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Write your solutions concisely but without skipping important steps.
You can rely on all the material covered in the course (lecture notes, slides, weekly questions and problem sets).
You can use results from other questions of the exam by quoting them properly, even if you did not solve them.
Each question should be submitted in a separate picture on Crowdmark. Make sure that your submission is legible.

Exercise 1. 15 P.
Prove that ∀𝑛 ∈ ℕ ⧵ {0, 1}, 2𝑛 − 1 > 𝑛.

Exercise 2. 20 P.

1. Prove that ∀𝑚 ∈ ℕ ⧵ {0}, ∀𝑥 ∈ ℝ, 𝑥𝑚 − 1 = (𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠
.

2. Let 𝑛 ∈ ℕ ⧵ {0}. Prove that if 𝑛 is a composite number then 2𝑛 − 1 is composite too.
Recall that a natural number 𝑛 is composite if and only if there exist 𝑎, 𝑏 ∈ ℕ ⧵ {0, 1} such that 𝑛 = 𝑎𝑏.

3. We say that 𝑛 ∈ ℕ ⧵ {0, 1} is 2-prime if 2𝑛 ≡ 2 (mod 𝑛).
Prove that if 𝑛 is 2-prime then 2𝑛 − 1 is 2-prime too.

4. Deduce that there are infinitely many composite 2-prime numbers.
We admit that 341 is 2-prime.

Exercise 3. 15 P.
Let 𝑝 be a prime number. Prove that ∀𝑎, 𝑏 ∈ ℤ, 𝑎𝑝 ≡ 𝑏𝑝 (mod 𝑝) ⟹ 𝑎𝑝 ≡ 𝑏𝑝 (mod 𝑝2).

Exercise 4. 15 P.
We set 𝐷 ≔ {

𝑚
2𝑛 ∶ 𝑚 ∈ ℤ, 𝑛 ∈ ℕ}.

Prove that 𝐷 is dense in ℝ, i.e. prove that ∀𝑥, 𝑦 ∈ ℝ, 𝑥 < 𝑦 ⟹ ∃𝑑 ∈ 𝐷, 𝑥 < 𝑑 < 𝑦.

Exercise 5. 20 P.
Define 𝜃 ∶ ℤ × ℤ → ℝ by 𝜃(𝑎, 𝑏) = 𝑎 + 𝑏√2.

1. Is 𝜃 surjective?

2. Prove that 𝜃 is injective.

3. We set ℤ [√2] ≔ {𝑎 + 𝑏√2 ∶ 𝑎, 𝑏 ∈ ℤ}. Prove that |ℤ [√2]| = ℵ0.

Exercise 6. 15 P.
1. Prove that |ℝℚ| = |ℝ| where ℝℚ is the set of functions ℚ → ℝ.

2. We denote by 𝒞0(ℝ) the set of continuous functions ℝ → ℝ.

Prove that Φ ∶ {
𝒞0(ℝ) → ℝℚ

𝑓 ↦ 𝑓|ℚ
is injective, where 𝑓|ℚ denotes the restriction of 𝑓 to ℚ.

Remark: recall from your calculus course that if 𝑓 ∈ 𝒞0(ℝ) and lim
𝑛→+∞

𝑥𝑛 = ℓ then lim
𝑛→+∞

𝑓(𝑥𝑛) = 𝑓(ℓ).
Hint: don’t forget you can use results from problem sets.

3. Prove that |𝒞0(ℝ)| = |ℝ|.
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Sample solutions to Exercise 1.
Let’s prove the statement by induction on 𝑛 ≥ 2.

• Base case at 𝑛 = 2: 2𝑛 − 1 = 22 − 1 = 3 > 2 = 𝑛.

• Induction step. Assume that 2𝑛 − 1 > 𝑛 holds for some 𝑛 ≥ 2. Then

2𝑛+1 − 1 = 2 × 2𝑛 − 1 = 2(2𝑛 − 1) + 1
> 2𝑛 + 1 by the induction hypothesis
> 𝑛 + 1 since 𝑛 > 0

Which ends the induction step.

Comment: I asked this question to evaluate your writings for proof by inductions (since I insisted a lot on it this term) and I
picked this statement to prove by induction because it is useful for Exercises 2 and 4.

Sample solutions to Exercise 2.
1. Comment: Several students complained by e-mail that there is an issue when 𝑥 = 0 because 00 is undefined, but you use

the convention 00 = 1 all the time for such formulae, e.g.:

• Binomial formula: ∀𝑥, 𝑦 ∈ ℝ, ∀𝑛 ∈ ℕ, (𝑥 + 𝑦)𝑛 = ∑𝑛
𝑘=0 (

𝑛
𝑘)𝑥𝑘𝑦𝑛−𝑘

• Geometric sum: ∀𝑥 ∈ ℝ ⧵ {1}, ∀𝑛 ∈ ℕ, ∑𝑛
𝑘=0 𝑥𝑘 = 1−𝑥𝑛+1

1−𝑥
• When defining a polynomial function 𝑓 ∶ ℝ → ℝ by 𝑓(𝑥) = ∑𝑛

𝑘=0 𝑎𝑘𝑥𝑘

• When we proved that for finite sets |𝐸𝐹 | = |𝐸||𝐹 | (including the case 𝐸 = 𝐹 = ∅)
• …

Method 1:
Let 𝑥 ∈ ℝ.

We are going to prove that ∀𝑚 ∈ ℕ ⧵ {0}, 𝑥𝑚 − 1 = (𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠
by induction on 𝑚 ≥ 1.

• Base case at 𝑚 = 1: (𝑥 − 1)
⎛
⎜
⎜
⎝

1−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠

= (𝑥 − 1)𝑥0 = 𝑥 − 1 = 𝑥1 − 1.

• Induction step. Assume that 𝑥𝑚 − 1 = (𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠
for some 𝑚 ≥ 1. Then

(𝑥 − 1)
(

𝑚

∑
𝑘=0

𝑥𝑘
)

= (𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘 + 𝑥𝑚
⎞
⎟
⎟
⎠

= (𝑥 − 1)
𝑚−1

∑
𝑘=0

𝑥𝑘 + (𝑥 − 1)𝑥𝑚

= (𝑥𝑚 − 1) + (𝑥 − 1)𝑥𝑚 by induction hypothesis
= 𝑥𝑚 − 1 + 𝑥𝑚+1 − 𝑥𝑚 = 𝑥𝑚+1 − 1

which ends the induction step.

Method 2:
Let 𝑚 ∈ ℕ ⧵ {0} and 𝑥 ∈ ℝ. Then we have the following telescoping sum:

(𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠

= 𝑥
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠

−
𝑚−1

∑
𝑘=0

𝑥𝑘 =
𝑚−1

∑
𝑘=0

𝑥𝑘+1 −
𝑚−1

∑
𝑘=0

𝑥𝑘 =
𝑚

∑
𝑘=1

𝑥𝑘 −
𝑚−1

∑
𝑘=0

𝑥𝑘 = 𝑥𝑚 − 𝑥0 = 𝑥𝑚 − 1
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2. Let 𝑛 be a composite number. Then 𝑛 = 𝑎𝑏 for some 𝑎, 𝑏 ∈ ℕ ⧵ {0, 1}.
Therefore

2𝑛 − 1 = 2𝑎𝑏 − 1 = (2𝑎)𝑏 − 1 = (2𝑎 − 1)
⎛
⎜
⎜
⎝

𝑏−1

∑
𝑘=0

2𝑎𝑘
⎞
⎟
⎟
⎠

by Question 1 since 𝑏 ∈ ℕ ⧵ {0}

Since 𝑎 > 1, by Exercise 1, 2𝑎 − 1 > 𝑎 > 1.

Besides
𝑏−1

∑
𝑘=0

2𝑎𝑘 ≥ 20 + 2𝑎 > 1 since 𝑏 > 1.

Therefore 2𝑛 − 1 is composite.

3. Method 1:
Let 𝑛 ∈ ℕ ⧵ {0, 1} be a 2-prime number. Then 2𝑛 ≡ 2 (mod 𝑛), so that 2𝑛 = 2 + 𝜆𝑛 for some 𝜆 ∈ ℤ.
Note that, by Exercise 1 as 𝑛 ∈ ℕ ⧵ {0, 1}, 2𝑛 − 1 > 𝑛 ≥ 2. Thus 2𝑛 − 1 ∈ ℕ ⧵ {0, 1} and 𝜆 > 0.
Therefore

22𝑛−1−2 = 22+𝜆𝑛−1−2 = 21+𝜆𝑛−2 = 2 (2𝜆𝑛 − 1) = 2 ((2𝑛)
𝜆 − 1)) = 2 (2𝑛 − 1)

⎛
⎜
⎜
⎝

𝜆−1

∑
𝑘=0

2𝑛𝑘
⎞
⎟
⎟
⎠

by Q1 since 𝜆 > 0.

So 2𝑛 − 1|22𝑛−1 − 2, i.e. 22𝑛−1 ≡ 2 (mod 2𝑛 − 1).
Hence 2𝑛 − 1 is 2-prime.

Method 2:
Let 𝑛 ∈ ℕ ⧵ {0, 1} be a 2-prime number. Then 2𝑛 ≡ 2 (mod 𝑛), so that 2𝑛 = 2 + 𝜆𝑛 for some 𝜆 ∈ ℤ.
Note that, by Exercise 1 as 𝑛 ∈ ℕ ⧵ {0, 1}, 2𝑛 − 1 > 𝑛 ≥ 2. Thus 2𝑛 − 1 ∈ ℕ ⧵ {0, 1} and 𝜆 > 0.
Therefore 22𝑛−1 = 22+𝜆𝑛−1 = 21+𝜆𝑛 = 2 × (2𝑛)𝜆 ≡ 2 × 1𝜆 (mod 2𝑛 − 1) ≡ 2 (mod 2𝑛 − 1).
Hence 2𝑛 − 1 is 2-prime.

4. Assume by contradiction that the set of composite 2-prime numbers is finite, then it is bounded.
Besides it is non-empty since 341 = 11 × 31 is a composite 2-prime number.
Therefore there exists a greatest composite 2-prime number 𝑁 (Chapter 2, Theorem 17).
By Questions 2 and 3, 2𝑁 − 1 is a composite 2-prime number too since 𝑁 ≥ 341 > 1.
Besides 2𝑁 − 1 > 𝑁 by Exercise 1 since 𝑁 ≥ 341 > 1.
Hence a contradiction since 𝑁 is the greatest composite 2-prime number.

Sample solutions to Exercise 3.
Let 𝑎, 𝑏 ∈ ℤ be such that 𝑎𝑝 ≡ 𝑏𝑝 (mod 𝑝).
By Fermat’s little theorem, since 𝑝 is prime, we know that 𝑎𝑝 ≡ 𝑎 (mod 𝑝) and that 𝑏𝑝 ≡ 𝑏 (mod 𝑝).
Therefore 𝑎 ≡ 𝑏 (mod 𝑝). Thus there exists 𝜆 ∈ ℤ such that 𝑎 = 𝑏 + 𝜆𝑝.

Then 𝑎𝑝 = (𝑏+𝜆𝑝)𝑝 =
𝑝

∑
𝑘=0

(
𝑝
𝑘)𝑏𝑝−𝑘(𝜆𝑝)𝑘 = 𝑏𝑝 +𝑝𝑏𝑝−1𝜆𝑝+

𝑝

∑
𝑘=2

(
𝑝
𝑘)𝑏𝑝−𝑘𝜆𝑘𝑝𝑘 ≡ 𝑏𝑝 +0+

𝑝

∑
𝑘=2

0 (mod 𝑝2) ≡ 𝑏𝑝 (mod 𝑝2)

(note that 𝑝2|𝑝𝑏𝑝−1𝜆𝑝 = 𝑝2𝑏𝑝−1𝜆 and that 𝑝2|𝑝𝑘 for 𝑘 ≥ 2).

Sample solutions to Exercise 4.
We adapt the proof of Theorem 45 from Chapter 6, using 2𝑛 as denominator instead of 𝑛.
Let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦.
Set 𝜀 = 𝑦 − 𝑥 > 0.
By the archimedean property of ℝ, there exists 𝑛 ∈ ℕ such that 𝑛𝜀 > 1.
Note that 𝑛 > 0, since otherwise 0 > 1. Therefore 1

𝑛 < 𝜀.
Note that 2𝑛 > 𝑛. Indeed if 𝑛 > 1 then 2𝑛 > 𝑛 + 1 > 𝑛 by Exercise 1, otherwise if 𝑛 = 1 then 21 = 2 > 1.
Thus 0 < 1

2𝑛 < 1
𝑛 < 𝜀.

Set 𝑚 = ⌊2𝑛𝑥⌋ + 1, then 2𝑛𝑥 < 𝑚 ≤ 2𝑛𝑥 + 1, so 𝑥 < 𝑚
2𝑛 ≤ 𝑥 + 1

2𝑛 < 𝑥 + 𝜀 = 𝑦.
Hence 𝑑 = 𝑚

2𝑛 ∈ 𝐷 satisfies 𝑥 < 𝑑 < 𝑦.
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Sample solutions to Exercise 5.
1. Method 1:

We are going to prove that √3 ∉ Im(𝜃).
Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = √3. Then √3 = 𝑎 + 𝑏√2.

• If 𝑎 = 0, then √3 = 𝑏√2, so that 3 = 2𝑏2 with 𝑏2 ∈ ℤ. Then 2|3 which is impossible.
(alternatively: if 𝑎 = 0 then 3

2 = 𝑏2 ∈ ℤ, which is impossible).
Hence 𝑎 ≠ 0.

• If 𝑏 = 0, then √3 = 𝑎 ∈ ℚ. Which is impossible.
Hence 𝑏 ≠ 0.

Squaring √3 = 𝑎 + 𝑏√2, we get 3 = 𝑎2 + 2𝑏2 + 2𝑎𝑏√2, so that √2 = 3−𝑎2−2𝑏2

2𝑎𝑏 ∈ ℚ.
Which is a contradiction. Hence √3 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 2:
We are going to prove that √3 ∉ Im(𝜃).
Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = √3.
Then √3 = 𝑎 + 𝑏√2, so that √3 − 𝑏√2 = 𝑎.
Squaring the previous equality, we get 3 + 2𝑏2 − 2𝑏√6 = 𝑎2.
Note that 𝑏 ≠ 0 since otherwise √3 = 𝑎 ∈ ℚ which is impossible.
Therefore √6 = 3+2𝑏2−𝑎2

2𝑏 ∈ ℚ which is a contradiction. Hence √3 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 3:
We are going to prove that 314

42 ∉ Im(𝜃) (or anything in ℚ ⧵ ℤ).
Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = 314

42 . Then 314
42 = 𝑎 + 𝑏√2.

• First case: if 𝑏 = 0 then 314
42 = 𝑎 ∈ ℤ. Hence a contradiction.

• Second case: if 𝑏 ≠ 0 then 𝑏√2 ∉ ℚ by Week 9, Ex 4.4, since √2 ∉ ℚ and 𝑏 ∈ ℚ ⧵ {0}.
But 𝑏√2 = 314

42 − 𝑎 ∈ ℚ. Hence a contradiction.

Therefore 314
42 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 4: We are going to prove that 1
2 ∉ Im(𝜃).

Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = 1
2 .

Then 1
2 = 𝑎 + 𝑏√2 ⟹ 𝑏√2 = 1

2 − 𝑎 ⟹ 2𝑏2 = 1
4 + 𝑎2 − 𝑎 ⟹ 1

4 = 2𝑏2 − 𝑎2 + 𝑎 ∈ ℤ.
Hence a contradiction.
Therefore 1

2 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 5: We are going to prove that √2
2 ∉ Im(𝜃).

Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = √2
2 .

Then √2
2 = 𝑎 + 𝑏√2, so that (

1
2 − 𝑏) √2 = 𝑎. Note that 1

2 ∉ ℤ so that 𝑏 ≠ 1
2 , hence √2 = 𝑎

1/2−𝑏 ∈ ℚ.

Hence a contradiction. Therefore √2
2 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 6: Since |ℕ| = |ℤ|, we have |ℤ × ℤ| = |ℕ × ℕ| = |ℕ| = ℵ0 < |ℝ|.
Therefore, there is no surjection ℤ × ℤ → ℝ, so that 𝜃 can’t be surjective.
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2. Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ ℤ2 be such that 𝜃(𝑎, 𝑏) = 𝜃(𝑐, 𝑑).
Then 𝑎 + 𝑏√2 = 𝑐 + 𝑑√2, i.e. (𝑎 − 𝑐) + (𝑏 − 𝑑)√2 = 0.

• If 𝑏 ≠ 𝑑, then √2 = 𝑐−𝑎
𝑏−𝑑 ∈ ℚ, which is impossible.

• If 𝑏 = 𝑑, then 𝑎 − 𝑐 = 0, so that (𝑎, 𝑏) = (𝑐, 𝑑).
Therefore 𝜃 is injective.

3. Method 1:
Note that Im(𝜃) = ℤ [√2] by definition of ℤ [√2].

Therefore ̃𝜃 ∶ ℤ × ℤ → ℤ [√2] defined by ̃𝜃(𝑎, 𝑏) = 𝜃(𝑎, 𝑏) is well-defined and surjective.
Besides, it is injective (and hence bijective) by the previous question.
Hence |ℤ [√2]| = |ℤ × ℤ| = |ℕ × ℕ| = ℵ0 since |ℤ| = |ℕ|.

Method 2:
Since |ℤ| = |ℕ|, we get |ℤ2| = |ℤ × ℤ| = |ℕ × ℕ| = ℵ0.
So ℤ [√2] = ⋃

(𝑎,𝑏)∈ℤ2
{𝑎 + 𝑏√2} is countable as a countable union of countable sets (singletons).

Thus |ℤ [√2]| ≤ ℵ0.

Besides ℤ ⊂ ℤ [√2], hence ℵ0 = |ℤ| ≤ |ℤ [√2]|.

Finally, by Cantor–Schröder–Bernstein theorem, we get that |ℤ [√2]| = ℵ0 as required.

Sample solutions to Exercise 6.
1. Since |ℚ| = |ℕ|, there exists a bijective function 𝜓 ∶ ℚ → ℕ.

We define Ψ ∶ ℝℕ → ℝℚ by Ψ(𝑓) = 𝑓 ∘ 𝜓 . Note that Ψ is bijective with inverse Ψ−1(𝑔) = 𝑔 ∘ 𝜓−1.
Indeed, for 𝑓 ∈ ℝℕ, Ψ−1(Ψ(𝑓)) = 𝑓 ∘ 𝜓 ∘ 𝜓−1 = 𝑓 , and for 𝑔 ∈ ℝℚ, Ψ(Ψ−1(𝑔)) = 𝑔 ∘ 𝜓−1 ∘ 𝜓 = 𝑔.
Therefore |ℝℚ| = |ℝℕ| = |ℝ| by Week 11 Exercise 9.

2. Let 𝑓, 𝑔 ∈ 𝒞0(ℝ) be such that Φ(𝑓) = Φ(𝑔), i.e. 𝑓|ℚ = 𝑔|ℚ (otherwise stated, ∀𝑥 ∈ ℚ, 𝑓(𝑥) = 𝑔(𝑥)).
Let 𝑥 ∈ ℝ. By PS4, Exercise 3, there exists a sequence (𝑞𝑛)𝑛 of rational numbers such that lim

𝑛→+∞
𝑞𝑛 = 𝑥.

Then

𝑓(𝑥) = lim
𝑛→+∞

𝑓(𝑞𝑛) since 𝑓 is continuous

= lim
𝑛→+∞

𝑔(𝑞𝑛) since ∀𝑛, 𝑞𝑛 ∈ ℚ and 𝑓|ℚ = 𝑔|ℚ

= 𝑔(𝑥) since 𝑔 is continuous

Therefore, ∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑔(𝑥), so that 𝑓 = 𝑔.

3. Since Φ is injective, we know that |𝒞0(ℝ)| ≤ |ℝℚ| = |ℝ|.
Note that Γ ∶ ℝ → 𝒞0(ℝ) mapping 𝑥0 to the constant function

Γ(𝑥0) ∶ ℝ → ℝ
𝑥 ↦ 𝑥0

is well-defined (since a constant function is continuous) and injective.
Therefore |ℝ| ≤ |𝒞0(ℝ)|.
From Cantor–Schröder–Bernstein theorem, we get that |𝒞0(ℝ)| = |ℝ|.


