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Let’s start with a short story.

A conference about singularity theory is going to take place in the lovely village of Tarski, and partici-
pants start to arrive. Most of them decided to be hosted at the Aleph Nought Hotel. It is a huge hotel, built
especially for this occasion, with infinitely many rooms numbered using ℕ: 0, 1, 2, 3… Despite this large
number of rooms, the sign FULL lights up over the front door indicating that there is no vacancy!

A group of 42 late mathematicians from Nice show up at the front desk and are received by the recep-
tionist David H. who exclaims ”For Cantor’s sake! I thought that we were not expecting new guests! No worries, I
will find a solution”. Then he uses the intercom of the hotel to send the following message to all the current
guests: ”Sorry for the inconvenience, but I would need your cooperation in order to accomodate new guests. Please,
if your current room is labeled 𝑛 then could you move to the room 𝑛 + 42? Thank you so much and once again, sorry
of the inconvenience”. Therefore the rooms 0, 1, 2, …, 41 are now available for the latecomers and the already
hosted guests still have individual rooms.

Later a bus containing the canadian delegation reaches the hotel. The driver meets David H. and says
”Sorry for the delay, I got lost on the way. I have a bus full with infinitely many canadian mathematicians! We booked
infinitely rooms at your hotel and for your conveniency we gave to each of our member a card with a natural number:
0, 1, 2…”. Then David H. desperates ”Holy Dedekind! What a night! No worries, I will handle the situation!”.

And once again, he uses the intercom of the hotel to send the following message: ”If you are currently in
the room 𝑛, please could you move to the room 2𝑛 + 1? Sorry for the inconvenience.” This way the guests already in
the hotel still have individual rooms and now there are infinitely many empty rooms (the even numbered
ones) for the canadian participants. Next David H. asks the newcomers ”If your card shows the number 𝑚,
please go to the room 2𝑚”, and everyone gets an individual room1.

Our friendly receptionist is later awakened by a terrible loudly noise outside. He shouts ”In Gödel’s name,
what’s happening now?” and then he reaches the front door to see infinitely many flying saucers2 (numbered
0, 1, 2, …). An extraterrestrialmathematician goes tomeet DavidH. and tells ”Sorry for the delay, we come from
Proxima Centauri and we got stuck in traffic jams. Each of our ships contains infinitely countably many participants!”.

David H. doesn’t seem particularly concerned and send the following message to the current guests us-
ing his intercom: ”Dear guest, if you are currently in the room 𝑛, please could you move to the room 2𝑛?”. Therefore
the odd-numbered rooms are now free. Then David H. asks the 𝑘th passenger of the 𝑙th ship to go to the
room 3𝑘5𝑙, so that everyone gets an individual room3.

This story highlights something interesting about the behaviour of infinite sets such as ℕ. First we were
able to add 42 elements to ℕ without changing its size. Even less intuitively, then we added a copy of ℕ to ℕ
without changing its size. And finally, we were even able to add ℕ × ℕ (i.e. infinitely many copies of ℕ) to
ℕ without changing its size.

The goal of this chapter is to formally define the notion of size of a set (it will be called cardinality) and
to study its properties (which may be counter-intuitive, as above, for infinite sets).

1The function ℕ ∋ 𝑛 ↦ 2𝑛 + 1 ∈ ℕ is one-to-one so the current guests keep individual rooms. Then ℕ ∋ 𝑚 ↦ 2𝑚 ∈ ℕ is also
one-to-one, so two different newcomers are sent to two different rooms (and these rooms are empty since even numbered).

2Until now, the story was quite realistic…
3By uniqueness of the prime factorization, ℕ ∋ (𝑘, 𝑙) ↦ 3𝑘5𝑙 ∈ ℕ is injective, so the newcomers are sent to different rooms, and

these rooms are free since odd-numbered.



2 Cardinality

Contents
1 Reviews about functions 2

2 Finite sets 3

3 Generalization to infinite sets 7

4 Countable sets 10

5 Cantor’s diagonal argument 12

A What is a set? 14

B Un morceau de choix 16

1 Reviews about functions
Definition 1 (Informal4 definition of a function). A function (ormap) is the data of two sets 𝐴 and 𝐵 together
with a ”process” which assigns to each 𝑥 ∈ 𝐴 a unique 𝑓(𝑥) ∈ 𝐵:

𝑓 ∶ {
𝐴 → 𝐵
𝑥 ↦ 𝑓(𝑥)

Here, 𝑓 is the name of the function, 𝐴 is the domain of 𝑓 , and 𝐵 is the codomain of 𝑓 .

Remark 2. This process can be:
• A formula: define 𝑓 ∶ ℝ → ℝ by 𝑓(𝑥) = 𝑒𝑥2−𝜋 + 42.
• An exhaustive list: define 𝑓 ∶ {1, 2, 3} → ℝ by 𝑓(1) = 𝜋, 𝑓(2) = √2, 𝑓(3) = 𝑒.
• A property characterizing 𝑓 uniquely: log is the unique antiderivative of 𝑔 ∶ (0, +∞) → ℝ defined by

𝑔(𝑥) = 1
𝑥 such that log(1) = 0.

• By induction: we define the sequence 𝑢𝑛 ∶ ℕ → ℝ by 𝑢0 = 1 and ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑢2
𝑛 + 1.

• The solution of a differential equation: the exponential function exp ∶ ℝ → ℝ is the unique differen-
tiable function such that exp′ = exp and exp(0) = 1.

• The solution of a functional equation: the exponential function with base 𝑎 ∈ ℝ denoted by exp𝑎 ∶
ℝ → ℝ is the unique monotonic function such that exp𝑎(𝑥 + 𝑦) = exp𝑎(𝑥)𝑎 exp(𝑦) and exp𝑎(1) = 𝑎.

• …

Remark 3. The domain and codomain are part of the definition of a function. For instance:

• 𝑓 ∶ {
ℝ → (0, +∞)
𝑥 ↦ 𝑒𝑥 and 𝑔 ∶ {

ℝ → ℝ
𝑥 ↦ 𝑒𝑥 are not the same function (the first one is

surjective but not the second one, see below).

• 𝑓 ∶ {
[0, +∞) → ℝ

𝑥 ↦ 𝑥2 + 1 and 𝑔 ∶ {
ℝ → ℝ
𝑥 ↦ 𝑥2 + 1 are not the same function (the first

one is injective but not the second one, see below).

A function is not simply a ”formula”, you need to specify the domain and the codomain.

Definitions 4. Given a function 𝑓 ∶ 𝐴 → 𝐵.
• The image of 𝐸 ⊂ 𝐴 by 𝑓 is 𝑓(𝐸) ≔ {𝑓(𝑥) ∶ 𝑥 ∈ 𝐸} ⊂ 𝐵.
• The image of f (or range of 𝑓) is Range(𝑓 ) ≔ 𝑓(𝐴).
• The preimage of 𝐹 ⊂ 𝐵 by 𝑓 is 𝑓 −1(𝐹 ) ≔ {𝑥 ∈ 𝐴 ∶ 𝑓(𝑥) ∈ 𝐹 }.

4Formally, a function 𝑓 ∶ 𝐴 → 𝐵 is characterized by its graph Γ𝑓 ⊂ 𝐴 × 𝐵 which needs to satisfy ∀𝑥 ∈ 𝐴, ∃!𝑦 ∈ 𝐵, (𝑥, 𝑦) ∈ Γ𝑓 .
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• The graph of 𝑓 is the set Γ𝑓 ≔ {(𝑥, 𝑦) ∈ 𝐴 × 𝐵 ∶ 𝑦 = 𝑓(𝑥)}.
• We say that 𝑓 is injective (or one-to-one) if ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑥1 ≠ 𝑥2 ⟹ 𝑓(𝑥1) ≠ 𝑓(𝑥2)

or equivalently by taking the contrapositive ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑓(𝑥1) = 𝑓(𝑥2) ⟹ 𝑥1 = 𝑥2
• We say that 𝑓 is surjective (or onto) if ∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)
• We say that 𝑓 is bijective if it is injective and surjective, i.e. ∀𝑦 ∈ 𝐵, ∃!𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)

Proposition 5. Let 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐺 be two functions.
1. If 𝑓 and 𝑔 are injective then so is 𝑔 ∘ 𝑓 .
2. If 𝑓 and 𝑔 are surjective then so is 𝑔 ∘ 𝑓 .
3. If 𝑔 ∘ 𝑓 is injective then 𝑓 is injective too.
4. If 𝑔 ∘ 𝑓 is surjective then 𝑔 is surjective too.

Proof.
1. Let 𝑥, 𝑦 ∈ 𝐸 be such that 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑦)). Then 𝑓(𝑥) = 𝑓(𝑦) since 𝑔 is injective. Thus 𝑥 = 𝑦 since 𝑓 is

injective.
2. Let 𝑧 ∈ 𝐺. Since 𝑔 is surjective, it exists 𝑦 ∈ 𝐹 such that 𝑧 = 𝑔(𝑦). Since 𝑓 is surjective, it exists 𝑥 ∈ 𝐸

such that 𝑦 = 𝑓(𝑥). Therefore 𝑧 = 𝑔(𝑓(𝑥)).
3. Let 𝑥, 𝑦 ∈ 𝐸 such that 𝑓(𝑥) = 𝑓(𝑦). Then 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑦)) and thus 𝑥 = 𝑦 since 𝑔 ∘ 𝑓 is injective.
4. Let 𝑧 ∈ 𝐺. Since 𝑔 ∘ 𝑓 is surjective, there exists 𝑥 ∈ 𝐸 such that 𝑧 = 𝑔(𝑓(𝑥)). Then 𝑦 = 𝑓(𝑥) ∈ 𝐹 satisfies

𝑔(𝑦) = 𝑧.
■

Proposition 6. 𝑓 ∶ 𝐴 → 𝐵 is bijective if and only if there exists 𝑔 ∶ 𝐵 → 𝐴 such that {
∀𝑥 ∈ 𝐴, 𝑔(𝑓(𝑥)) = 𝑥
∀𝑦 ∈ 𝐵, 𝑓(𝑔(𝑦)) = 𝑦 .

Then 𝑔 is unique, it is called the inverse of 𝑓 and denoted by 𝑓 −1 ∶ 𝐵 → 𝐴.

Proof. ⇒ Assume that 𝑓 is bijective, then ∀𝑦 ∈ 𝐵, ∃!𝑥𝑦 ∈ 𝐴, 𝑓(𝑥𝑦) = 𝑦. We define 𝑔 ∶ 𝐵 → 𝐴 by 𝑔(𝑦) = 𝑥𝑦.
Then 𝑔 satisfies the required properties.
⇐ Assume that there exists 𝑔 as in the statement. Then 𝑔 ∘ 𝑓 = 𝑖𝑑𝐴 is injective, so 𝑓 is too by Proposition 5.
And 𝑓 ∘ 𝑔 = 𝑖𝑑𝐵 is surjective, thus 𝑓 is too, still by Proposition 5. Therefore 𝑓 is bijective.

For the uniqueness: assume there exist two such functions 𝑔1, 𝑔2 ∶ 𝐵 → 𝐴. Let 𝑦 ∈ 𝐵. Then 𝑓(𝑔1(𝑦)) =
𝑦 = 𝑓(𝑔2(𝑦)). So 𝑔1(𝑦) = 𝑔2(𝑦) since 𝑓 is injective. ■

2 Finite sets
Definition 7. We say that a set 𝐸 is finite if there exists 𝑛 ∈ ℕ and a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
Then we write |𝐸| = 𝑛.

Remark 8. Note that {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} = {0, 1, 2, … , 𝑛 − 1}.

We are first going to prove that if such a 𝑛 exists, then it is unique.

Lemma 9. Let 𝑛, 𝑝 ∈ ℕ. If there exists an injective function 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝} then 𝑛 ≤ 𝑝.

Proof. We prove the statement by induction on 𝑛.
• Base case at 𝑛 = 0: for any 𝑝 ∈ ℕ we have 𝑛 ≤ 𝑝.
• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.

Let 𝑝 ∈ ℕ. Assume that there exists an injective function 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛 + 1} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝}.
Define 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝 − 1} as follows:

𝑔(𝑥) = {
𝑓(𝑥) if 𝑓(𝑥) < 𝑓(𝑛)

𝑓(𝑥) − 1 if 𝑓(𝑥) > 𝑓(𝑛)

Note that 𝑓(𝑥) ≠ 𝑓(𝑛) since 𝑓 is injective.
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FIGURE: an example.

– Claim 1: 𝑔 is well-defined, i.e. ∀𝑥 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛}, 𝑔(𝑥) ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝 − 1}.
Let 𝑥 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛}.
So either 𝑓(𝑥) < 𝑓(𝑛), and then 𝑔(𝑥) = 𝑓(𝑥) < 𝑓(𝑛) < 𝑝, therefore 0 ≤ 𝑔(𝑥) < 𝑝 − 1.
Or 𝑓(𝑥) > 𝑓(𝑛), and then 𝑔(𝑥) = 𝑓(𝑥) − 1 < 𝑝 − 1, therefore 0 ≤ 𝑔(𝑥) < 𝑝 − 1.

– Claim 2: 𝑔 is injective.
Let 𝑥, 𝑦 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} be such that 𝑔(𝑥) = 𝑔(𝑦).
∗ First case: 𝑓(𝑥), 𝑓 (𝑦) < 𝑓(𝑛).

Then 𝑔(𝑥) = 𝑓(𝑥) and 𝑔(𝑦) = 𝑓(𝑦). So 𝑓(𝑥) = 𝑓(𝑦) and thus 𝑥 = 𝑦 since 𝑓 is injective.
∗ Second case: 𝑓(𝑥), 𝑓 (𝑦) ≥ 𝑓(𝑛).

Then 𝑔(𝑥) = 𝑓(𝑥) − 1 and 𝑔(𝑦) = 𝑓(𝑦) − 1. So 𝑓(𝑥) = 𝑓(𝑦) and thus 𝑥 = 𝑦 since 𝑓 is injective.
∗ Third case: 𝑓(𝑥) < 𝑓(𝑛) and 𝑓(𝑦) > 𝑓(𝑛).

Then 𝑔(𝑥) = 𝑓(𝑥) < 𝑓(𝑛) and 𝑔(𝑦) = 𝑓(𝑦) − 1 > 𝑓(𝑛) − 1 ≥ 𝑓(𝑛). Therefore, this case is
impossible.

∗ Fourth case: 𝑓(𝑦) < 𝑓(𝑛) and 𝑓(𝑥) > 𝑓(𝑛). Similar to the previous one.
Therefore, by the induction hypothesis, 𝑛 ≤ 𝑝 − 1, i.e. 𝑛 + 1 ≤ 𝑝.

■

Corollary 10. Let 𝐸 be a finite set. If |𝐸| = 𝑛 and |𝐸| = 𝑚, then 𝑚 = 𝑛.
Then we say that |𝐸| is the cardinal of 𝐸, which is uniquely defined.

Proof. Assume there exists a bijection 𝑓1 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸 and a bijection 𝑓2 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} → 𝐸.
Then 𝑓 −1

2 ∘ 𝑓1 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} is a bijection, so by the above lemma, 𝑛 ≤ 𝑚.
Similarly, 𝑓 −1

1 ∘ 𝑓2 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} is a bijection and thus 𝑚 ≤ 𝑛.
Therefore 𝑛 = 𝑚. ■

Remark 11. Informally, the cardinal of a finite set is its size, i.e. the number of elements it contains.

Remark 12. |𝐸| = 0 ⇔ 𝐸 = ∅
Indeed, if 𝐸 = ∅ then 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 0} → 𝐸 is always bijective: injectiveness and surjectiveness are
vacuously true. So |𝐸| = 0.
Otherwise, if 𝐸 ≠ ∅ then 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 0} → 𝐸 is never surjective, so |𝐸| ≠ 0.

Proposition 13. If 𝐸 ⊂ 𝐹 and 𝐹 is finite then 𝐸 is finite too, besides, |𝐸| ≤ |𝐹 |.

Proof. Let’s prove by induction on 𝑛 = |𝐹 | that if 𝐸 ⊂ 𝐹 then 𝐸 is finite and |𝐸| ≤ 𝑛.

• Base case at 𝑛 = 0: then 𝐹 = ∅, so the only possible subset is 𝐸 = ∅ and then |𝐸| = 0.

• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.
Let 𝐹 be a set such that |𝐹 | = 𝑛 + 1.

– First case: 𝐸 = 𝐹 . Then the statement is obvious.
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– Second case: 𝐸 ≠ 𝐹 . Then there exists 𝑥 ∈ 𝐹 ⧵ 𝐸.
There exists a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛 + 1} → 𝐹 .
Since 𝑓 is bijective, there exists a unique 𝑚 ∈ {0, 1, … , 𝑛} such that 𝑓(𝑚) = 𝑥.
Define 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐹 ⧵ {𝑥} by 𝑔(𝑘) = 𝑓(𝑘) for 𝑘 ≠ 𝑚 and, if 𝑚 ≠ 𝑛, 𝑔(𝑚) = 𝑓(𝑛).
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Figure 1: If 𝑚 ≠ 𝑛, i.e. 𝑓(𝑛) ≠ 𝑥
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Figure 2: If 𝑚 = 𝑛, i.e. 𝑓(𝑛) = 𝑥

Then 𝑔 is a bijection (check it), so 𝐹 ⧵ {𝑥} is finite and |𝐹 ⧵ {𝑥}| = 𝑛.
Since 𝐸 ⊂ 𝐹 ⧵ {𝑥}, by the induction hypothesis, 𝐸 is finite and |𝐸| ≤ 𝑛 < 𝑛 + 1. ■

Proposition 14. Let 𝐸 ⊂ 𝐹 with 𝐹 finite. Then |𝐹 | = |𝐸| + |𝐹 ⧵ 𝐸|.

Proof. Since 𝐹 ⧵ 𝐸 ⊂ 𝐹 and 𝐸 ⊂ 𝐹 , we know that 𝐸 and 𝐹 ⧵ 𝐸 are finite. Denote 𝑟 = |𝐸| and 𝑠 = |𝐹 ⧵ 𝐸|.
There exist bijections 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑟} → 𝐸 and 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑠} → 𝐹 ⧵ 𝐸.

Define ℎ ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑟 + 𝑠} → 𝐹 by ℎ(𝑘) = {
𝑓(𝑘) if 𝑘 < 𝑟

𝑔(𝑘 − 𝑟) if 𝑘 ≥ 𝑟 .

• ℎ is well-defined:
Indeed, if 0 ≤ 𝑘 < 𝑟 then 𝑓(𝑘) is well-defined and 𝑓(𝑘) ∈ 𝐸 ⊂ 𝐹 .
If 𝑟 ≤ 𝑘 < 𝑟 + 𝑠 then 0 ≤ 𝑘 − 𝑟 < 𝑠 so that 𝑔(𝑘 − 𝑟) is well-defined and 𝑔(𝑘 − 𝑟) ∈ 𝐹 ⧵ 𝐸 ⊂ 𝐹 .

• ℎ is a bijection:
– ℎ is injective: let 𝑥, 𝑦 ∈ {0, 1, … , 𝑟 + 𝑠 − 1} be such that ℎ(𝑥) = ℎ(𝑦).

Either ℎ(𝑥) = ℎ(𝑦) ∈ 𝐸 and then 𝑓(𝑥) = ℎ(𝑥) = ℎ(𝑦) = 𝑓(𝑦) thus 𝑥 = 𝑦 since 𝑓 is injective.
Or ℎ(𝑥) = ℎ(𝑦) ∈ 𝐹 ⧵ 𝐸 and then 𝑔(𝑥 − 𝑟) = ℎ(𝑥) = ℎ(𝑦) = 𝑔(𝑦 − 𝑟) thus 𝑥 − 𝑟 = 𝑦 − 𝑟 since 𝑔 is
injective, hence 𝑥 = 𝑦.

– ℎ is surjective: let 𝑦 ∈ 𝐹 .
Either 𝑦 ∈ 𝐸, and then there exists 𝑥 ∈ {0, 1, … , 𝑟 − 1} such that 𝑓(𝑥) = 𝑦, since 𝑓 is surjective.
Then ℎ(𝑥) = 𝑓(𝑥) = 𝑦.
Or 𝑦 ∈ 𝐹 ⧵ 𝐸, and then there exists 𝑥 ∈ {0, 1, … , 𝑠 − 1} such that 𝑔(𝑥) = 𝑦 since 𝑔 is surjective.
Then ℎ(𝑥 + 𝑟) = 𝑔(𝑥) = 𝑦.

Therefore |𝐹 | = 𝑟 + 𝑠 = |𝐸| + |𝐹 ⧵ 𝐸|. ■

Proposition 15. Let 𝐸 and 𝐹 be two finite sets. Then
1. |𝐸 ∪ 𝐹 | = |𝐸| + |𝐹 | − |𝐸 ∩ 𝐹 |
2. |𝐸 × 𝐹 | = |𝐸| × |𝐹 |

Proof.

1. Using Proposition 14 twice, we get

|𝐸 ∪ 𝐹 | = |𝐸 ⊔ (𝐹 ⧵ (𝐸 ∩ 𝐹 ))| = |𝐸| + |𝐹 ⧵ (𝐸 ∩ 𝐹 )| = |𝐸| + |𝐹 | − |𝐸 ∩ 𝐹 |

2. We prove this proposition by induction on 𝑛 = |𝐹 | ∈ ℕ.

• Base case at 𝑛 = 0: then 𝐹 = ∅ so 𝐸 × 𝐹 = ∅ too and |𝐸 × 𝐹 | = 0 = |𝐸| × 0 = |𝐸| × |𝐹 |.
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• Case 𝑛 = 1: we will use this special case later in the proof.
Assume that 𝐹 = {∗} and that |𝐸| = 𝑝. Then there exists a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝} → 𝐸.
Note that 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝} → 𝐸 × 𝐹 defined by 𝑔(𝑘) = (𝑓(𝑘), ∗) is a bijection.
Therefore |𝐸 × 𝐹 | = 𝑝 = 𝑝 × 1 = |𝐸| × |𝐹 |.

• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.
Let 𝐹 be a set such that |𝐹 | = 𝑛 + 1.
Since |𝐹 | > 0, there exists 𝑥 ∈ 𝐹 and |𝐹 ⧵ {𝑥}| = |𝐹 | − |{𝑥}| = 𝑛 + 1 − 1 = 𝑛. Then

|𝐸 × 𝐹 | = |(𝐸 × (𝐹 ⧵ {𝑥})) ⊔ (𝐸 × {𝑥})|
= |𝐸 × (𝐹 ⧵ {𝑥})| + |𝐸 × {𝑥}|
= |𝐸| × |𝐹 ⧵ {𝑥}| + |𝐸| using the induction hypothesis and the case 𝑛 = 1
= |𝐸| × (|𝐹 | − 1) + |𝐸|
= |𝐸| × |𝐹 | ■

Proposition 16. Assume that 𝐸 ⊂ 𝐹 with 𝐹 finite. Then 𝐸 = 𝐹 ⇔ |𝐸| = |𝐹 |.

Proof.
⇒ It is obvious.
⇐ Assume that |𝐸| = |𝐹 |. Then |𝐹 ⧵ 𝐸| = |𝐹 | − |𝐸| = 0. Thus 𝐹 ⧵ 𝐸 = ∅, i.e. 𝐸 = 𝐹 . ■

Proposition 17. Let 𝐸 a finite set. Then 𝐹 is finite and |𝐸| = |𝐹 | if and only if there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .

Proof.
⇒ Assume that 𝐹 is finite and that |𝐸| = |𝐹 | = 𝑛.
Then there exist bijections 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸 and 𝜓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐹 .
Therefore 𝑓 = 𝜓 ∘ 𝜑−1 ∶ 𝐸 → 𝐹 is a bijection.
⇐ Assume that there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .
Since 𝐸 is finite there exists a bijection 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.
Thus 𝑓 ∘ 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐹 is a bijection. Therefore 𝐹 is finite and |𝐹 | = |𝐸|. ■

Proposition 18. Let 𝐸, 𝐹 be two finite sets such that |𝐸| = |𝐹 |. Let 𝑓 ∶ 𝐸 → 𝐹 . Then TFAE:
1. 𝑓 is injective,
2. 𝑓 is surjective,
3. 𝑓 is bijective.

Proof.
Assume that 𝑓 is injective.
There exists a bijection 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.
Then 𝑓 ∘ 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝑓(𝐸) is a bijection. Thus |𝑓 (𝐸)| = |𝐸| = |𝐹 |.
Since 𝑓(𝐸) ⊂ 𝐹 and |𝑓 (𝐸)| = |𝐹 |, we get 𝑓(𝐸) = 𝐹 , i.e. 𝑓 is surjective.

Assume that 𝑓 is surjective.
Then for every 𝑦 ∈ 𝐹 , 𝑓 −1(𝑦) ⊂ 𝐸 is finite and non-empty, i.e. |𝑓 −1(𝑦)| ≥ 1.
Assume by contradiction that there exists 𝑦 ∈ 𝐹 such that |𝑓 −1(𝑦)| > 1.

Thus |𝐸| =
| ⨆
𝑦∈𝐹

𝑓 −1(𝑦)
|

= ∑
𝑦∈𝐹

|𝑓 −1(𝑦)| > |𝐹 | = |𝐸|.

Hence a contradiction. ■

Proposition 19. Let 𝐸 and 𝐹 be two finite sets. Then |𝐸| ≤ |𝐹 | if and only if there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .

Proof.
⇒ Assume that |𝐸| ≤ |𝐹 |.
There exist bijections 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸 and 𝜓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐹 |} → 𝐹 .
Since |𝐸| ≤ |𝐹 |, 𝑓 = 𝜓 ∘ 𝜑−1 ∶ 𝐸 → 𝐹 is well-defined and injective.
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⇒ Assume that there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .
Then 𝑓 induces a bijection 𝑓 ∶ 𝐸 → 𝑓(𝐸), so that |𝐸| = |𝑓(𝐸)|.
And since 𝑓(𝐸) ⊂ 𝐹 , we have |𝑓 (𝐸)| ≤ |𝐹 |. ■

Corollary 20 (The pigeonhole principle or Dirichlet’s drawer principle).
Let 𝐸 and 𝐹 be two finite sets. If |𝐸| > |𝐹 | then there is no injective function 𝐸 → 𝐹 .

Example 21. There are two non-bald people in Toronto with the exact same number of hairs on their heads.

Example 22. During a post-covid party with 𝑛 > 1 participants, we may always find two people who shook
hands to the same number of people.

Remark 23. Since the cardinal of a finite set is a natural number, we deduce that given two finite sets 𝐸 and
𝐹 , exactly one of the followings occurs:

• either |𝐸| < |𝐹 | (i.e. there is an injection 𝐸 → 𝐹 but no bijection 𝐸 → 𝐹 ),
• or |𝐸| = |𝐹 | (i.e. there is a bijection 𝐸 → 𝐹 ),
• or |𝐸| > |𝐹 | (i.e. there is an injection 𝐹 → 𝐸 but no bijection 𝐸 → 𝐹 ).

3 Generalization to infinite sets

Definition 24. We say that a set is infinite if it is not finite.

Theorem 25. ℕ is infinite.

Proof. Assume by contradiction that ℕ is finite. Then ℕ ⧵ {0} ⊂ ℕ so ℕ ⧵ {0} is finite too.
We define 𝑓 ∶ ℕ → ℕ ⧵ {0} by 𝑓(𝑛) = 𝑛 + 1. Note that 𝑓 is bijective with inverse 𝑓 −1 ∶ ℕ ⧵ {0} → ℕ defined
by 𝑓 −1(𝑛) = 𝑛 − 1.
Thus |ℕ| = |ℕ ⧵ {0}| = |ℕ| − |{0}| = |ℕ| − 1, i.e. 0 = 1.
Hence a contradiction. ■

So, we need to find a way in order to generalize the notion of cardinal from finite sets to all sets.

Definition 26. We say that two sets 𝐸 and 𝐹 have same cardinality, denoted by |𝐸| = |𝐹 |, if there exists a
bijection 𝑓 ∶ 𝐸 → 𝐹 .
We also say that 𝐸 and 𝐹 are equinumerous or equipotent.

Proposition 27.
1. If 𝐸 is a set then |𝐸| = |𝐸|.
2. Given two sets 𝐸 and 𝐹 , if |𝐸| = |𝐹 | then |𝐹 | = |𝐸|.
3. Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| = |𝐹 | and |𝐹 | = |𝐺| then |𝐸| = |𝐺|.

Proof.
1. 𝑖𝑑 ∶ 𝐸 → 𝐸 is a bijection.
2. Assume that |𝐸| = |𝐹 |, i.e. that there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .

Then 𝑓 −1 ∶ 𝐹 → 𝐸 is a bijection, so |𝐹 | = |𝐸|.
3. Assume that |𝐸| = |𝐹 | and |𝐹 | = |𝐺|, i.e. that there exist bijections 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐺.

Then 𝑔 ∘ 𝑓 ∶ 𝐸 → 𝐺 is a bijection, thus |𝐸| = |𝐺|.
■

Remark 28. At first glance, it seems that equipotence is an equivalence relation since it satisfies reflexivity,
symmetry and transitivity. Nonetheless, recall that an equivalence relation is a binary relation on a set.
If equipotence were an equivalence relation, then it would be a binary relation on the set of all sets, which
doesn’t exist (See Theorem 54).

Theorem 29. A set 𝐸 is infinite if and only if for every 𝑛 ∈ ℕ there exists 𝑆 ⊂ 𝐸 such that |𝑆| = 𝑛.
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Proof.
⇒ Assume that 𝐸 is infinite.
We are going to prove by induction that for every 𝑛 ∈ ℕ there exists 𝑆 ∈ 𝒫(𝐸) such that |𝑆| = 𝑛.

• Base case at 𝑛 = 0: ∅ ⊂ 𝐸 satisfies |∅| = 0.
• Induction step. Assume that for some 𝑛 ∈ ℕ there exists 𝑇 ⊂ 𝐸 such that |𝑇 | = 𝑛.

Note that 𝐸 ⧵ 𝑇 ≠ ∅ (otherwise 𝐸 = 𝑇 , which is impossible since 𝐸 is infinite).
Therefore there exists 𝑥 ∈ 𝐸 ⧵ 𝑇 . Define 𝑆 ≔ 𝑇 ⊔ {𝑥}, then 𝑆 ⊂ 𝐸 is finite and |𝑆| = |𝑇 | + 1 = 𝑛 + 1.
Which ends the induction step.

⇐ Let 𝐸 be a set such that for every 𝑛 ∈ ℕ there exists 𝑆 ⊂ 𝐸 such that |𝑆| = 𝑛.
Assume by contradiction that 𝐸 is finite. Then there exists 𝑘 ∈ ℕ such that |𝐸| = 𝑘.
Since 𝑘 + 1 ∈ ℕ, there exists 𝑆 ⊂ 𝐸 such that |𝑆| = 𝑘 + 1.
Since 𝑆 ⊂ 𝐸, we get 𝑘 + 1 = |𝑆| ≤ |𝐸| = 𝑘. Hence a contradiction. ■

Corollary 30. A set 𝐸 is infinite if and only if for all 𝑛 ∈ ℕ there exists an injective function {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
Definition 31. Given two sets 𝐸 and 𝐹 , we write |𝐸| ≤ |𝐹 | if there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 .
Theorem 32 (Cantor–Schröder–Bernstein theorem).
Given two sets 𝐸 and 𝐹 , if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐸| then |𝐸| = |𝐹 |.
Remark 33. The above theorem states that if there exist injections 𝐸 → 𝐹 and 𝐹 → 𝐸 then there exists a
bijection 𝐸 → 𝐹 . It is less trivial than it seems at first glance when you look at the above statement.

It was first stated in 1887 byCantorwhodidn’t provide a proof. The first knownproof is due toDedekind
on the same year, but he did not publish his proof (which was only found after he passed away). In 1895
Cantor published a proof relying on the trichotomoy principle (see Theorem 56), but Tarski later proved
that the latter is actually equivalent to the axiom of choice.

Around 1897, Bernstein, Schröder and Dedekind independently found proofs of the theorem (another
one for Dedekind). But Schröder’s proof later appeared to be incorrect. Several mathematicians subse-
quently gave alternative proofs, including Zermelo (1901, 1908) and König (1906).

Cantor–Schröber–Bernstein theorem is a little bit tricky to prove, so first I would like to informally ex-
plain the strategy of the proof before actually proving it.

We are given two injective functions 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐸.
Let’s fix 𝑥 ∈ 𝐸. We construct a chain 𝑥0, 𝑥1, 𝑥2, … of elements which are alternatively in 𝐸 and 𝐹 as

follows. First we set 𝑥0 = 𝑥 ∈ 𝐸 and then we define the next terms inductively by
• if 𝑥𝑛 ∈ 𝐸 then we define 𝑥𝑛+1 ∈ 𝐹 as the unique antecedant of 𝑥𝑛 by 𝑔 (if it exists, otherwise we stop

the construction at 𝑥𝑛),
• if 𝑥𝑛 ∈ 𝐹 then we define 𝑥𝑛+1 ∈ 𝐸 as the unique antecedant of 𝑥𝑛 by 𝑓 (if it exists, otherwise we stop

the construction at 𝑥𝑛).

𝐸

𝐹

𝑥0 = 𝑥

𝑥1

𝑔

𝑥2

𝑓

𝑥3

𝑔

𝑥4

𝑓

𝑥5

𝑔

𝑥6

𝑓

Then we face three possible cases:
1. Either the chain ends with an element in 𝐸, and then we put 𝑥 in 𝐸𝐸 ,
2. or the chain ends with an element in 𝐹 , and then we put 𝑥 in 𝐸𝐹 ,
3. or the inductive definition of the chain doesn’t stop, and then we put 𝑥 in 𝐸∞.

We have a partition 𝐸 = 𝐸𝐸 ⊔ 𝐸𝐹 ⊔ 𝐸∞. We perform the same construction with 𝑥0 = 𝑥 ∈ 𝐹 in order to
obtain 𝐹 = 𝐹𝐸 ⊔ 𝐹𝐹 ⊔ 𝐹∞.

Now assume that 𝑥 ∈ 𝐸𝐸 , for instance the chain stops at 𝑥4 as below. Then 𝑓(𝑥) ∈ 𝐹𝐸 , since its chain
continues at 𝑥0 and stops at 𝑥4 ∈ 𝐸.
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𝐸

𝐹𝑓(𝑥)

𝑓

𝑥0 = 𝑥

𝑥1

𝑔

𝑥2

𝑓

𝑥3

𝑔

𝑥4

𝑓

Therefore the function 𝑓|𝐸𝐸 ∶ 𝐸𝐸 → 𝐹𝐸 is well-defined. Besides, it is injective since 𝑓 is, and it is surjective
by definition of 𝐹𝐸 . Therefore 𝑓|𝐸𝐸 ∶ 𝐸𝐸 → 𝐹𝐸 is a bijection.

Similarly 𝑔|𝐹𝐹 ∶ 𝐹𝐹 → 𝐸𝐹 and 𝑓|𝐸∞ ∶ 𝐸∞ → 𝐹∞ are bijections. Finally, we glue them in order to obtain
a bijection ℎ ∶ 𝐸 → 𝐹 .

𝐸

𝐸∞

𝐸𝐹

𝐸𝐸

𝐹

𝐹∞

𝐹𝐹

𝐹𝐸
𝑓

𝑓

𝑔

Proof of Cantor–Schröder–Bernstein theorem.
Let 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐸 be two injective functions. Set

• 𝐸𝐸 = {𝑥 ∈ 𝐸 ∶ ∃𝑛 ∈ ℕ, ∃𝑟 ∈ 𝐸 ⧵ Im(𝑔), 𝑥 = (𝑔 ∘ 𝑓)𝑛(𝑟)}

• 𝐸𝐹 = {𝑥 ∈ 𝐸 ∶ ∃𝑛 ∈ ℕ, ∃𝑠 ∈ 𝐹 ⧵ Im(𝑓 ), 𝑥 = 𝑔 ((𝑓 ∘ 𝑔)𝑛(𝑠))}

• 𝐸∞ = 𝐸 ⧵ (𝐸𝐸 ⊔ 𝐸𝐹 )

• 𝐹𝐸 = {𝑦 ∈ 𝐹 ∶ ∃𝑛 ∈ ℕ, ∃𝑟 ∈ 𝐸 ⧵ Im(𝑔), 𝑦 = 𝑓 ((𝑔 ∘ 𝑓)𝑛(𝑟))}

• 𝐹𝐹 = {𝑦 ∈ 𝐹 ∶ ∃𝑛 ∈ ℕ, ∃𝑠 ∈ 𝐹 ⧵ Im(𝑓 ), 𝑦 = (𝑓 ∘ 𝑔)𝑛(𝑠)}

• 𝐹∞ = 𝐹 ⧵ (𝐹𝐸 ⊔ 𝐹𝐹 )

Note that if 𝑥 ∈ 𝐸𝐸 then 𝑓(𝑥) ∈ 𝐹𝐸 . So 𝑓|𝐸𝐸 ∶ 𝐸𝐸 → 𝐹𝐸 is well-defined. It is injective since 𝑓 is injective.
And it is surjective by definition of the sets. Thus it is bijective.
Similarly, 𝑔|𝐹𝐹 ∶ 𝐹𝐹 → 𝐸𝐹 is well-defined and bijective and 𝑓|𝐸∞ ∶ 𝐸∞ → 𝐹∞ is well-defined and bijective.

We define ℎ ∶ 𝐸 → 𝐹 by ℎ(𝑥) =
⎧⎪
⎨
⎪⎩

𝑓(𝑥) if 𝑥 ∈ 𝐸𝐸
𝑔−1(𝑥) if 𝑥 ∈ 𝐸𝐹
𝑓(𝑥) if 𝑥 ∈ 𝐸∞

.

Then ℎ is clearly a bijection (I can use ”clear”, but you can’t, and the same holds for ”trivial” and ”obvious” :-p). ■

Proposition 34.
1. If 𝐸 is a set then |𝐸| ≤ |𝐸|.
2. Given two sets 𝐸 and 𝐹 , if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐸| then |𝐸| = |𝐹 |.
3. Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐺| then |𝐸| ≤ |𝐺|.

Proof.
1. 𝑖𝑑 ∶ 𝐸 → 𝐸 is an injective function.
2. It is Cantor–Bernstein–Schröder theorem.
3. Assume that |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐺|, i.e. that there exist injections 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐺.

Then 𝑔 ∘ 𝑓 ∶ 𝐸 → 𝐺 is injective, thus |𝐸| ≤ |𝐺|.
■
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Remark 35. Comparison of cardinals shares the characteristic properties of an order. Nonetheless, it is not
an order since it is not a binary relation on a set (as for equipotence).

Proposition 36. If 𝐸 ⊂ 𝐹 then |𝐸| ≤ |𝐹 |.

Proof. Indeed, 𝑓 ∶ 𝐸 → 𝐹 defined by 𝑓(𝑥) = 𝑥 is injective. ■

Proposition 37. If |𝐸1| = |𝐸2| and |𝐹1| = |𝐹2| then |𝐸1 × 𝐹1| = |𝐸2 × 𝐹2|.

Proof. Assume that |𝐸1| = |𝐸2| and |𝐹1| = |𝐹2| then there exist bijections 𝑓 ∶ 𝐸1 → 𝐸2 and 𝑔 ∶ 𝐹1 → 𝐹2.
We define ℎ ∶ 𝐸1 × 𝐹1 → 𝐸2 × 𝐹2 by ℎ(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)). Let’s check that ℎ is a bijection.

• ℎ is injective.
Let (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝐸1 × 𝐹1 be such that ℎ(𝑥, 𝑦) = ℎ(𝑥′, 𝑦′).
Then 𝑓(𝑥) = 𝑓(𝑥′) and 𝑔(𝑦) = 𝑔(𝑦′), thus 𝑥 = 𝑥′ and 𝑦 = 𝑦′ since 𝑓 and 𝑔 are injectives.
We proved that (𝑥, 𝑦) = (𝑥′, 𝑦′).

• ℎ is surjective.
Let (𝑧, 𝑤) ∈ 𝐸2 × 𝐹2. Since 𝑓 is surjective, there exists 𝑥 ∈ 𝐸1 such that 𝑧 = 𝑓(𝑥).
Since 𝑔 is surjective, there exists 𝑦 ∈ 𝐹1 such that 𝑤 = 𝑔(𝑦).
Then ℎ(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)) = (𝑧, 𝑤). ■

Theorem 38. Given two sets 𝐸 and 𝐹 , |𝐸| ≤ |𝐹 | if and only if there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸.

Proof.
⇒ Assume that there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 , then ̃𝑓 ∶ 𝐸 → 𝑓(𝐸) is bijective.
If 𝐸 = ∅, then there is nothing to prove. So we may assume that there exists 𝑢 ∈ 𝐸.

Define 𝑔 ∶ 𝐹 → 𝐸 by 𝑔(𝑦) = {
̃𝑓 −1(𝑦) if 𝑦 ∈ 𝑓(𝐸)
𝑢 otherwise

Let 𝑥 ∈ 𝐸, then 𝑔(𝑓(𝑥)) = ̃𝑓 −1(𝑓 (𝑥)) = 𝑥. Thus 𝑔 is surjective.

⇐ Assume that there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸, then5 ∀𝑥 ∈ 𝐸, ∃𝑦𝑥 ∈ 𝑔−1(𝑥).
Define 𝑓 ∶ 𝐸 → 𝐹 by 𝑓(𝑥) = 𝑦𝑥. Then 𝑓 is injective, so |𝐸| ≤ |𝐹 |.
Indeed, assume that 𝑓(𝑥) = 𝑓(𝑥′) then 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑥′)).
But 𝑔(𝑓(𝑥)) = 𝑔(𝑦𝑥) = 𝑥 and similarly 𝑔(𝑓(𝑥′)) = 𝑥′. Thus 𝑥 = 𝑥′. ■

Theorem 39. Given two sets 𝐸 and 𝐹 , if |𝐸| = |𝐹 | then |𝒫(𝐸)| = |𝒫(𝐹 )|.

Proof. Let 𝐸 and 𝐹 be such that |𝐸| = |𝐹 |. Then there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .
Note that ̃𝑓 ∶ 𝒫(𝐸) → 𝒫(𝐹 ) defined by ̃𝑓 (𝐴) = 𝑓(𝐴) is bijective too (prove it!).
Therefore |𝒫(𝐸)| = |𝒫(𝐹 )|. ■

4 Countable sets
In what follows, we set ℵ0 ≔ |ℕ| (pronounced aleph nought).

Definition 40. A set 𝐸 is countable if either 𝐸 is finite or |𝐸| = ℵ0.

Proposition 41. If 𝑆 ⊂ ℕ is infinite then |𝑆| = ℵ0.

Proof. Let’s define the function 𝑓 ∶ ℕ → 𝑆 by induction as follows.
Set 𝑓(0) = min𝑆 (which is well-defined by the well-ordering principle since 𝑆 ≠ ∅ as it is infinite).
And then, assuming that 𝑓(𝑛) is already defined, we set 𝑓(𝑛 + 1) = min{𝑘 ∈ 𝑆 ∶ 𝑘 > 𝑓(𝑛)} (which is well-
defined by the well-ordering principle: the involved set is non-empty since otherwise 𝑆 would be finite).
It is easy to check that 𝑓 is injective (note that ∀𝑛 ∈ ℕ, 𝑓(𝑛 + 1) > 𝑓(𝑛)), therefore ℵ0 ≤ |𝑆|.
But since 𝑆 ⊂ ℕ, we also have |𝑆| ≤ ℵ0.
Thus, by Cantor–Schröder–Bernstein theorem, |𝑆| = ℵ0. ■

5(AC) See Remark 57.



MAT246H1-S – LEC0201/9201 – J.-B. Campesato 11

Proposition 42. A set 𝐸 is countable if and only if |𝐸| ≤ ℵ0 (i.e. there exists an injection 𝑓 ∶ 𝐸 → ℕ),
otherwise stated 𝐸 is countable if and only if there exists a bijection between 𝐸 and a subset of ℕ.
Proof.
⇒ Assume that 𝐸 is countable.

• Either 𝐸 is finite and then there exists 𝑛 ∈ ℕ together with a bijection 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
We define 𝑓 ∶ 𝐸 → ℕ by 𝑓(𝑥) = 𝑔−1(𝑥) (which is well-defined since {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} ⊂ ℕ).
And 𝑓 is an injection since 𝑔−1 is.

• Or |𝐸| = ℵ0, i.e. there exists a bijection 𝑓 ∶ 𝐸 → ℕ.
⇐ Assume there exists an injection 𝑓 ∶ 𝐸 → ℕ.
Assume that 𝐸 is infinite. Then |𝐸| = |𝑓(𝐸)| = ℵ0 by Proposition 41.
Thus either 𝐸 is finite or |𝐸| = ℵ0. In both cases 𝐸 is countable. ■

Proposition 43. The set of finite subsets of ℕ is countably infinite, i.e. |{𝑆 ∈ 𝒫(ℕ) ∶ ∃𝑛 ∈ ℕ, |𝑆| = 𝑛}| = ℵ0.
Proof. Define 𝑓 ∶ {𝑆 ∈ 𝒫(ℕ) ∶ ∃𝑛 ∈ ℕ, |𝑆| = 𝑛} → ℕ by 𝑓(𝑆) = ∑𝑘∈𝑆 2𝑘.
Then 𝑓 is bijective by existence and uniqueness of the binary positional numeral system. ■

Proposition 44. |ℕ × ℕ| = ℵ0

Proof. Define 𝑓 ∶ ℕ×ℕ → ℕ by 𝑓(𝑎, 𝑏) = 2𝑎3𝑏. Then 𝑓 is injective by uniqueness of the prime decomposition.
Thus |ℕ × ℕ| ≤ ℵ0.
Besides {0} × ℕ ⊂ ℕ × ℕ, thus ℵ0 = |{0} × ℕ| ≤ |ℕ × ℕ|.
Hence |ℕ × ℕ| = ℵ0 by Cantor–Schröder–Bernstein theorem. ■

Theorem 45. A countable union of countable sets is countable,
i.e. if 𝐼 is countable and if for every 𝑖 ∈ 𝐼 , 𝐸𝑖 is countable then ⋃𝑖∈𝐼 𝐸𝑖 is countable.
Proof. WLOG we may now assume that 𝐼 ⊂ ℕ.
Let 𝑖 ∈ 𝐼 . Since 𝐸𝑖 is countable, there exists an injection 𝑓𝑖 ∶ 𝐸𝑖 → ℕ6.
We define 𝜑 ∶ ⋃𝑖∈𝐼 𝐸𝑖 → ℕ × ℕ by 𝜑(𝑥) = (𝑛, 𝑓𝑛(𝑥)) where 𝑛 = min{𝑖 ∈ 𝐼 ∶ 𝑥 ∈ 𝐸𝑖} (well-ordering principle).
It is not difficult to check that 𝜑 is injective TODO: do it? .
Therefore ⋃𝑖∈𝐼 𝐸𝑖 is countable. ■

Theorem 46. If 𝐸 is an infinite set then there exists 𝑇 ⊂ 𝐸 such that |𝑇 | = ℵ0, i.e. ℵ0 is the least infinite cardinal.
Proof. For 𝑛 ∈ ℕ, set 𝐸𝑛 = {𝑆 ∈ 𝒫(𝐸) ∶ |𝑆| = 𝑛}. By Theorem 29, 𝐸𝑛 ≠ ∅.
So for every 𝑛 ∈ ℕ, we can pick 𝑆𝑛 ∈ 𝐸𝑛

7.
Then 𝑇 ≔ ⋃𝑛∈ℕ 𝑆𝑛 is countable by Theorem 45.
Besides, ∀𝑛 ∈ ℕ, 𝑆𝑛 ⊂ 𝑇 and |𝑆𝑛| = 𝑛. Therefore 𝑇 is infinite by Theorem 29.
Thus |𝑇 | = ℵ0 as an infinite countable set. ■

Theorem 47. |ℤ| = ℵ0

Proof 1. Since ℕ ⊂ ℤ, we have |ℕ| ≤ |ℤ|.
Define 𝑓 ∶ ℤ → ℕ by 𝑓(𝑛) = {

2𝑛 if 𝑛 ≥ 0
3−𝑛 if 𝑛 < 0 .

Then 𝑓 is injective by uniqueness of the prime factorization. Therefore |ℤ| ≤ |ℕ|.
Hence |ℤ| = |ℕ| by Cantor–Schröder–Bernstein theorem. ■

Proof 2.

Define 𝑓 ∶ ℤ → ℕ by 𝑓(𝑛) = {
2𝑛 if 𝑛 ≥ 0

−(2𝑛 + 1) if 𝑛 < 0 .

Then 𝑓 is bijective with inverse 𝑓 −1(𝑚) = {
𝑘 if ∃𝑘 ∈ ℕ, 𝑚 = 2𝑘

−𝑘 − 1 if ∃𝑘 ∈ ℕ, 𝑚 = 2𝑘 + 1 .
Therefore |ℤ| = |ℕ|. ■

6(ACC) See Remark 58.
7(ACC) See Remark 59.
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Theorem 48. |ℚ| = ℵ0

Remark 49. This theorem asserts that there are as many rational numbers than natural numbers. Which
seems counter-intuitive. Since ℚ is dense in ℝ, we could expect that ℝ is also countable. That’s not the case
as we will see in the next section.

Proof 1. Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
Define 𝑓 ∶ ℚ → ℤ × ℤ by 𝑓 (

𝑎
𝑏 ) = (𝑎, 𝑏) where 𝑎

𝑏 is in lowest form.
By uniqueness of the lowest form expression of a rational number, 𝑓 is well-defined and injective.
Thus |ℚ| ≤ |ℤ × ℤ|. Since |ℤ| = |ℕ|, we get |ℤ × ℤ| = |ℕ × ℕ| = ℵ0.
We conclude using Cantor–Schröder–Bernstein theorem. ■

Proof 2. Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
The function 𝑓 ∶ ℤ × ℕ ⧵ {0} → ℚ defined by 𝑓(𝑎, 𝑏) = 𝑎

𝑏 is surjective.
Thus, by Proposition 388, |ℚ| ≤ |ℤ × ℕ ⧵ {0}|.
Since |ℤ| = |ℕ| and |ℕ ⧵ {0}| = |ℕ|, we get |ℤ × ℕ ⧵ {0}| = |ℕ × ℕ| = ℵ0.
We conclude using Cantor–Schröder–Bernstein theorem. ■

Proof 3.
Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
Besides ℚ = ⋃(𝑎,𝑏)∈ℤ×ℕ⧵{0} {

𝑎
𝑏 }, so that ℚ is countable by Theorem 459, i.e. |ℚ| ≤ ℵ0.

We conclude using Cantor–Schröder–Bernstein theorem. ■

5 Cantor’s diagonal argument
Theorem 50. ℵ0 < |ℝ|

The following proof relies on Cantor’s diagonal argument10. That’s a very general method that we will use
later to prove Cantor’s theorem11.

Proof. We are going to prove that there is no surjection ℕ → ℝ (and hence no such bijection).
Let 𝑓 ∶ ℕ → ℝ be a function. Given 𝑛 ∈ ℕ, we know12 that 𝑓(𝑛) has a unique proper decimal expansion

𝑓(𝑛) =
+∞

∑
𝑘=0

𝑎𝑛𝑘10−𝑘

where 𝑎𝑛0 ∈ ℤ and 𝑎𝑛𝑘 ∈ {0, 1, … , 9} for 𝑘 ≥ 1, i.e.

𝑓(0) = 𝑎00 . 𝑎01 𝑎02 𝑎03 𝑎04 𝑎05 …
𝑓(1) = 𝑎10 . 𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 …
𝑓(2) = 𝑎20 . 𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 …
𝑓(3) = 𝑎30 . 𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 …
𝑓(4) = 𝑎40 . 𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 …

⋮ ⋮

8Actually we only need a weak version of Proposition 38 which doesn’t involve the axiom of choice: using the well-ordering
principle, we can prove that a surjective function whose domain is ℕ admits a right inverse.

9The axiom of countable choice is not necessary here: the sets are singletons, so there is no choice.
10This elegant argument was published by Cantor in 1891, but he gave a previous proof of the uncountability of ℝ in 1874 (with

a modified version in 1879).
11It can also be used to prove that the box topology on ℝℕ is not first-countable, or to derive from Erdös–Kaplansky’s theorem

(if 𝐸 is an infinite dimensional vector space then dim𝐸∗ = |𝐸∗|) that if 𝐸 is an infinite dimensional vector space then 𝐸 is not
isomorphic to its dual 𝐸∗.

12Chapter 6, Theorem 56.



MAT246H1-S – LEC0201/9201 – J.-B. Campesato 13

Given 𝑘 ∈ ℕ, we set 𝑏𝑘 = {
1 if 𝑎𝑘𝑘 = 0
0 otherwise .

Then 𝑏 =
+∞

∑
𝑘=0

𝑏𝑘10−𝑘 is a real number written with its unique proper decimal expansion.

Note that for every 𝑛 ∈ ℕ, 𝑏 ≠ 𝑓(𝑛) since 𝑏𝑛 ≠ 𝑎𝑛𝑛 (we use the uniqueness of the proper decimal expansion).
Therefore 𝑏 ∉ Im(𝑓 ) and 𝑓 is not surjective. ■

Theorem 51 (Cantor’s theorem). Given a set 𝐸, |𝐸| < |𝒫(𝐸)|.

Remark 52. As a consequence, we get that there is no greatest cardinal.

Proof of Cantor’s theorem.
First, note that 𝑔 ∶ 𝐸 → 𝒫(𝐸) defined by 𝑔(𝑥) = {𝑥} is injective, therefore |𝐸| ≤ |𝒫(𝐸)|.
We are going to prove that there is no surjection 𝐸 → 𝒫(𝐸) (and hence no such bijection).
Let 𝑓 ∶ 𝐸 → 𝒫(𝐸) be a function. Define 𝑆 = {𝑥 ∈ 𝐸 ∶ 𝑥 ∉ 𝑓(𝑥)}.
Let 𝑥 ∈ 𝐸. If 𝑥 ∈ 𝑓(𝑥) then 𝑥 ∉ 𝑆. Otherwise, if 𝑥 ∉ 𝑓(𝑥) then 𝑥 ∈ 𝑆. Therefore 𝑓(𝑥) ≠ 𝑆 (since one contains
𝑥 but not the other one).
Thus 𝑆 ∉ Im(𝑓 ) and 𝑓 is not surjective. ■

We already know that |ℕ| < |ℝ| and that |ℕ| < |𝒫(ℕ)|.
The following theorem asserts that actually |ℝ| = |𝒫(ℕ)|.

Theorem 53. |ℝ| = |𝒫(ℕ)|

Proof.
Define 𝑓 ∶ 𝒫(ℕ) → ℝ by 𝑓(𝑆) = ∑

𝑛∈𝑆
10−𝑛.

Then 𝑓 is injective by uniqueness of the proper decimal expansion. Thus |𝒫(ℕ)| ≤ |ℝ|.

Define 𝑔 ∶ ℝ → 𝒫(ℚ) by 𝑔(𝑥) = {𝑞 ∈ ℚ ∶ 𝑞 < 𝑥}.
Then 𝑔 is injective. Indeed, let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦. Since ℚ is dense in ℝ, there exists 𝑞 ∈ ℚ such
that 𝑥 < 𝑞 < 𝑦. So 𝑞 ∉ 𝑔(𝑥) but 𝑞 ∈ 𝑔(𝑦). Therefore 𝑔(𝑥) ≠ 𝑔(𝑦).
Hence |ℝ| ≤ |𝒫(ℚ)| = |𝒫(ℕ)| using Theorem 39 since |ℚ| = |ℕ|.

We conclude thanks to Cantor–Schröder–Bernstein theorem. ■

TODO: parler de CH et GCH (par ailleurs dire que ZF+GCH implies AC), peut-être dans une annexe?
TODO: Ajouter une annexe sur les nombres algébriques/transcendants avec un commentaire historique (Cantor)
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A What is a set?

The notion of set turned out to be necessary in order to handle rigorous definitions of ℝ as the ones pro-
vided by Dedekind and later by Cantor. It is worth noting that set theory first observed a great resistance13,
probably because of the influence of Gauss and Kronecker who shared the horror of the infinite from ancient
Greek philosophers.

Originally Cantor defined a set as ”a gathering together into a whole of distinguishable objects (which are
called the elements of the set)”14. According to current standards, it is a very informal definition. This naive set
theorywas governed by two principles: the comprehension principle fromwhich any predicate (i.e. statement)
defines a set (i.e. we can define the set of all elements satisfying a given property) and the extension principle
asserting that two sets are equal if and only if they contain the same elements.

Such an intuitive approach is enough to manipulate sets in everyday mathematics (that’s what you did
in your courses about calculus, multivariable calculus, linear algebra…). Nonetheless it is not satisfactory
since it leads to several paradoxes such as Russell’s paradox15 that we can state as follows using modern
notations (and particularly Peano’s notation for set membership ∈).

Since any statement defines a set (comprehension principle), 𝑆 = {𝑥 ∶ 𝑥 ∉ 𝑥} must be a set. Therefore
either 𝑆 ∈ 𝑆 but then 𝑆 ∉ 𝑆 by definition of 𝑆, or 𝑆 ∉ 𝑆 but then 𝑆 ∈ 𝑆 by definition of 𝑆. Which leads to
a contradiction.

Zermelo (1908) was the first to suggest a more careful axiomatic set theory. Particularly the compre-
hension principle is weakened to the separation principle: given a set, we can define its subset of elements
satisfying a given predicate (that’s the set-builder notation {𝑥 ∈ 𝐸 ∶ 𝑃 (𝑥)}).

This theory has been subsequently refined by Fraenkel, Solem, von Neumann, and others, giving rise to
Zermelo–Fraenkel (ZF) set theory. It is a first order theory16 with equality and the set membership binary
predicate symbol ∈.

In such a theory, wedon’t definewhat is a set: they are the atomic objects overwhichweuse quantifiers17.
Instead, we have a list of axioms ensuring the existence of some sets and how to define new sets from already
defined ones.
There are several equivalent formulations of ZF, for instance this one:

• Axiom of extensionality:
∀𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑥 ⇔ 𝑧 ∈ 𝑦) ⇔ 𝑥 = 𝑦)

Intuitively, this axiom states that two sets are equal if and only if they contain the same elements. Particularly,
order doesn’t matter and {𝑎, 𝑎} = {𝑎}.

• Axiom of pairing:
∀𝑥∀𝑦∃𝑧∀𝑤(𝑤 ∈ 𝑧 ⇔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))

This axiom asserts that given two sets 𝑥 and 𝑦, the set 𝑧 = {𝑥, 𝑦} containing 𝑥 and 𝑦 is well-defined.
It is often given as an axiom although it is a consequence of the axiom schema of replacement.
Note that for a given set 𝑥 the axiom of pairing and the axiom of extensionality allow us to define the singleton
{𝑥} = {𝑥, 𝑥}.

13Towhich Hilbert later replied with the following wonderful and well-known sentence: Aus dem Paradies, das Cantor uns geschaf-
fen, soll uns niemand vertreiben können [No one should be able to expel us out of the paradise that Cantor has created for us.].

14”Unter einer ’Menge’ verstehen wir jede Zusammenfassung M von bestimmten wohlunterscheidbaren Objekten M unserer Anschauung
oder unseres Denkens (welche die ’Elemente’ von M genannt werden) zu einem Ganzen”, in Beiträge zur Begründung der transfiniten Men-
genlehre by Cantor (1895).

15It was discovered by Zermelo in 1899, but he did not published it, and then rediscovered by Russell in 1901.
16A first order theory generalizes propositional calculus by introducing quantified variables.
17Actually, it is possible to work with a theory about more general objects: that’s for example the case in vonNeumann–Bernays–

Gödel theory where atomic objects are classes and where a set is defined as a class which is contained in another class. It is known
that the statements about sets that can be proved within vNBG coincides with the statement that can be proved within ZFC.
Additionally, it doesn’t involve axiom schema, i.e. it is described using only finitely many axioms.
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• Axiom of union:
∀𝑥∃𝑦∀𝑢(𝑢 ∈ 𝑦 ⇔ ∃𝑤 ∈ 𝑥(𝑢 ∈ 𝑤))

This axiom ensures that given a set 𝑥 (of sets, everything is a set here), the set ⋃𝑤∈𝑥 𝑤 is well-defined. We will
use the abbrevation ∪ in what follows.
By the way, note that we have to be more careful about intersections: what would be ⋂𝑤∈∅ 𝑤?

• Axiom of power set:
∀𝑥∃𝑦∀𝑧[𝑧 ⊂ 𝑥 ⇔ 𝑧 ∈ 𝑦]

Here 𝑧 ⊂ 𝑥 is an abbreviation for ∀𝑢(𝑢 ∈ 𝑧 ⟹ 𝑢 ∈ 𝑥). This axiom asserts that given a set 𝑥, the set 𝑦 = 𝒫(𝑥)
of its subsets is well-defined.

• Axiom of empty set:
∃𝑥∀𝑦¬(𝑦 ∈ 𝑥)

This axiom ensures that the empty set exists (and it is unique by extensionality), therefore, in what follows, we
introduce the term ∅ to denote the empty set.

• Axiom of infinity:
∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥(𝑦 ∪ {𝑦} ∈ 𝑥))

This axiom states that there exists a set containing a copy of ℕ.
We are going to use it to give a construction of ℕ. Set 0 ≔ ∅ and 𝑠(𝑦) ≔ 𝑦 ∪ {𝑦} (that’s the successor function),
therefore 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}…
By the axiom of infinity, there exists a set 𝐸 containing 0 which is closed by 𝑠. Then it is not too difficult to prove
that the intersection of all the subsets of 𝐸 containing 0 and closed by 𝑠 satisfies the induction principle. It is a
nice construction of ℕ where the order is given by inclusion.

• Axiom schema of replacement:

(∀𝑥 ∈ 𝑎∃!𝑦𝑃 (𝑥, 𝑦)) ⟹ (∃𝑏∀𝑦(𝑦 ∈ 𝑏 ⇔ ∃𝑥 ∈ 𝑎𝑃 (𝑥, 𝑦)))

This one is an axiom schema and not an axiom (i.e. we need it for all formulae 𝑃 (𝑥, 𝑦)).
It asserts that if a formula defines a ”function” then its ”range” is a set.
Together with the axiom of empty set, the axiom schema of replacement implies that given a set, we may define
a subset of elements satisfying a given property (set-builder notation): that’s a weak/restricted version of the
comprehension principle called the separation principle.

• Axiom of foundation:
∀𝑥(𝑥 ≠ ∅ ⇒ ∃𝑦 ∈ 𝑥(𝑥 ∩ 𝑦 = ∅))

This axiom is a little bit special: it doesn’t define new sets but it is here to avoid paradoxes by removing circular
arguments. Particularly, as a consequence of it, a set can’t be an element of itself: if 𝑥 satisfies 𝑥 ∈ 𝑥 then the
singleton {𝑥} doesn’t satisfy the axiom of foundation since 𝑥 ∩ {𝑥} = {𝑥}.

Note that during the interwar period, the French group Bourbaki started to formalize most of known
mathematics within set theory.

It is commonly believed that ZF is very likely to be consistent, i.e. there is no contradition (like Rus-
sell’s paradox). In what follows, I assume that ZF is consistent (otherwise every statement would be true).
Nonetheless, a consequence of Gödel’s second incompleteness theorem is that if ZF is consistent then we
can’t prove within ZF that it is.

You should keep in mind that such a theory was given in response to the foundational crisis of mathe-
matics in the late 19th century in order to free mathematics from contradictions and to add more rigor in it.
But most mathematicians work at a higher level, not directly from these axioms, and don’t care too much
about them (we did mathematics before set theory). So, should a contradiction be found, it probably won’t
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impact that much other fields of mathematics: maybe it would be possible to simply fix the axioms in a way
to remove the contradiction, or otherwise to work on new foundations for mathematics… Anyway, some
choices were made and they can be changed (and even without finding a contradiction, some mathemati-
cians have objections about using set theory as foundations for mathematics, especially since some fields
of mathematics involve proper classes which are too big to be sets, so they are de facto excluded from set
theory).

Theorem 54. There is no set containing all sets.

Proof. Assume that such a set 𝑉 exists, then the powerset 𝒫(𝑉 ) exists too and 𝒫(𝑉 ) ⊂ 𝑉 by definition of 𝑉 .
Therefore |𝒫(𝑉 )| ≤ |𝑉 |, but |𝑉 | < |𝒫(𝑉 )| by Cantor’s theorem. Hence a contradiction. ■

We may similarly prove that there is no set containing all finite sets, or even containing all singletons.

Theorem 55. There is no set containing all singletons.

Proof. Assume that the set 𝑆 of all singletons exists.
Define 𝑓 ∶ 𝒫(𝑆) → 𝑆 by 𝑓(𝑥) = {𝑥} (which is well-defined). Since 𝑓 is one-to-one, we get that |𝒫(𝑆)| ≤ |𝑆|.
Which contradicts |𝑆| < |𝒫(𝑆)| (Cantor’s theorem). ■

B Un morceau de choix
The following statement is (a formulation of) the axiom of choice

(AC) ∀𝑥((∅ ∉ 𝑥 ∧ ∀𝑢, 𝑣 ∈ 𝑥(𝑢 = 𝑣 ∨ 𝑢 ∩ 𝑣 = ∅)) ⟹ ∃𝑦∀𝑢 ∈ 𝑥∃𝑤(𝑢 ∩ 𝑦) = {𝑤})

It asserts that given a set 𝑥 of non-empty pairwise disjoint sets, there exists a set 𝑦 which contains exactly
one element for each set in 𝑥. Informally, it means that given infinitely many non-empty sets, we can simul-
tanuously pick an element in each set.

We can also state it in the following way. For 𝐼 a set together with (𝑋𝑖)𝑖∈𝐼 a family of sets indexed by 𝐼 ,
we have

(∀𝑖 ∈ 𝐼, 𝑋𝑖 ≠ ∅) ⟹ ∏
𝑖∈𝐼

𝑋𝑖 ≠ ∅

i.e. there exists (𝑥𝑖)𝑖∈𝐼 where 𝑥𝑖 ∈ 𝑋𝑖 (we can simultaneously pick 𝑥𝑖 ∈ 𝑋𝑖 for each 𝑖 ∈ 𝐼).

Gödel and Cohen respectively showed that the axiom of choice is not disprovable in ZF and that it is not
provable in ZF (assuming that ZF is consistent)18. Therefore the axiom of choice can be added to ZF as an
axiom without changing its consistency, in this case the theory is denoted ZFC.

Acceptance of the axiom of choice is a little bit controversial: on the one hand it seems very natural
and useful in some areas of mathematics19 but some consequences are counter intuitive (for instance the
well-known Banach–Tarski paradox). For this reason, some mathematicians try to avoid it or to use weaker
versions (such as the axiom of countable choice, i.e. only when 𝐼 is countable).
Here is a (funny) quote summarizing the situation20:

”The axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn’s lemma?”
– Jerry L. Bona21.

A statement equivalent to the axiom of choice and which is related to the content of this chapter is the
following one (which generalizes Remark 23 to infinite sets):

18According to Gödel’s first incompleteness theorem, ZF contains at least one statement which is undecidable, the axiom of
choice is such a statement.

19For instance, the axiom of choice is equivalent to the fact that every vector space has a basis.
20These three statements are equivalent.
21STEVEN G. KRANTZ. Handbook of Logic and Proof Techniques for Computer Science, p121. Birkhäuser (2002).
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Theorem 56 (Trichotomy principle for cardinality).
Given two sets 𝐴 and 𝐵, exactly one of the following occurs:

• |𝐴| < |𝐵|
• |𝐴| = |𝐵|
• |𝐴| > |𝐵|

WhenTarski submitted to theComptes Rendus de l’Académie des Scienceshis proof that the trichotomyprinciple
is equivalent to the axiom of choice, both Fréchet and Lebesgue refused it: Fréchet because ”an implication
between two well known propositions is not a new result”, and Lebesgue because ”an implication between two false
propositions is of no interest”22.

Below I highlight the places where I used either the axiom of choice or the axiom of countable choice in this
chapter.

Remark 57. In Proposition 38, the part that |𝐸| ≤ |𝐹 | implies the existence of a surjection 𝑔 ∶ 𝐹 → 𝐸 is true
in ZF even without the axiom of choice.
Nonetheless, I used the axiom of choice to prove the converse when I pick (𝑦𝑥)𝑥∈𝐸 ∈ ∏𝑥∈𝐸 𝑔−1(𝑥).
Actually the axiom of choice is equivalent to the fact a function is surjective if and only if it admits a right
inverse (i.e. 𝑔 ∶ 𝐹 → 𝐸 is surjective if and only if there exists 𝑓 ∶ 𝐸 → 𝐹 such that 𝑔 ∘ 𝑓 = 𝑖𝑑𝐸).

Remark 58. Within ZF, Theorem 45 is equivalent to the axiom of countable choice.
Nonetheless, using an induction, we can prove within ZF that a finite union of countable sets is countable
(see the first part of the proof of Theorem 45).
In the proof of Theorem 45, I used the axiom of countable choice to pick simultaneously injective functions
𝑓𝑖 ∶ 𝐸𝑖 → ℕ for every 𝑖 ∈ 𝐼 .

Remark 59. I used the axiom of countable choice in the proof Theorem 46 when applying Theorem 45.
A set is Dedekind–infinite if it contains an infinite countable subset23. It is true within ZF that a Dedekind–
infinite set is infinite. The converse requires the axiom of choice: there exist models of ZF containing amor-
phous sets, i.e. which are infinite and Dedekind–finite.

22JAN MYCIELSKI. A System of Axioms of Set Theory for the Rationalists. Notices of the AMS, Volume 53, Number 2.
23Another equivalent definition is: a set 𝐸 is Dedekind–complete if there exists 𝐴 ⊊ 𝐸 such that |𝐴| = |𝐸|.



18 Cardinality

FROM: https://xkcd.com/982/

Below are a few other proof methods:

• Proof by Example/Generalization. The statement holds for 𝑛 = 42 so it holds for any 𝑛 ∈ ℕ.

• Proof by Intimidation. Don’t be silly, it is trivial.

• Proof by Terror. When proof by intimidation fails.

• Proof by Insignificance. Who really cares anyway?

• Proof by Homework. The proof is left as an exercise to the reader.

• Proof by Exhaustion. The result is an easy consequence of the following 271 pages.

• Proof by Obvious Induction. 3 is prime, 5 is prime, 7 is prime… hence any odd number greater than 2 is a
prime number.

• Proof by Omission. The reader may easily supply the remaining 314 cases in a similar way.

• Proof by the End of the Lecture. Since it is already the end of the lecture, I let you finish the proof at home.
(Sorry, I might have really used this one)

• Proof by Lazyness.

• Proof by Postponement. TODO: Finish the proof later.

• Proof by General Agreement. All in Favor?

• Proof by My Agreement. Do you believe me? I believe me…
(I have been told that I used this one often in MAT237… Can you believe that? I can’t believe that!)

• Proof by Intuition. I just have this gut feeling. (Usually that’s how we do research)

• Proof by Supplication. Oh please, let it be true. (Quite often, research looks like that)

• Proof by Definition. We define it to be true.

• Proof by Design. We add it as an axiom.

• Proof by Authority. I’ve just met Gauss in the elevator, he told me that was true, so it must be!

• Proof by Stubbornness. The favorite method of a former student of mine.

• The Only Valid Proof. It is too beautiful to be false.

https://xkcd.com/982/
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