑘 + 1 so that 0 = 𝑎 + 𝑘. Therefore 𝑎 = 0.
4 Assume by contradiction that there exists 𝑎 ∈ ℕ such that ∀𝑏 ∈ ℕ, 𝑏 ≤ 𝑎. Then 𝑎 + 1 ≤ 𝑎 hence 1 ≤ 0,

i.e. 0 = 1 + 𝑘 for some 𝑘 ∈ ℕ. Therefore 1 = 0 which is a contradiction (otherwise 0 = 𝑠(0)).
5 Let 𝑎, 𝑏, 𝑐 ∈ ℕ. Assume that 𝑎 ≤ 𝑏. Then 𝑏 = 𝑎 + 𝑘 for some 𝑘 ∈ ℕ.

Thus 𝑏𝑐 = (𝑎 + 𝑘)𝑐 = 𝑎𝑐 + 𝑘𝑐 with 𝑘𝑐 ∈ ℕ. Therefore 𝑎𝑐 ≤ 𝑏𝑐. ■
Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Jan 14, 2021 11 / 12



The well-ordering principle

Theorem: the well-ordering principle
A nonempty subset 𝐴 of ℕ has a least element, i.e. there exists 𝑛 ∈ 𝐴 such that ∀𝑎 ∈ 𝐴, 𝑛 ≤ 𝑎.

Proof.
Let’s prove the contrapositive, i.e. if a subset 𝐴 ⊂ ℕ doesn’t have a least element then it is empty.
Let 𝐵 = {𝑎 ∈ ℕ ∶ ∀𝑖 ≤ 𝑎, 𝑖 ∉ 𝐴}.

• 𝐵 ⊂ ℕ
• 0 ∈ 𝐵 (otherwise 0 would be the least element of 𝐴).
• 𝑠(𝐵) ⊂ 𝐵

Indeed, if 𝑛 ∈ 𝑠(𝐵), then 𝑛 = 𝑠(𝑎) for 𝑎 ∈ 𝐵, i.e. ∀𝑖 ≤ 𝑎, 𝑖 ∉ 𝐴.
Note that 𝑛 = 𝑎 + 1 ∉ 𝐴 otherwise it would be the least element of 𝐴.
Therefore ∀𝑖 ≤ 𝑛, 𝑖 ∉ 𝐴, i.e. 𝑛 ∈ 𝐵.

Thus, by the induction principle, 𝐵 = ℕ so 𝐴 is empty. ■
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Let 𝐵 = {𝑎 ∈ ℕ ∶ ∀𝑖 ≤ 𝑎, 𝑖 ∉ 𝐴}.

• 𝐵 ⊂ ℕ
• 0 ∈ 𝐵 (otherwise 0 would be the least element of 𝐴).
• 𝑠(𝐵) ⊂ 𝐵

Indeed, if 𝑛 ∈ 𝑠(𝐵), then 𝑛 = 𝑠(𝑎) for 𝑎 ∈ 𝐵, i.e. ∀𝑖 ≤ 𝑎, 𝑖 ∉ 𝐴.
Note that 𝑛 = 𝑎 + 1 ∉ 𝐴 otherwise it would be the least element of 𝐴.
Therefore ∀𝑖 ≤ 𝑛, 𝑖 ∉ 𝐴, i.e. 𝑛 ∈ 𝐵.

Thus, by the induction principle, 𝐵 = ℕ so 𝐴 is empty. ■
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