MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

NATURAL NUMBERS – 2

January 14th, 2021

From last Tuesday: Peano's axioms

Theorem: Peano axioms

There exists a set \mathbb{N} together with an element $0 \in \mathbb{N}$ "zero" and a function $s : \mathbb{N} \to \mathbb{N}$ "successor" such that:

1 0 is not the successor of any element of \mathbb{N} , i.e. 0 is not in the image of s:

 $0 \notin s(\mathbb{N})$

2 If the successor of *n* equals the successor of *m* then n = m, i.e. *s* is injective:

 $\forall n, m \in \mathbb{N}, \ s(n) = s(m) \implies n = m$

3 The induction principle. If a subset of \mathbb{N} contains 0 and is closed under s then it is \mathbb{N} :

$$\forall A \subset \mathbb{N}, \left\{ \begin{array}{c} 0 \in A \\ s(A) \subset A \end{array} \right. \implies A = \mathbb{N}$$

$$\mathbb{N} \stackrel{\textbf{0}}{\bullet} \stackrel{s}{\bullet} \stackrel{\textbf{1}}{\bullet} \stackrel{s}{\bullet} \stackrel{\textbf{2}}{\bullet} \stackrel{s}{\bullet} \stackrel{\textbf{3}}{\bullet} \stackrel{\textbf{3}}{\bullet} \stackrel{\textbf{4}}{\bullet} \stackrel{\textbf{6}}{\bullet} \stackrel{$$

The addition – 1

We are going to define $\begin{array}{ccc} \mathbb{N} & \rightarrow & \mathbb{N} \\ b & \mapsto & a+b \end{array}$ for a given $a \in \mathbb{N}$.

How to do so? What would be a good definition to obtain what you intuitively know about +?

The idea is to define it inductively using the following properties we would like to have:

- a + 0 = a
- For $b \in \mathbb{N}$, a + (b + 1) = (a + b) + 1So if a + b is already defined, then we can define a + (b + 1). Remember that intuitively +1 is "taking the successor".

Formally, we prove:

Proposition

Let $a \in \mathbb{N}$. Then there exists a unique function $(a + \bullet)$: $\begin{array}{c} \mathbb{N} \rightarrow \mathbb{N} \\ b \mapsto a + b \end{array}$ such that **1** a + 0 = a **2** $\forall b \in \mathbb{N}, a + s(b) = s(a + b)$

The above result is a consequence of the induction principle.

The addition – 2

Remark

Set 1 := s(0). Then, as expected, for $n \in \mathbb{N}$, we have

```
n + 1 = n + s(0) = s(n + 0) = s(n)
```

Hence, from now on, I will use indistinctively n + 1 or s(n).

We can prove the following properties.

Proposition

- $\forall a, b, c \in \mathbb{N}, a + (b + c) = (a + b) + c$ (the addition is associative)
- $\forall a, b \in \mathbb{N}, a + b = b + a$ (the addition is commutative)
- $\forall a, b, c \in \mathbb{N}, a + b = a + c \implies b = c$ (cancellation)
- $\forall a, b \in \mathbb{N}, a + b = 0 \implies a = b = 0$

The addition – 3

Proof that $\forall a, b, c \in \mathbb{N}$, a + (b + c) = (a + b) + c. Let $a, b \in \mathbb{N}$. Set $A = \{c \in \mathbb{N} : a + (b + c) = (a + b) + c\}$. Then

•
$$A \subset \mathbb{N}$$

• $0 \in A$. Indeed, a + (b + 0) = a + b = (a + b) + 0.

• $s(A) \subset A$. Indeed, let $n \in s(A)$ then n = s(c) for some $c \in A$. Therefore a + (b+n) = a + (b+s(c)) = a + s(b+c) = s(a+(b+c)) = s((a+b)+c) = (a+b) + s(c) = (a+b) + n. Hence $n \in A$.

Thus, by the induction principle, $A = \mathbb{N}$ and for any $c \in \mathbb{N}$, a + (b + c) = (a + b) + c.

Proof that $\forall a, b \in \mathbb{N}$, $a + b = 0 \implies a = b = 0$. Let $a, b \in \mathbb{N}$ be such that a + b = 0. Assume by contradiction that $a \neq 0$ or $b \neq 0$. Without lost of generality, we may assume that $b \neq 0$ (using commutativity). Then b = s(n) for some $n \in \mathbb{N}$. So 0 = a + b = a + s(n) = s(a + n). Which is a contradiction since $0 \notin s(\mathbb{N})$.

The multiplication – 1

We define inductively $\begin{array}{ccc} \mathbb{N} & \rightarrow & \mathbb{N} \\ b & \mapsto & a \times b \end{array}$ for a given $a \in \mathbb{N}$ using the following desired properties:

- $a \times 0 = 0$
- For b ∈ N, a × (b + 1) = (a × b) + a
 So if a × b is already defined, then we can define a × (b + 1).

Formally, we prove:

PropositionLet $a \in \mathbb{N}$. Then there exists a unique function $(a \times \bullet)$: $\begin{bmatrix} \mathbb{N} & \to & \mathbb{N} \\ b & \mapsto & a \times b \end{bmatrix}$ such that1 $a \times 0 = 0$ 2 $\forall b \in \mathbb{N}, a \times s(b) = (a \times b) + a$

Remark

It is common to simply write ab for $a \times b$ when there is no possible confusion.

Proposition

- $\forall a, b, c \in \mathbb{N}, a \times (b \times c) = (a \times b) \times c$ (the multiplication is associative)
- $\forall a, b \in \mathbb{N}, a \times b = b \times a$ (the multiplication is commutative)
- $\forall a, b, c \in \mathbb{N}, a \times (b + c) = a \times b + a \times c$ and $(a + b) \times c = a \times c + b \times c$ (× is distributive over +)
- $\forall a \in \mathbb{N}, a \times 1 = a$

•
$$\forall a, b \in \mathbb{N}, a \times b = 0 \implies (a = 0 \text{ or } b = 0)$$

•
$$\forall a, b, c \in \mathbb{N}, \begin{cases} a \times b = a \times c \\ a \neq 0 \end{cases} \implies b = c \text{ (cancellation)}$$

Definition: binary relation

A binary relation \mathcal{R} on a set E consists in associating a truth value to every couple $(x, y) \in E^2$. We say that x is related to y by \mathcal{R} , denoted $x\mathcal{R}y$, if the value true is assigned to (x, y).

Examples

1 Let $E = \{a, b, c\}$. We can define a binary relation \mathcal{R} using a truth table as below:

Here $a\mathcal{R}a$, $a\mathcal{R}c$, $b\mathcal{R}c$ and $c\mathcal{R}b$.

2 For $E = \mathbb{R}$, we can define a binary relation as follows: $\forall (x, y) \in \mathbb{R}^2$, $x \mathcal{R} y \Leftrightarrow x^2 - y^2 = x - y$.

Order – 2

Definition: order

We say that a binary relation \mathcal{R} on a set E is an order if

- **1** $\forall x \in E, x \mathcal{R}x \text{ (reflexivity)}$
- **2** $\forall x, y \in E, (x \mathcal{R} y \text{ and } y \mathcal{R} x) \implies x = y \text{ (antisymmetry)}$
- **3** $\forall x, y, z \in E, (x \mathcal{R} y \text{ and } y \mathcal{R} z) \implies x \mathcal{R} z \text{ (transitivity)}$

We say that the order \mathcal{R} is *total* if additionaly $\forall x, y \in E, x\mathcal{R}y$ or $y\mathcal{R}x$.

Definition: the usual order \leq on \mathbb{N}

We define the binary relation \leq on \mathbb{N} by $\forall a, b \in \mathbb{N}, (a \leq b \Leftrightarrow \exists k \in \mathbb{N}, b = a + k).$

The intuition behind this definition is that $a \le b$ if we need to add some k to a in order to reach b.

Notation

We write a < b for $(a \le b \text{ and } a \ne b)$.

Order - 3

Theorem

The set of natural numbers \mathbb{N} is totally ordered for \leq .

Proof.

- **1** *Reflexivity.* Let $a \in \mathbb{N}$, then a = a + 0 with $0 \in \mathbb{N}$, hence $a \le a$.
- *Antisymmetry.* Let a, b ∈ N be such that a ≤ b and b ≤ a. Then there exists k, l ∈ N such that b = a + k and a = b + l. Therefore a = b + l = a + k + l. Hence 0 = k + l and thus l = k = 0 so that a = b.
- **3** *Transitivity.* Let $a, b, c \in \mathbb{N}$ be such that $a \le b$ and $b \le c$. Then there exists $k, l \in \mathbb{N}$ such that b = a + k and c = b + l. Therefore c = b + l = a + (k + l) with $k + l \in \mathbb{N}$, i.e. $a \le c$.
- 4 $\leq is \ total.$ Let $a \in \mathbb{N}$. Set $A = \{b \in \mathbb{N} : a \leq b \text{ or } b \leq a\}$. Then
 - $A \subset \mathbb{N}$ $0 \in A$, indeed a = 0 + a so that $0 \le a$. Indeed, let $n \in s(A)$. Then n = s(b) for some $b \in A$, i.e. $a \le b$ or $b \le a$.
 - If $a \le b$ then b = a + k for some $k \in \mathbb{N}$, n = s(b) = b + 1 = a + k + 1 with $k + 1 \in \mathbb{N}$, so that $a \le n$.
 - If $b \le a$ then a = b + l for some $l \in \mathbb{N}$. We may assume that $l \ne 0$ (since a = b was in the above case). Then $l = \tilde{l} + 1$ for some $\tilde{l} \in \mathbb{N}$. Hence $a = b + l = b + \tilde{l} + 1 = b + 1 + \tilde{l} = n + \tilde{l}$, i.e. $n \le a$. In both cases $n \in A$.

Therefore, by the induction principle, $A = \mathbb{N}$. So, for all $b \in \mathbb{N}$, either $a \le b$ or $b \le a$.

Order – 4

Proposition

- **2** $\forall a, b, c \in \mathbb{N}, a + b \le a + c \implies b \le c$
- **3** There is no $a \in \mathbb{N}$ such that 0 < a < 1.
- **4** There is no $a \in \mathbb{N}$ such that $\forall b \in \mathbb{N}, b \leq a$.
- **5** $\forall a, b, c \in \mathbb{N}, a \le b \implies ac \le bc$

Proof.

- **1** Let $a \in \mathbb{N}$ be such that $a \leq 0$. Then there exists $k \in \mathbb{N}$ such that 0 = a + k. Hence a = k = 0.
- 2 Let $a, b, c \in \mathbb{N}$. Assume that $a + b \le a + c$. Then there exists $k \in \mathbb{N}$ such that a + c = a + b + k. Thus c = b + k so that $b \le c$ as expected.
- 3 Let $a \in \mathbb{N}$. Assume that a < 1, then there exists $l \in \mathbb{N} \setminus \{0\}$ such that 1 = a + l. Since $l \neq 0$, l = k + 1 for some $k \in \mathbb{N}$, and 1 = a + k + 1 so that 0 = a + k. Therefore a = 0.
- Assume by contradiction that there exists a ∈ N such that ∀b ∈ N, b ≤ a. Then a + 1 ≤ a hence 1 ≤ 0, i.e. 0 = 1 + k for some k ∈ N. Therefore 1 = 0 which is a contradiction (otherwise 0 = s(0)).

5 Let $a, b, c \in \mathbb{N}$. Assume that $a \le b$. Then b = a + k for some $k \in \mathbb{N}$. Thus bc = (a + k)c = ac + kc with $kc \in \mathbb{N}$. Therefore $ac \le bc$.

Theorem: the well-ordering principle

A nonempty subset *A* of \mathbb{N} has a least element, i.e. there exists $n \in A$ such that $\forall a \in A, n \leq a$.

Proof.

Let's prove the contrapositive, i.e. if a subset $A \subset \mathbb{N}$ doesn't have a least element then it is empty. Let $B = \{a \in \mathbb{N} : \forall i \le a, i \notin A\}.$

- $B \subset \mathbb{N}$
- $0 \in B$ (otherwise 0 would be the least element of *A*).
- s(B) ⊂ B Indeed, if n ∈ s(B), then n = s(a) for a ∈ B, i.e. ∀i ≤ a, i ∉ A. Note that n = a + 1 ∉ A otherwise it would be the least element of A. Therefore ∀i ≤ n, i ∉ A, i.e. n ∈ B.

Thus, by the induction principle, $B = \mathbb{N}$ so A is empty.