MAT246H1-S - LEC0201/9201

Concepts in Abstract Mathematics

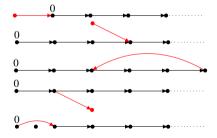
Natural numbers - 1

January 12th, 2021

What is N?

- There is an initial element: 0 "zero".
- Every natural number n has a successor s(n), intuitively n + 1.

But, that's not enough:



0 is not the successor of another natural number

A natural number can't be the successor of two distinct natural numbers

The successor can't *loop back* to a previous natural number

The successor of a natural number is uniquely defined

Every natural number is obtained from $\boldsymbol{0}$ applying iteratively the successor

So we need extra assumptions on 0 and s.

Peano's axioms – 1

We admit the following theorem (we have to start from somewhere...).

Theorem: Peano axioms

There exists a set \mathbb{N} together with an element $0 \in \mathbb{N}$ "zero" and a function $s : \mathbb{N} \to \mathbb{N}$ "successor" such that:

1 0 is not the successor of any element of \mathbb{N} , i.e. 0 is not in the image of s:

$$0\not\in s(\mathbb{N})$$

2 If the successor of n equals the successor of m then n = m, i.e. s is injective:

$$\forall n, m \in \mathbb{N}, \ s(n) = s(m) \implies n = m$$

3 The induction principle. If a subset of \mathbb{N} contains 0 and is closed under s then it is \mathbb{N} :

$$\forall A \subset \mathbb{N}, \left\{ \begin{array}{l} 0 \in A \\ s(A) \subset A \end{array} \right. \implies A = \mathbb{N}$$

The last point means we obtain $\mathbb N$ taking iteratively the successor starting at 0 (we don't miss any element).

- That's why we can define a sequence $(u_n)_{n\in\mathbb{N}}$ iteratively by fixing u_0 and setting $u_{n+1}=f(u_n)$.
- It is closely related to the notion of proof by induction.

Peano's axioms - 2

Remarks

- We can't use + and x yet, because they are still not defined.
 Currently, we can only use the three Peano's axioms from above.
- Intuitively, s(n) = n + 1 (which will become true after we define the addition).
- All the results about N will derive from these three basic properties (and even more since we
 will construct the other sets Z, Q, R, C from N).

A first result

Proposition

A natural number is never its own successor, i.e.

$$\forall n \in \mathbb{N}, n \neq s(n)$$

Proof.

Set $A = \{n \in \mathbb{N} : n \neq s(n)\}$. Then

- $A \subset \mathbb{N}$
- $0 \in A$ since $0 \neq s(0)$ (remember that $0 \notin s(\mathbb{N})$).
- $s(A) \subset A$ Indeed, let $m \in s(A)$. Then m = s(n) for some $n \in A$. So $s(n) \neq n$. Since s is injective, we get that $s(s(n)) \neq s(n)$, i.e. $s(m) \neq m$. Hence $m \in A$.

So, by the induction principle, $A = \mathbb{N}$.

Thus, for every $n \in \mathbb{N}$ we have that $n \neq s(n)$.