NATURAL NUMBERS - 2

January $14^{\text {th }}, 2021$

From last Tuesday: Peano's axioms

Theorem: Peano axioms

There exists a set \mathbb{N} together with an element $0 \in \mathbb{N}$ "zero" and a function $s: \mathbb{N} \rightarrow \mathbb{N}$ "successor" such that:
(1) 0 is not the successor of any element of \mathbb{N}, i.e. 0 is not in the image of s :

$$
0 \notin s(\mathbb{N})
$$

(2) If the successor of n equals the successor of m then $n=m$, i.e. s is injective:

$$
\forall n, m \in \mathbb{N}, s(n)=s(m) \Longrightarrow n=m
$$

(3) The induction principle. If a subset of \mathbb{N} contains 0 and is closed under s then it is \mathbb{N} :

$$
\forall A \subset \mathbb{N},\left\{\begin{array}{l}
0 \in A \\
s(A) \subset A
\end{array} \Longrightarrow A=\mathbb{N}\right.
$$

The addition - 1

We are going to define $\begin{array}{cll}\mathbb{N} & \rightarrow & \mathbb{N} \\ b & \mapsto & a+b\end{array}$ for a given $a \in \mathbb{N}$.
How to do so? What would be a good definition to obtain what you intuitively know about +?
The idea is to define it inductively using the following properties we would like to have:

- $a+0=a$
- For $b \in \mathbb{N}, a+(b+1)=(a+b)+1$

So if $a+b$ is already defined, then we can define $a+(b+1)$.
Remember that intuitively +1 is "taking the successor".
Formally, we prove:

Proposition

Let $a \in \mathbb{N}$. Then there exists a unique function $(a+\bullet): \begin{array}{clc}\mathbb{N} & \rightarrow & \mathbb{N} \\ b & \mapsto & a+b\end{array}$ such that

$$
\text { (1) } a+0=a \quad \text { (2) } \forall b \in \mathbb{N}, a+s(b)=s(a+b)
$$

The above result is a consequence of the induction principle.

The addition - 2

Remark

Set $1:=s(0)$. Then, as expected, for $n \in \mathbb{N}$, we have

$$
n+1=n+s(0)=s(n+0)=s(n)
$$

Hence, from now on, I will use indistinctively $n+1$ or $s(n)$.

We can prove the following properties.

Proposition

- $\forall a, b, c \in \mathbb{N}, a+(b+c)=(a+b)+c$ (the addition is associative)
- $\forall a, b \in \mathbb{N}, a+b=b+a$ (the addition is commutative)
- $\forall a, b, c \in \mathbb{N}, a+b=a+c \Longrightarrow b=c$ (cancellation)
- $\forall a, b \in \mathbb{N}, a+b=0 \Longrightarrow a=b=0$

The addition - 3

Proof that $\forall a, b, c \in \mathbb{N}, a+(b+c)=(a+b)+c$.
Let $a, b \in \mathbb{N}$. Set $A=\{c \in \mathbb{N}: a+(b+c)=(a+b)+c\}$. Then

- $A \subset \mathbb{N}$
- $0 \in A$. Indeed, $a+(b+0)=a+b=(a+b)+0$.
- $s(A) \subset A$. Indeed, let $n \in s(A)$ then $n=s(c)$ for some $c \in A$. Therefore
$a+(b+n)=a+(b+s(c))=a+s(b+c)=s(a+(b+c))=s((a+b)+c)=(a+b)+s(c)=(a+b)+n$.
Hence $n \in A$.
Thus, by the induction principle, $A=\mathbb{N}$ and for any $c \in \mathbb{N}, a+(b+c)=(a+b)+c$.
Proof that $\forall a, b \in \mathbb{N}, a+b=0 \Longrightarrow a=b=0$.
Let $a, b \in \mathbb{N}$ be such that $a+b=0$. Assume by contradiction that $a \neq 0$ or $b \neq 0$.
Without lost of generality, we may assume that $b \neq 0$ (using commutativity).
Then $b=s(n)$ for some $n \in \mathbb{N}$.
So $0=a+b=a+s(n)=s(a+n)$.
Which is a contradiction since $0 \notin s(\mathbb{N})$.

The multiplication - 1

We define inductively $\begin{array}{cllc}\mathbb{N} & \rightarrow \mathbb{N} \\ b & \mapsto & a \times b\end{array}$ for a given $a \in \mathbb{N}$ using the following desired properties:

- $a \times 0=0$
- For $b \in \mathbb{N}, a \times(b+1)=(a \times b)+a$ So if $a \times b$ is already defined, then we can define $a \times(b+1)$.

Formally, we prove:

Proposition

Let $a \in \mathbb{N}$. Then there exists a unique function $(a \times \bullet): \begin{array}{clc}\mathbb{N} & \rightarrow & \mathbb{N} \\ b & \mapsto & a \times b\end{array}$ such that
(1) $a \times 0=0$
(2) $\forall b \in \mathbb{N}, a \times s(b)=(a \times b)+a$

Remark

It is common to simply write $a b$ for $a \times b$ when there is no possible confusion.

The multiplication - 2

Proposition

- $\forall a, b, c \in \mathbb{N}, a \times(b \times c)=(a \times b) \times c$ (the multiplication is associative)
- $\forall a, b \in \mathbb{N}, a \times b=b \times a$ (the multiplication is commutative)
- $\forall a, b, c \in \mathbb{N}, a \times(b+c)=a \times b+a \times c$ and $(a+b) \times c=a \times c+b \times c(\times$ is distributive over +)
- $\forall a \in \mathbb{N}, a \times 1=a$
- $\forall a, b \in \mathbb{N}, a \times b=0 \Longrightarrow(a=0$ or $b=0)$
- $\forall a, b, c \in \mathbb{N},\left\{\begin{array}{l}a \times b=a \times c \\ a \neq 0\end{array} \Longrightarrow b=c\right.$ (cancellation)

Order - 1

Definition: binary relation

A binary relation \mathcal{R} on a set E consists in associating a truth value to every couple $(x, y) \in E^{2}$. We say that x is related to y by \mathcal{R}, denoted $x \mathcal{R} y$, if the value true is assigned to (x, y).

Examples

(1) Let $E=\{a, b, c\}$. We can define a binary relation \mathcal{R} using a truth table as below:

y	a	b	c
a	\checkmark	X	\boldsymbol{X}
b	X	X	\checkmark
c	\checkmark	\checkmark	X

Here $a \mathcal{R} a, a \mathcal{R} c, b \mathcal{R} c$ and $c \mathcal{R} b$.
(2) For $E=\mathbb{R}$, we can define a binary relation as follows: $\forall(x, y) \in \mathbb{R}^{2}, x \mathcal{R} y \Leftrightarrow x^{2}-y^{2}=x-y$.

Order - 2

Definition: order

We say that a binary relation \mathcal{R} on a set E is an order if
(1) $\forall x \in E, x \mathcal{R} x$ (reflexivity)
(2) $\forall x, y \in E,(x \mathcal{R} y$ and $y \mathcal{R} x) \Longrightarrow x=y$ (antisymmetry)
(3) $\forall x, y, z \in E,(x \mathcal{R} y$ and $y \mathcal{R} z) \Longrightarrow x \mathcal{R} z$ (transitivity)

We say that the order \mathcal{R} is total if additionaly $\forall x, y \in E, x \mathcal{R} y$ or $y \mathcal{R} x$.
Definition: the usual order \leq on \mathbb{N}
We define the binary relation \leq on \mathbb{N} by $\quad \forall a, b \in \mathbb{N},(a \leq b \Leftrightarrow \exists k \in \mathbb{N}, b=a+k)$.
The intuition behind this definition is that $a \leq b$ if we need to add some k to a in order to reach b.

Notation

We write $a<b$ for $(a \leq b$ and $a \neq b)$.

Order - 3

Theorem

The set of natural numbers \mathbb{N} is totally ordered for \leq.

Proof.

(1) Reflexivity. Let $a \in \mathbb{N}$, then $a=a+0$ with $0 \in \mathbb{N}$, hence $a \leq a$.
(2) Antisymmetry. Let $a, b \in \mathbb{N}$ be such that $a \leq b$ and $b \leq a$.

Then there exists $k, l \in \mathbb{N}$ such that $b=a+k$ and $a=b+l$.
Therefore $a=b+l=a+k+l$. Hence $0=k+l$ and thus $l=k=0$ so that $a=b$.
(3) Transitivity. Let $a, b, c \in \mathbb{N}$ be such that $a \leq b$ and $b \leq c$.

Then there exists $k, l \in \mathbb{N}$ such that $b=a+k$ and $c=b+l$.
Therefore $c=b+l=a+(k+l)$ with $k+l \in \mathbb{N}$, i.e. $a \leq c$.
(4) \leq is total. Let $a \in \mathbb{N}$. Set $A=\{b \in \mathbb{N}: a \leq b$ or $b \leq a\}$. Then

$$
\bullet A \subset \mathbb{N} \quad \bullet 0 \in A, \text { indeed } a=0+a \text { so that } 0 \leq a . \quad \bullet s(A) \subset A
$$

Indeed, let $n \in s(A)$. Then $n=s(b)$ for some $b \in A$, i.e. $a \leq b$ or $b \leq a$.

- If $a \leq b$ then $b=a+k$ for some $k \in \mathbb{N}, n=s(b)=b+1=a+k+1$ with $k+1 \in \mathbb{N}$, so that $a \leq n$.
- If $b \leq a$ then $a=b+l$ for some $l \in \mathbb{N}$. We may assume that $l \neq 0$ (since $a=b$ was in the above case).

Then $l=\tilde{l}+1$ for some $\tilde{l} \in \mathbb{N}$. Hence $a=b+l=b+\tilde{l}+1=b+1+\tilde{l}=n+\tilde{l}$, i.e. $n \leq a$.
In both cases $n \in A$.
Therefore, by the induction principle, $A=\mathbb{N}$. So, for all $b \in \mathbb{N}$, either $a \leq b$ or $b \leq a$.

Order - 4

Proposition

(1) $\forall a \in \mathbb{N}, a \leq 0 \Longrightarrow a=0$
(2) $\forall a, b, c \in \mathbb{N}, a+b \leq a+c \Longrightarrow b \leq c$
(3) There is no $a \in \mathbb{N}$ such that $0<a<1$.
(4) There is no $a \in \mathbb{N}$ such that $\forall b \in \mathbb{N}, b \leq a$.
(5) $\forall a, b, c \in \mathbb{N}, a \leq b \Longrightarrow a c \leq b c$

Proof.

(1) Let $a \in \mathbb{N}$ be such that $a \leq 0$. Then there exists $k \in \mathbb{N}$ such that $0=a+k$. Hence $a=k=0$.
(2) Let $a, b, c \in \mathbb{N}$. Assume that $a+b \leq a+c$. Then there exists $k \in \mathbb{N}$ such that $a+c=a+b+k$. Thus $c=b+k$ so that $b \leq c$ as expected.
(3) Let $a \in \mathbb{N}$. Assume that $a<1$, then there exists $l \in \mathbb{N} \backslash\{0\}$ such that $1=a+l$. Since $l \neq 0, l=k+1$ for some $k \in \mathbb{N}$, and $1=a+k+1$ so that $0=a+k$. Therefore $a=0$.
(4) Assume by contradiction that there exists $a \in \mathbb{N}$ such that $\forall b \in \mathbb{N}, b \leq a$. Then $a+1 \leq a$ hence $1 \leq 0$, i.e. $0=1+k$ for some $k \in \mathbb{N}$. Therefore $1=0$ which is a contradiction (otherwise $0=s(0)$).
(5) Let $a, b, c \in \mathbb{N}$. Assume that $a \leq b$. Then $b=a+k$ for some $k \in \mathbb{N}$.

Thus $b c=(a+k) c=a c+k c$ with $k c \in \mathbb{N}$. Therefore $a c \leq b c$.

The well-ordering principle

Theorem: the well-ordering principle

A nonempty subset A of \mathbb{N} has a least element, i.e. there exists $n \in A$ such that $\forall a \in A, n \leq a$.

Proof.

Let's prove the contrapositive, i.e. if a subset $A \subset \mathbb{N}$ doesn't have a least element then it is empty.
Let $B=\{a \in \mathbb{N}: \forall i \leq a, i \notin A\}$.

- $B \subset \mathbb{N}$
- $0 \in B$ (otherwise 0 would be the least element of A).
- $s(B) \subset B$

Indeed, if $n \in s(B)$, then $n=s(a)$ for $a \in B$, i.e. $\forall i \leq a, i \notin A$.
Note that $n=a+1 \notin A$ otherwise it would be the least element of A.
Therefore $\forall i \leq n, i \notin A$, i.e. $n \in B$.
Thus, by the induction principle, $B=\mathbb{N}$ so A is empty.

