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Concepts in Abstract Mathematics

6 - The rationals and the reals
Jean-Baptiste Campesato

Positive rational numbers 𝑝
𝑞 are systematically studied in Euclid’s elements (circa 300BC), but they al-

ready appeared in ancient Egyptian mathematical writings.
In this chapter we are going to formally construct the set ℚ of rational numbers. The basic idea would be to
set

ℚ = {
𝑝
𝑞 ∶ 𝑝 ∈ ℤ, 𝑞 ∈ ℤ ⧵ {0}}

as it is often written in elementary introductions to mathematics. Nonetheless that’s not a fully satisfactory
definition since a same rational number may have different quotient expressions, for instance we want to
have 10

14 = 5
7 . In order to formally solve this issue we are going to introduce the notion of equivalence classes

and quotient sets.

The oldest known texts referring to irrational numbers are the Śulbasūtras. They contain the fact that
the diagonal of a square sacrificial altar1 is uncommensurable with the side length (i.e. the side and the
diagonal can’t be integral multiples of another length).

The Pythagorean Hippasus of Metapontum (circa 500BC) is often credited to have discovered the first
proof of irrationality (it is known for sure that Pythagoreans were aware that √2 and 𝜑 are irrational, but
there is a lot of confusion about the first author divulging irrationality, probably because of the subsequent
damages to the dogma of the Pythagorean school). In ancient Greece, mathematics had a geometric flavour
with a focus on constructions: therefore that was a geometric proof of uncommensurability (I will give an
example later in this chapter).

There are several tales concerning the fate of the discoverer of uncommensurable lengths. In the most
favorable version, he was expelled for his impiety (it was Pythagorean dogma that lengths are commensu-
rable, and more generally that all the things in the world are commensurable, such as melodic intervals).
In other versions, the discoverer was sentenced to death by drowning2. That was for sure the beginning of
a deep philosophical crisis.

The second part of this chapter is devoted to the setℝ of real numbers. It allows us to take these irrational
numbers into account. I will give several proofs of irrationality (disclaimer: no ancient greek philosopher
has been harmed during the preparation of this text).
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1Irrational numbers seem to always appear in a deadly context…
2I warned you that irrational numbers seem to always appear under deadly circumstances.



2 The rationals and the reals

1 Equivalence classes
Recall that a binary relation ∼ on a set 𝐸 is an equivalence relation if
(i) ∀𝑥 ∈ 𝐸, 𝑥 ∼ 𝑥 (reflexivity)
(ii) ∀𝑥, 𝑦 ∈ 𝐸, 𝑥 ∼ 𝑦 ⟹ 𝑦 ∼ 𝑥 (symmetry)
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧) ⟹ 𝑥 ∼ 𝑧 (transitivity)

In what follows, we fix 𝐸 a set together with an equivalence relation ∼ on it. We define the equivalence class
of 𝑥 ∈ 𝐸 by

[𝑥] = {𝑦 ∈ 𝐸 ∶ 𝑥 ∼ 𝑦}
and we say that 𝑥 is a representative of [𝑥].
We may easily prove that equivalence classes satisfy the following properties:

• ∀𝑥 ∈ 𝐸, 𝑥 ∈ [𝑥]
• ∀𝑥, 𝑦 ∈ 𝐸, 𝑥 ∼ 𝑦 ⇔ [𝑥] = [𝑦]
• ∀𝑥, 𝑦 ∈ 𝐸, [𝑥] = [𝑦] or [𝑥] ∩ [𝑦] = ∅

Proof.

• Let 𝑥 ∈ 𝐸. Since 𝑥 ∼ 𝑥, we have that 𝑥 ∈ [𝑥].

• Let 𝑥, 𝑦 ∈ 𝐸.
⇒ Assume that 𝑥 ∼ 𝑦. Let 𝑧 ∈ [𝑥], then 𝑥 ∼ 𝑧. By transitivity 𝑦 ∼ 𝑧 so that 𝑧 ∈ [𝑦].
We proved that [𝑥] ⊂ [𝑦]. We may similarly prove that [𝑦] ⊂ [𝑥]. Hence [𝑥] = [𝑦].
⇐ Assume that [𝑥] = [𝑦]. Then 𝑥 ∈ [𝑥] = [𝑦], so 𝑦 ∼ 𝑥 (and thus 𝑥 ∼ 𝑦).

• Let 𝑥, 𝑦 ∈ 𝐸. Assume that [𝑥] ∩ [𝑦] ≠ ∅, then there exists 𝑧 ∈ [𝑥] ∩ [𝑦].
Therefore 𝑥 ∼ 𝑧 and 𝑦 ∼ 𝑧. By transitivity, we get that 𝑥 ∼ 𝑦, thus [𝑥] = [𝑦].

■

The set
𝐸 /∼ ≔ {[𝑥] ∶ 𝑥 ∈ 𝐸}

of equivalence classes of ∼ is called the quotient set of 𝐸 for ∼.
An element of 𝐸 /∼ is a subset of 𝐸 made of elements which are all equivalent for ∼.
According to the above properties the elements of 𝐸 /∼ form a partition of 𝐸:

𝐸 = ⨆
𝑆∈𝐸/∼

𝑆

The idea is that we want to identify all the elements which are equivalent: 𝑥 ∼ 𝑦 becomes [𝑥] = [𝑦] in 𝐸 /∼ .
That’s a very convenient tool to construct new sets from already constructed ones.

Example 1. For instance ℤ /mod 6 contains 6 equivalence classes:
• [0] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 0 (mod 6)} = {… , −12, −6, 0, 6, 12, …}
• [1] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 1 (mod 6)} = {… , −11, −5, 1, 7, 13, …}
• [2] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 2 (mod 6)} = {… , −10, −4, 2, 8, 14, …}
• [3] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 3 (mod 6)} = {… , −9, −3, 3, 9, 15, …}
• [4] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 4 (mod 6)} = {… , −8, −2, 4, 10, 16, …}
• [5] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 5 (mod 6)} = {… , −7, −1, 5, 11, 17, …}

Note that −5, 1 and 7 are representatives of [−5] = [1] = [7].
Congruences become an actual equality in ℤ /mod 6 : 𝑎 ≡ 𝑏 (mod 6) ⇔ [𝑎] = [𝑏].
In this example, it is easy to see that the equivalence classes form a partition of ℤ = [0]⊔[1]⊔[2]⊔[3]⊔[4]⊔[5].
Indeed, an integer 𝑛 ∈ ℤ is an element of exactly one of the equivalence classes (depending on its remainder
for the Euclidean division by 6).
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Remark 2. An equivalence relation is entirely characterized by its equivalence classes.
Indeed if we have a partition 𝐸 = ⨆

𝑖∈𝐼
𝑆𝑖 then

𝑥 ∼ 𝑦 ⇔ (∃𝑖 ∈ 𝐼, 𝑥, 𝑦 ∈ 𝑆𝑖)

defines an equivalence relation on 𝐸.

2 Rational numbers
Proposition 3. The relation ∼ on ℤ × ℤ ⧵ {0} defined by

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ⇔ 𝑎𝑑 = 𝑏𝑐

is an equivalence relation.

Proof.
• Reflexivity. Let (𝑎, 𝑏) ∈ ℤ × ℤ ⧵ {0} then 𝑎𝑏 = 𝑏𝑎 so that (𝑎, 𝑏) ∼ (𝑎, 𝑏).
• Symmetry. Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ ℤ × ℤ ⧵ {0}. Assume that (𝑎, 𝑏) ∼ (𝑐, 𝑑) then 𝑎𝑑 = 𝑏𝑐.

Thus 𝑐𝑏 = 𝑑𝑎, i.e. (𝑐, 𝑑) ∼ (𝑎, 𝑏).
• Transitivity. Let (𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓 ) ∈ ℤ × ℤ ⧵ {0}. Assume that (𝑎, 𝑏) ∼ (𝑐, 𝑑) and that (𝑐, 𝑑) ∼ (𝑒, 𝑓 ).

Then 𝑎𝑑 = 𝑏𝑐 and 𝑐𝑓 = 𝑑𝑒. Therefore 𝑎𝑑𝑓 = 𝑏𝑐𝑓 = 𝑏𝑑𝑒.
Since 𝑑 ≠ 0, by cancellation, 𝑎𝑓 = 𝑏𝑒, i.e. (𝑎, 𝑏) ∼ (𝑒, 𝑓 ).

■

Definition 4. We define the set of rational numbers by ℚ ≔ (ℤ × ℤ ⧵ {0}) /∼ and we denote the equivalence
class of (𝑎, 𝑏) ∈ ℤ × ℤ ⧵ {0} by 𝑎

𝑏 ≔ [(𝑎, 𝑏)].

Remark 5. Note that 𝑎
𝑏 = 𝑐

𝑑 ⇔ 𝑎𝑑 = 𝑏𝑐.

Remark 6. With the above definition, we may formally write that 12
14 = 6

7 : indeed (12, 14) ∼ (6, 7) since
12 × 7 = 84 = 14 × 6.

Remark 7. We defined a rational number as a set of couples, but what really matters is how the usual
operations and the order are defined on rational numbers 𝑎

𝑏 ∈ ℚ.

Remark 8. Note that for (𝑎, 𝑏) ∈ ℤ × ℤ ⧵ {0}, we have −𝑎
𝑏 = 𝑎

−𝑏 . Hence we set −𝑎
𝑏 ≔ −𝑎

𝑏 = 𝑎
−𝑏 .

Remark 9. Note that 𝑎
𝑏 = 0 ⇔ 𝑎 = 0 and that if 𝑎

𝑏 = 𝑎′

𝑏′ ≠ 0 then 𝑏
𝑎 = 𝑏′

𝑎′ .

Hence, if 𝑥 = 𝑎
𝑏 ≠ 0, we set 𝑥−1 ≔ 𝑏

𝑎 which doesn’t depend on the representative of 𝑥.

Proposition 10. Given 𝑥 ∈ ℚ, there exists a unique couple (𝑎, 𝑏) ∈ ℤ × ℕ ⧵ {0} such that 𝑥 = 𝑎
𝑏 and gcd(𝑎, 𝑏) = 1.

Then we say that 𝑥 = 𝑎
𝑏 is written in lowest form.

Proof. Let 𝑥 ∈ ℚ.
Existence. There exist 𝛼 ∈ ℤ and 𝛽 ∈ ℤ ⧵ {0} such that 𝑥 = 𝛼

𝛽 .
Write 𝑑 = gcd(𝛼, 𝛽), then there exist 𝑎 ∈ ℤ and 𝑏 ∈ ℤ ⧵ {0} such that 𝛼 = 𝑑𝑎 and 𝛽 = 𝑑𝑏.
We have 𝑑 = gcd(𝛼, 𝛽) = gcd(𝑑𝑎, 𝑑𝑏) = 𝑑 gcd(𝑎, 𝑏), so gcd(𝑎, 𝑏) = 1.
Besides 𝛼

𝛽 = sign(𝑏)𝑎
|𝑏| since sign(𝑏)𝑎𝛽 = sign(𝑏)𝑎𝑑𝑏 = |𝑏|𝑑𝑎 = |𝑏|𝛼.

Uniqueness. Assume that 𝑎
𝑏 = 𝑎′

𝑏′ where 𝑎, 𝑎′ ∈ ℤ, 𝑏, 𝑏′ ∈ ℕ ⧵ {0}, gcd(𝑎, 𝑏) = 1, gcd(𝑎′, 𝑏′) = 1.
Then 𝑎𝑏′ = 𝑎′𝑏. By Gauss’ lemma, since 𝑏|𝑎𝑏′ and gcd(𝑎, 𝑏) = 1, we get that 𝑏|𝑏′. Similarly 𝑏′|𝑏.
Since 𝑏|𝑏′ and 𝑏′|𝑏, we get |𝑏| = |𝑏′|, and thus 𝑏 = 𝑏′.
Then, using the cancellation rule, 𝑎𝑏′ = 𝑎′𝑏 gives 𝑎 = 𝑎′ since 𝑏 = 𝑏′ ≠ 0. ■



4 The rationals and the reals

Remark 11. Note that the function 𝜑 ∶ ℤ → ℚ
𝑛 ↦ 𝑛

1
is injective. Indeed, ∀𝑛, 𝑚 ∈ ℤ, 𝑛

1 = 𝑚
1 ⇔ 𝑛 = 𝑚.

Therefore we may see ℤ as a subset of ℚ by setting 𝑛 ≔ 𝑛
1 ∈ ℚ for 𝑛 ∈ ℤ.

More formally, 𝜑(ℤ) ⊂ ℚ and we may identify ℤ with 𝜑(ℤ) since 𝜑 ∶ ℤ → 𝜑(ℤ) is bijective.

Proposition 12. The addition + ∶
ℚ × ℚ → ℚ

(
𝑎
𝑏 , 𝑐

𝑑 ) ↦ 𝑎𝑑+𝑏𝑐
𝑏𝑑

is well-defined.

Proof. We need to prove that the addition doesn’t depend on the choice of the representatives,
i.e. that if 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ then 𝑎
𝑏 + 𝑐

𝑑 = 𝑎′

𝑏′ + 𝑐′

𝑑′ .
Assume that 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ , i.e. 𝑎𝑏′ = 𝑏𝑎′ and 𝑐𝑑′ = 𝑑𝑐′.
Therefore (𝑎𝑑 + 𝑏𝑐)(𝑏′𝑑′) = 𝑎𝑑𝑏′𝑑′ + 𝑏𝑐𝑏′𝑑′ = 𝑏𝑎′𝑑𝑑′ + 𝑑𝑐′𝑏𝑏′ = (𝑎′𝑑′ + 𝑏′𝑐′)(𝑏𝑑), i.e. 𝑎𝑑+𝑏𝑐

𝑏𝑑 = 𝑎′𝑑′+𝑏′𝑐′

𝑏′𝑑′ . ■

Remark 13. Note that the addition defined on ℚ is compatible with the one on ℤ.
Indeed, if 𝑚, 𝑛 ∈ ℤ then 𝑚

1 + 𝑛
1 = 𝑚+𝑛

1 .

Proposition 14. The multiplication × ∶
ℚ × ℚ → ℚ

(
𝑎
𝑏 , 𝑐

𝑑 ) ↦ 𝑎𝑐
𝑏𝑑

is well-defined.

Proof. We need to prove that the multiplication doesn’t depend on the choice of the representatives,
i.e. that if 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ then 𝑎
𝑏 × 𝑐

𝑑 = 𝑎′

𝑏′ × 𝑐′

𝑑′ .
Assume that 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ , i.e. 𝑎𝑏′ = 𝑏𝑎′ and 𝑐𝑑′ = 𝑑𝑐′.
Therefore (𝑎𝑐)(𝑏′𝑑′) = 𝑎𝑏′𝑐𝑑′ = 𝑏𝑎′𝑑𝑐′ = (𝑎′𝑐′)(𝑏𝑑), i.e. 𝑎𝑐

𝑏𝑑 = 𝑎′𝑐′

𝑏′𝑑′ as desired. ■

Remark 15. Note that the multiplication defined on ℚ is compatible with the one on ℤ.
Indeed, if 𝑚, 𝑛 ∈ ℤ then 𝑚

1 × 𝑛
1 = 𝑚×𝑛

1 .

Definition 16. We define the binary relation ≤ on ℚ by
𝑎
𝑏 ≤ 𝑐

𝑑 ⇔ 0 ≤ (𝑏𝑐 − 𝑎𝑑)𝑏𝑑

where the order on the RHS of the equivalence is the order of ℤ.

Remark 17. The idea behind the above definition is the following:
• We want that 𝑎

𝑏 ≤ 𝑐
𝑑 if and only if 0 ≤ 𝑐

𝑑 − 𝑎
𝑏 = 𝑏𝑐−𝑎𝑑

𝑏𝑑 , and,
• we also want that 0 ≤ 𝑒

𝑓 if and only if 0 ≤ 𝑒𝑓 (i.e. the sign rule).

Remark 18. We have to check that the order doesn’t depend on the choice of representatives.

Remark 19. Note that the relation ≤ defined on ℚ is compatible with the usual order ≤ on ℤ.
Indeed, let 𝑚, 𝑛 ∈ ℤ then 𝑚

1 ≤ 𝑛
1 ⇔ 0 ≤ 𝑛 − 𝑚 ⇔ 𝑚 ≤ 𝑛.

Theorem 20. (ℚ, +, ×, ≤) is a (totally) ordered field, meaning that
• + is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
• 0 is the unit of +: ∀𝑥 ∈ ℚ, 𝑥 + 0 = 0 + 𝑥 = 𝑥
• −𝑥 is the additive inverse of 𝑥: ∀𝑥 ∈ ℚ, 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0
• + is commutative: ∀𝑥, 𝑦 ∈ ℚ, 𝑥 + 𝑦 = 𝑦 + 𝑥
• × is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)
• × is distributive with respect to +: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 and (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧
• 1 is the unit of × : ∀𝑥 ∈ ℚ, 1 × 𝑥 = 𝑥 × 1 = 𝑥
• If 𝑥 ≠ 0 then 𝑥−1 is the multiplicative inverse of 𝑥: ∀𝑥 ∈ ℚ ⧵ {0}, 𝑥𝑥−1 = 𝑥−1𝑥 = 1
• × is commutative: ∀𝑥, 𝑦 ∈ ℚ, 𝑥𝑦 = 𝑦𝑥
• ≤ is reflexive: ∀𝑥 ∈ ℚ, 𝑥 ≤ 𝑥
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• ≤ is antisymmetric: ∀𝑥, 𝑦 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦
• ≤ is transitive: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧
• ≤ is total: ∀𝑥, 𝑦 ∈ ℚ, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
• ∀𝑥, 𝑦, 𝑟, 𝑠 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑟 ≤ 𝑠) ⇒ 𝑥 + 𝑟 ≤ 𝑦 + 𝑠
• ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑧 > 0) ⇒ 𝑥𝑧 ≤ 𝑦𝑧

Remark 21. If 𝑐
𝑑 ≠ 0, we set

𝑎
𝑏
𝑐
𝑑

≔ (
𝑐
𝑑 )

−1 𝑎
𝑏 = 𝑎𝑑

𝑏𝑐 .

Proposition 22. ∀𝑥, 𝑦 ∈ ℚ, 𝑥 < 𝑦 ⟹ (∃𝑧 ∈ ℚ, 𝑥 < 𝑧 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℚ be such that 𝑥 < 𝑦. Then 𝑧 = 𝑥+𝑦
2 is a suitable choice.

Indeed, 𝑥 < 𝑦 implies 2𝑥 < 𝑥 + 𝑦 and thus 𝑥 < 𝑧. Similarly 𝑥 + 𝑦 < 2𝑦, and thus 𝑧 < 𝑦. ■

Theorem 23 (ℚ is archimedean). ∀𝜀 ∈ ℚ>0, ∀𝐴 ∈ ℚ>0, ∃𝑁 ∈ ℕ, 𝑁𝜀 > 𝐴.

Proof. Since 𝐴
𝜀 > 0, we may find a representative 𝑎

𝑏 = 𝐴
𝜀 where 𝑎, 𝑏 ∈ ℕ ⧵ {0}.

Then 𝑎 + 1 − 𝐴
𝜀 = 𝑎 + 1 − 𝑎

𝑏 = 𝑎(𝑏−1)+𝑏
𝑏 > 0, thus (𝑎 + 1)𝜀 > 𝐴. So 𝑁 = 𝑎 + 1 is a suitable choice. ■

Remark 24. The above theoremmeans that lim
𝑛→+∞

1
𝑛 = 0, or equivalently that ℚ doesn’t contain infinitesimal

elements (i.e. there is not infinitely large or infinitely small elements).
This property may seem obvious at first glance, but, even if it is a little bit beyond the scope of this course,
it is not too difficult to construct a (totally) ordered field with infinitesimal elements (i.e. with a positive
element which is less than or equal to any other positive elements).

Remark 25. Note that ℚ is not well-ordered.
Indeed ℚ>0 = {𝑥 ∈ ℚ ∶ 𝑥 > 0} is non-empty (and even bounded from below) but it has no least element.

Theorem 26 (The rational root theorem).
Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 be a polynomial with integer coefficients 𝑎𝑘 ∈ ℤ.
If 𝑥 = 𝑝

𝑞 is a rational root of 𝑓 written in lowest terms (i.e. gcd(𝑝, 𝑞) = 1), then 𝑝|𝑎0 and 𝑞|𝑎𝑛.

Proof. By assumption we have that

𝑎𝑛 (
𝑝
𝑞 )

𝑛
+ 𝑎𝑛−1 (

𝑝
𝑞 )

𝑛−1
+ ⋯ + 𝑎1

𝑝
𝑞 + 𝑎0 = 0

Therefore
𝑎𝑛𝑝𝑛 + 𝑎𝑛−1𝑝𝑛−1𝑞 + ⋯ + 𝑎1𝑝𝑞𝑛−1 + 𝑎0𝑞𝑛 = 0

Thus 𝑝|𝑎0𝑞𝑛. Since gcd(𝑝, 𝑞) = 1, by Gauss’ lemma we obtain that 𝑝|𝑎0.
Similarly 𝑞|𝑎𝑛. ■

3 Infima and suprema
Recall that a binary relation ≤ on a set 𝐸 is an order if
(i) ∀𝑥 ∈ 𝐸, 𝑥 ≤ 𝑥 (reflexivity)
(ii) ∀𝑥, 𝑦 ∈ 𝐸, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦 (antisymmetry)
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧 (transitivity)

Definition 27. Let (𝐸, ≤) be an ordered set and 𝐴 ⊂ 𝐸.
• We say that 𝑚 ∈ 𝐴 is the least element of 𝐴 if ∀𝑎 ∈ 𝐴, 𝑚 ≤ 𝑎.
• We say that 𝑀 ∈ 𝐴 is the greatest element of 𝐴 if ∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑀 .

Remark 28. Note that, if it exists, the least element (resp. greatest element) of 𝐴 is in 𝐴 by definition.
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Remark 29. The least (resp. greatest) element may not exist, but if it exists then it is unique.
For instance {𝑛 ∈ ℤ ∶ 𝑛 ≤ 0} ⊂ ℤ and {𝑥 ∈ ℚ ∶ 0 < 𝑥 < 1} have no least element.
For the uniqueness, it is easy to prove: assume that 𝑚, 𝑚′ are two least elements of 𝐴, then

• 𝑚 ≤ 𝑚′ since 𝑚 is a least element of 𝐴 and 𝑚′ ∈ 𝐴, and,
• 𝑚′ ≤ 𝑚 since 𝑚′ is a least element of 𝐴 and 𝑚 ∈ 𝐴.

Hence 𝑚 = 𝑚′.

Definition 30. Let (𝐸, ≤) be an ordered set and 𝐴 ⊂ 𝐸.
• We say that 𝐴 is bounded from below if it admits a lower bound, i.e.

∃𝑐 ∈ 𝐸, ∀𝑎 ∈ 𝐴, 𝑐 ≤ 𝑎

• We say that 𝐴 is bounded from above if it admits an upper bound, i.e.

∃𝐶 ∈ 𝐸, ∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝐶

• We say that 𝐴 is bounded if it is bounded from below and from above.

Definition 31. Let (𝐸, ≤) be an ordered set and 𝐴 ⊂ 𝐸.
• If the greatest lower bound of 𝐴 exists, we denote it inf(𝐴) and call it the infimum of 𝐴.
• If the least upper bound of 𝐴 exists, we denote it sup(𝐴) and call it the supremum of 𝐴.

Remark 32. If it exists, the greatest element of the set of lower bounds of 𝐴 is unique (as shown above),
therefore the infimum is unique (if it exists). And similarly for the supremum.
However, it may not exist:

• If 𝐴 = {𝑛 ∈ ℤ ∶ 𝑛 ≤ 0} ⊂ ℤ then the set of lower bounds of 𝐴 is empty, so 𝐴 has no infimum.
• If 𝐴 = {𝑥 ∈ ℚ ∶ 𝑥 > 0 and 𝑥2 > 2} ⊂ ℚ then the set of lower bounds of 𝐴 is not empty but has no

greatest element, so 𝐴 has no infimum.
Note that the infimum (resp. supremum) may not be an element of 𝐴, but if it is then it is the least (resp.
greatest) element of 𝐴. For instance, the infimum of 𝐴 = {𝑥 ∈ ℚ ∶ 0 < 𝑥 < 1} ⊂ ℚ is 0 ∉ 𝐴.

4 Real numbers

The following results concerning ℝ that you learnt during your first year calculus course are equivalent:
• The Least Upper Bound principle
• The Monotone Convergence Theorem for sequences
• The Extreme Value Theorem
• The Intermediate Value Theorem
• Rolle’s Theorem/The Mean Value Theorem
• A continuous function on a segment line is Riemann-integrable
• Bolzano-Weierstrass Property of ℝ: a bounded sequence in ℝ admits a convergent subsequence
• Cut property:

∀𝐴, 𝐵 ⊂ ℝ,
𝐴, 𝐵 ≠ ∅

ℝ = 𝐴 ∪ 𝐵
∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 < 𝑏

⎫⎪
⎬
⎪⎭

⟹ ∃!𝑐 ∈ ℝ, ∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 ≤ 𝑐 ≤ 𝑏

• ⋯
We say that ℝ is Dedekind-complete to state that the above statements hold.

Intuitively, the Dedekind-completeness of the real line tells us two things:
1. There is no infinitely small positive real number (Archimedean property, which is already true for ℚ):

∀𝜀 > 0, ∀𝐴 > 0, ∃𝑛 ∈ ℕ, 𝑛𝜀 > 𝐴



MAT246H1-S – LEC0201/9201 – J.-B. Campesato 7

2. There is no gap in the real line. That’s the difference with ℚ. See for instance the following examples
involving √2 ∉ ℚ:

• LUB: √2 = sup{𝑥 ∈ ℚ ∶ 𝑥2 < 2}.
• MCT: define a sequence by 𝑥0 = 1 and 𝑥𝑛+1 = 𝑥𝑛

2 + 1
𝑥𝑛
.

Then (𝑥𝑛) converges to some limit 𝑙 by the MCT. But this limit must satisfy 𝑙2 = 2.
• IVT: let 𝑓(𝑥) = 𝑥2 − 2. Then 𝑓(0) < 0 and 𝑓(2) > 0.

Hence we deduce from the IVT that 𝑓 has a root, i.e. ∃𝑥 ∈ ℝ, 𝑥2 − 2 = 0.

The Dedekind-completeness of the real line has several consequences that you already know:
• The various results connecting the sign of 𝑓 ′ to the monotonicity of 𝑓 .
• 𝐴𝐶𝑉 ⟹ 𝐶𝑉 (for series and improper integrals).
• The Fundamental Theorem of Calculus.
• L’Hôpital’s rule.
• The BCT and the LCT (for series and improper integrals).
• Cauchy-completeness of ℝ: any Cauchy sequence converges.

Beware, despite very close names, without the Archimedean property Cauchy-completeness is strictly weaker
than Dedekind-completeness.

• ⋯
Hence a first year calculus course is basically about the Dedekind-completeness of ℝ and its consequences.

Theorem 33. Up to isomorphism3, there exists a unique (totally) ordered field (ℝ, +, ×, ≤) which is Dedekind-
complete, i.e. such that:

• + is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
• 0 is the unit of +: ∀𝑥 ∈ ℝ, 𝑥 + 0 = 0 + 𝑥 = 𝑥
• Existence of the additive inverse: ∀𝑥 ∈ ℝ, ∃(−𝑥) ∈ ℝ, 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0
• + is commutative: ∀𝑥, 𝑦 ∈ ℝ, 𝑥 + 𝑦 = 𝑦 + 𝑥
• × is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)
• × is distributive with respect to +: ∀𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 and (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧
• 1 is the unit of × : ∀𝑥 ∈ ℝ, 1 × 𝑥 = 𝑥 × 1 = 𝑥
• Existence of the multiplicative inverse: ∀𝑥 ∈ ℝ ⧵ {0}, ∃𝑥−1 ∈ ℝ, 𝑥𝑥−1 = 𝑥−1𝑥 = 1
• × is commutative: ∀𝑥, 𝑦 ∈ ℝ, 𝑥𝑦 = 𝑦𝑥
• ≤ is reflexive: ∀𝑥 ∈ ℝ, 𝑥 ≤ 𝑥
• ≤ is antisymmetric: ∀𝑥, 𝑦 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦
• ≤ is transitive: ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧
• ≤ is total: ∀𝑥, 𝑦 ∈ ℝ, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
• ∀𝑥, 𝑦, 𝑟, 𝑠 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑟 ≤ 𝑠) ⇒ 𝑥 + 𝑟 ≤ 𝑦 + 𝑠
• ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑧 > 0) ⇒ 𝑥𝑧 ≤ 𝑦𝑧
• ℝ is Dedekind-complete (for instance a non-empty subset which is bounded from above admits a supremum).

The theorem contains two parts: existence and uniqueness.

For the existence part, there are several ways to construct a field satisfying the above properties. Usually
each construction gives easily a version of the Dedekind-completeness from which we derive the other
equivalent statements.

One very common construction consists in defining ℝ as equivalence classes of rational Cauchy se-
quences: this way we obtain easily the archimedean property and the Cauchy-completeness (which are
together equivalent to the Dedekind-completeness).

Another common construction relies on Dedekind cuts (that I present in the appendix). This one gives
the cut property for free, from which we easily derive the least upper bound principle (quite often the LUB

3It means that if we have two such fields, then there is a bijection between them preserving the addition, the multiplication and
the order, i.e. they are basically the same.
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principle is the start point of first year calculus courses).

The uniqueness part is a little bit delicate and I won’t prove it in this course. Nonetheless, let me try to
explain the rough idea.

Assume that we are given two fields ℝ and ℝ̃ satisfying the above properties. Note that each of them
contains a copy of ℚ. Then we can construct a order-preserving bijection 𝜑 ∶ ℝ → ℝ̃ compatible with the
addition and the multiplication as follows: first we map the copy of ℚ in ℝ to the one in ℝ̃ and then we use
the Dedekind-completeness to extend the bijection from ℚ to ℝ (the idea is to fill the gaps similarly in ℝ and
ℝ̃).

Nonetheless, there is no need to give an explicit construction of ℝ: we can use the above properties as
axioms and then study their consequences. That’s the usual strategy in a first year calculus course. In the
sequel, concerning the Dedekind-completeness of ℝ, we assume that the least upper bound principle holds:

LUB Principle. A non-empty subset of ℝ which is bounded from above admits a supremum.

Proposition 34. ℚ ⊂ ℝ and +, ×, < for ℝ are compatible with the ones for ℚ.

Proof. That’s a sketch of proof (for concision I use equality instead of identification/bijection).
1. ℕ ⊂ ℝ: if 𝑛 ∈ ℕ then 𝑛 = 1 + 1 + ⋯ + 1 ∈ ℝ. So ℕ ⊂ ℝ.
2. ℤ ⊂ ℝ: if 𝑛 ∈ ℕ then −𝑛 ∈ ℝ. So ℤ ⊂ ℝ.
3. ℚ ⊂ ℝ: if (𝑎, 𝑏) ∈ ℤ × ℤ ⧵ {0} then 𝑎

𝑏 ≔ 𝑎𝑏−1 ∈ ℝ. So ℚ ⊂ ℝ.
■

Proposition 35.
• ∀𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧
• ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 ≤ 𝑦 and 0 ≤ 𝑧) ⇒ 𝑥𝑧 ≤ 𝑦𝑧
• ∀𝑥, 𝑦, 𝑢, 𝑣 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑢 ≤ 𝑣) ⇒ 𝑥 + 𝑢 ≤ 𝑦 + 𝑣
• ∀𝑥 ∈ ℝ, 0 < 𝑥 ⇔ 0 < 1

𝑥
• ∀𝑥, 𝑦 ∈ ℝ, ∀𝑧 ∈ ℝ∗

+, 𝑥 ≤ 𝑦 ⇔ 𝑥𝑧 ≤ 𝑦𝑧
• ∀𝑥, 𝑦, 𝑢, 𝑣 ∈ ℝ, (0 ≤ 𝑥 ≤ 𝑦 and 0 ≤ 𝑢 ≤ 𝑣) ⇒ 𝑥𝑢 ≤ 𝑦𝑣
• ∀𝑥, 𝑦 ∈ ℝ, 0 < 𝑥 < 𝑦 ⇔ 1

𝑦 < 1
𝑥

Definition 36. We define the absolue value by | ⋅ | ∶
ℝ → ℝ
𝑥 ↦ |𝑥| ≔ {

𝑥 si 𝑥 ≥ 0
−𝑥 si 𝑥 ≤ 0

Proposition 37.
• ∀𝑥 ∈ ℝ, |𝑥| = max(𝑥, −𝑥)
• ∀𝑥 ∈ ℝ, |𝑥| ≥ 0
• ∀𝑥 ∈ ℝ, 𝑥 = 0 ⇔ |𝑥| = 0
• ∀𝑥, 𝑦 ∈ ℝ, |𝑥| = |𝑦| ⇔ (𝑥 = 𝑦 or 𝑥 = −𝑦)
• ∀𝑥, 𝑦 ∈ ℝ, |𝑥𝑦| = |𝑥||𝑦|
• ∀𝑥 ∈ ℝ ⧵ {0}, |

1
𝑥 | = 1

|𝑥|
• ∀𝑥, 𝑦 ∈ ℝ, |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| (triangle inequality)
• ∀𝑥, 𝑦 ∈ ℝ, ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦| (reverse triangle inequality)

Proposition 38. For 𝑥, 𝑎 ∈ ℝ,
• |𝑥| ≤ 𝑎 ⇔ −𝑎 ≤ 𝑥 ≤ 𝑎
• |𝑥| < 𝑎 ⇔ −𝑎 < 𝑥 < 𝑎
• |𝑥| ≥ 𝑎 ⇔ (𝑥 ≥ 𝑎 or 𝑥 ≤ −𝑎)
• |𝑥| > 𝑎 ⇔ (𝑥 > 𝑎 or 𝑥 < −𝑎)
• If 𝑎 ≥ 0 then |𝑥| = 𝑎 ⇔ (𝑥 = 𝑎 or 𝑥 = −𝑎)
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Proposition 39. Let 𝐴 ⊂ ℝ and 𝑀 ∈ ℝ. Then

𝑀 = sup(𝐴) ⇔ {
∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑀
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑀 − 𝜀 < 𝑥

The first condition ensures that 𝑀 is an upper bound of 𝐴. The second one means it is the smallest one.

ℝ𝐴
𝑀𝑀 − 𝜀

𝜀

𝑥
Beware, for simplicity I represented 𝐴 as an interval in the above figure, but it may not be an interval!

Proof.
⇒ Assume that 𝑀 = sup(𝐴). Then 𝑀 is an upper bound of 𝐴 so ∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑆.
We know that if 𝑇 is an other upper bound of 𝐴 then 𝑀 ≤ 𝑇 (since 𝑀 is the least upper bound).
So, by taking the contrapositive, if 𝑇 < 𝑀 then 𝑇 isn’t an upper bound of 𝐴.
Let 𝜀 > 0. Since 𝑀 − 𝜀 < 𝑀 , we know that 𝑀 − 𝜀 is not an upper bound of 𝐴, meaning that there exists
𝑥 ∈ 𝐴 such that 𝑀 − 𝜀 < 𝑥.

⇐ Assume that

{
∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑀
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑀 − 𝜀 < 𝑥

Then, by the first condition, 𝑀 is an upper bound of 𝐴. Let’s prove it is the least one.
We will show the contrapositive: if 𝑇 < 𝑀 then 𝑇 isn’t an upper bound of 𝐴.
Let 𝑇 ∈ ℝ. Assume that 𝑇 < 𝑀 . Set 𝜀 = 𝑀 − 𝑇 > 0. Then there exists 𝑥 ∈ 𝐴 such that 𝑀 − 𝜀 < 𝑥, i.e. 𝑇 < 𝑥.
Hence 𝑇 isn’t an upper bound of 𝐴 ■

We have a similar characterization for the infimum.

Proposition 40. Let 𝐴 ⊂ ℝ and 𝑚 ∈ ℝ. Then

𝑚 = inf(𝐴) ⇔ {
∀𝑥 ∈ 𝐴, 𝑚 ≤ 𝑥
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑥 < 𝑚 + 𝜀

Proposition 41. Given 𝐴, 𝐵 ⊂ ℝ two non-empty subsets of ℝ, we set
• 𝐴 + 𝐵 = {𝑥 ∈ ℝ ∶ ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵, 𝑥 = 𝑎 + 𝑏}
• −𝐴 = {𝑥 ∈ ℝ ∶ −𝑥 ∈ 𝐴}

Then
• If 𝐴 and 𝐵 are bounded from above then 𝐴 + 𝐵 is too and sup(𝐴 + 𝐵) = sup(𝐴) + sup(𝐵).
• If 𝐴 is bounded from above then −𝐴 is bounded from below and inf(−𝐴) = − sup(𝐴).
• If 𝐴 and 𝐵 are bounded from above then 𝐴 ∪ 𝐵 is too and sup(𝐴 ∪ 𝐵) = max(sup(𝐴), sup(𝐵))

Theorem 42 (ℝ is archimedean). ∀𝜀 > 0, ∀𝐴 > 0, ∃𝑛 ∈ ℕ, 𝑛𝜀 > 𝐴

Proof. Let 𝜀 > 0 and 𝐴 > 0.
Assume by contradiction that ∀𝑛 ∈ ℕ, 𝑛𝜀 ≤ 𝐴. Then 𝐸 = {𝑛𝜀 ∶ 𝑛 ∈ ℕ} is non-empty and bounded from
above so it admits a supremum 𝑀 = sup𝐸 by the least upper bound principle.
Since 𝑀 − 𝜀 < 𝑀 , 𝑀 − 𝜀 is not an upper bound of 𝐸, so there exists 𝑛 ∈ ℕ such that 𝑛𝜀 > 𝑀 − 𝜀.
Therefore (𝑛 + 1)𝜀 > 𝑀 , hence a contradiction. ■

Proposition 43. For every 𝑥 ∈ ℝ, there exists a unique 𝑛 ∈ ℤ such that 𝑛 ≤ 𝑥 < 𝑛 + 1.
We say that 𝑛 is the integer part (or the floor function value) of 𝑥 and we denote it by ⌊𝑥⌋.
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Proof. Let 𝑥 ∈ ℝ.
Existence.

• First case: if 𝑥 ≥ 0.
We set 𝐸 = {𝑛 ∈ ℕ ∶ 𝑥 < 𝑛}.
By the archimedean property (with 𝜀 = 1), there exists 𝑚 ∈ ℕ such that 𝑚 > 𝑥. Hence 𝐸 ≠ ∅.
By the well-ordering principle, 𝐸 admits a least element 𝑝.
We have that 𝑥 < 𝑝 since 𝑝 ∈ 𝐸 and that 𝑝 − 1 ≤ 𝑥 since 𝑝 − 1 ∉ 𝐸.
Therefore 𝑛 = 𝑝 − 1 satisfies 𝑛 ≤ 𝑥 < 𝑛 + 1.

• Second case: if 𝑥 < 0. Then we apply the first case to −𝑥.
Uniqueness. Assume that 𝑛, 𝑛′ ∈ ℤ are two suitable integers, then

𝑛 ≤ 𝑥 < 𝑛 + 1 (1)

and
𝑛′ ≤ 𝑥 < 𝑛′ + 1

We deduce from the last inequality that

− 𝑛′ − 1 < −𝑥 ≤ −𝑛′ (2)

Summing (1) and (2), we get that 𝑛 − 𝑛′ − 1 < 0 < 𝑛 − 𝑛′ + 1.
Hence 𝑛 − 𝑛′ < 1, i.e. 𝑛 − 𝑛′ ≤ 0, and −1 < 𝑛 − 𝑛′ i.e. 0 ≤ 𝑛 − 𝑛′.
Therefore 𝑛 = 𝑛′. ■

Remark 44. We have ⌊𝑥⌋ ≤ 𝑥 < ⌊𝑥⌋ + 1, from which we derive 𝑥 − 1 < ⌊𝑥⌋ ≤ 𝑥.

Theorem 45 (ℚ is dense in ℝ). ∀𝑥, 𝑦 ∈ ℝ, 𝑥 < 𝑦 ⇒ (∃𝑞 ∈ ℚ, 𝑥 < 𝑞 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦. Set 𝜀 = 𝑦 − 𝑥 > 0.
By the archimedean property, there exists 𝑛 ∈ ℕ ⧵ {0} such that 𝑛𝜀 > 1, i.e. 1

𝑛 < 𝜀.
Set 𝑚 = ⌊𝑛𝑥⌋ + 1. Then 𝑛𝑥 < 𝑚 ≤ 𝑛𝑥 + 1, so 𝑥 < 𝑚

𝑛 ≤ 𝑥 + 1
𝑛 < 𝑥 + 𝜀 = 𝑦. ■

Remark 46. The above theorem is equivalent to the fact that any real number is the limit of a sequence of
rational numbers (that you will prove in Problem Set).

Definition 47. A subset 𝐼 ⊂ ℝ is an interval if ∀𝑥, 𝑦 ∈ 𝐼, ∀𝑧 ∈ ℝ, (𝑥 ≤ 𝑧 ≤ 𝑦 ⇒ 𝑧 ∈ 𝐼).

Proposition 48. If 𝐼 ⊂ ℝ is a non-empty interval not reduced to a singleton then 𝐼 ∩ ℚ ≠ ∅.

Proof. Since 𝐼 is non-empty and not reduced to a singleton, there exist 𝑥, 𝑦 ∈ 𝐼 with 𝑥 < 𝑦.
Then, since ℚ is dense in ℝ, there exists 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦.
Since 𝐼 is an interval, 𝑞 ∈ 𝐼 . Hence 𝑞 ∈ 𝐼 ∩ ℚ ≠ ∅. ■

Corollary 49. ∀𝑥, 𝑦 ∈ ℝ, 𝑥 < 𝑦 ⟹ (∃𝑠 ∈ ℝ ⧵ ℚ, 𝑥 < 𝑠 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦.
By Theorem 45, there exists 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦.
Still by Theorem 45, there exists 𝑝 ∈ ℚ such that 𝑥 < 𝑝 < 𝑞.
Hence we obtained 𝑝, 𝑞 ∈ ℚ such that 𝑥 < 𝑝 < 𝑞 < 𝑦.
Set 𝑠 = 𝑝 + √2

2 (𝑞 − 𝑝). Then 𝑠 ∈ ℝ ⧵ ℚ (otherwise, by contradiction, √2 would be in ℚ, which is not the case

as you proved in the Week 4 of tutorials) and 𝑝 < 𝑠 < 𝑞 (notice that 0 < √2
2 < 1 so 𝑠 is a number between 𝑝

and 𝑞).
We obtained 𝑠 ∈ ℝ ⧵ ℚ such that 𝑥 < 𝑠 < 𝑦. ■

Proposition 50. If 𝐼 ⊂ ℝ is an interval which is non-empty and not reduced to a singleton then 𝐼 ∩ (ℝ ⧵ ℚ) ≠ ∅.
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5 Decimal representation of real numbers

It is possible to generalize the decimal numeral system used to describe integers in order to describe real
numbers. In what follows I only work with decimal expansions but all the statements/proofs work if we
replace 10 by 𝑏 ≥ 2.

We start with a lemma that we will use several times in this section.

Lemma 51. Let (𝑎𝑘)𝑘≥1 be a sequence such that ∀𝑘 ∈ ℕ ⧵ {0}, 𝑎𝑘 ∈ {0, 1, … , 9}. Then the series

𝑆 =
+∞

∑
𝑘=1

𝑎𝑘
10𝑘

is convergent and 𝑆 ≥ 0.

Proof.

Note that 0 ≤ 𝑎𝑘
10𝑘 ≤ 9

10𝑘 and that
+∞

∑
𝑘=1

9
10𝑘 is convergent (geometric series with ratio 1

10 < 1).

Therefore we may conclude using the BCT. ■

Remark 52. Unfortunately the decimal representation may not be unique:

0.9999 … =
+∞

∑
𝑘=1

9
10𝑘 = 9

10 × 1
1 − 1

10
= 1.000 …

In order to achieve uniqueness we are going to restrict to expansions which don’t end with infinitely many
9, see the definition below.

Definition 53. Let 𝑥 ∈ ℝ. We say that

⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘

is a proper decimal expansion of 𝑥 if
(i) ∀𝑘 ∈ ℕ ⧵ {0}, 𝑎𝑘 ∈ {0, 1, … , 9}

(ii) ∀𝑛 ∈ ℕ ⧵ {0},
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 ≤ 𝑥 − ⌊𝑥⌋ <

𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑛

Proposition 54. If ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is a proper decimal expansion of 𝑥 ∈ ℝ then

1. 𝑥 = ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘

2. ∀𝑁 ∈ ℕ ⧵ {0}, ∃𝑘 > 𝑁, 𝑎𝑘 ≠ 9
Then we simply write 𝑥 = ⌊𝑥⌋.𝑎1𝑎2𝑎3 ….

Remark 55. The last item means that a proper decimal expansion can’t end with infinitely many 9.

Proof.

1. We already proved that 𝑆 =
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is convergent. Hence we get 𝑆 ≤ 𝑥 − ⌊𝑥⌋ ≤ 𝑆. So 𝑥 = ⌊𝑥⌋ + 𝑆.
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2. Assume by contradiction that there exists 𝑁 ∈ ℕ ⧵ {0} such that ∀𝑘 > 𝑁, 𝑎𝑘 = 9.

Then 𝑥 − ⌊𝑥⌋ =
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 =

𝑁

∑
𝑘=1

𝑎𝑘
10𝑘 +

+∞

∑
𝑘=𝑁+1

9
10𝑘 =

𝑁

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑁 . Which contradicts the definition of

proper decimal expansion (the strict inequality in 53.(ii)).

■

Theorem 56. A real number 𝑥 admits a unique proper decimal expansion.

Proof. Let 𝑥 ∈ ℝ. Up to replacing 𝑥 with 𝑥 − ⌊𝑥⌋, we may assume that ⌊𝑥⌋ = 0.

Assume that
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is a proper decimal expansion of 𝑥.

Then, from 53.(ii), we get that

𝑎𝑛 ≤ 10𝑛
⎛
⎜
⎜
⎝
𝑥 −

𝑛−1

∑
𝑘=1

𝑎𝑘
10𝑘

⎞
⎟
⎟
⎠

< 𝑎𝑛 + 1

So the only possible suitable sequence (𝑎𝑛) is given by 𝑎1 = ⌊10𝑥⌋ and 𝑎𝑛+1 =
⌊

10𝑛+1
(

𝑥 −
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 )⌋

.

It proves the uniqueness, but we still need to check that it is valid.

(i) Since ⌊𝑥⌋ = 0, we have 0 ≤ 𝑥 < 1. Thus 0 ≤ 10𝑥 < 10. Therefore 𝑎1 = ⌊10𝑥⌋ ∈ {0, 1, … , 9}.
Let 𝑛 ∈ ℕ ⧵ {0}, then

0 ≤ 10𝑛
⎛
⎜
⎜
⎝
𝑥 −

𝑛−1

∑
𝑘=1

𝑎𝑘
10𝑘

⎞
⎟
⎟
⎠

− 𝑎𝑛 < 1

Thus

0 ≤ 10𝑛+1
(

𝑥 −
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 )

< 10

Therefore 𝑎𝑛+1 ∈ {0, 1, … , 9}.

(ii) We have ∀𝑛 ∈ ℕ ⧵ {0},
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 ≤ 𝑥 <

𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑛 by construction.

■

Remark 57. It is easy to compute the decimal expansion of a rational number.
Indeed, let 𝑥 = 𝑎

𝑏 where 𝑎 ∈ ℤ and 𝑏 ∈ ℕ ⧵ {0}.
By Euclidean division, 𝑎 = 𝑏𝑞0 + 𝑟0 where 0 ≤ 𝑟0 < 𝑏. Hence 𝑎

𝑏 = 𝑞0 + 𝑟0
𝑏 . Note that 𝑞0 = ⌊

𝑎
𝑏 ⌋.

Now, again by Euclidean division, 10𝑟0 = 𝑏𝑞1 + 𝑟1 where 0 ≤ 𝑟1 < 𝑏.
And we repeat: 10𝑟𝑘 = 𝑏𝑞𝑘+1 + 𝑟𝑘+1 where 0 ≤ 𝑟𝑘+1 < 𝑏.
According to the pigeonhole principle (or the Dirichlet’s drawer principle), since there are only 𝑏 possible re-
mainders, the process will start looping after at most 𝑏 steps.
But note that the (𝑞𝑘)𝑘≥1 defines exactly the decimal expansion of 𝑥.
Therefore the decimal expansion of a rational is eventually periodic.

Definition 58. We say that a proper decimal expansion is eventually periodic if

∃𝑟 ∈ ℕ, ∃𝑠 ∈ ℕ ⧵ {0}, ∀𝑘 ∈ ℕ, 𝑎𝑟+𝑘+𝑠 = 𝑎𝑟+𝑘

It means that

𝑥 = ⌊𝑥⌋.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠

≔ ⌊𝑥⌋.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠𝑐1𝑐2 … 𝑐𝑠𝑐1 …
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Example 59. We want to find the decimal expansion of 1529327
24975 .

1. 1529327 = 24975 × 61 + 5852
2. 58520 = 24975 × 2 + 8570
3. 85700 = 24975 × 3 + 10775
4. 107750 = 24975 × 4 + 7850
5. 78500 = 24975 × 3 + 3575
6. 35750 = 24975 × 1 + 10775

And we start to loop. Therefore 1529327
24975 = 61.234314

Theorem 60. A real number 𝑥 is rational if and only if its proper decimal expansion is eventually periodic.
Proof.
⇒ That’s exactly Remark 57.

⇐ Assume that the proper decimal expansion 𝑥 = ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is eventually periodic,

i.e. ∃𝑟 ∈ ℕ, ∃𝑠 ∈ ℕ ⧵ {0}, ∀𝑘 ∈ ℕ, 𝑎𝑟+𝑘+𝑠 = 𝑎𝑟+𝑘.

Then 𝑥 = ⌊𝑥⌋ +
𝑟

∑
𝑘=1

𝑎𝑘
10𝑘 + 10−𝑟

+∞

∑
𝑘=1

𝑎𝑟+𝑘
10𝑘 .

Hence it is enough to prove that 𝑦 =
+∞

∑
𝑘=1

𝑎𝑟+𝑘
10𝑘 ∈ ℚ.

Note that 10𝑠𝑦 = 𝑁 + 𝑦 where 𝑁 = 𝑎𝑟+1𝑎𝑟+2 … 𝑎𝑟+𝑠
10 ∈ ℕ. Hence 𝑦 = 𝑁

10𝑠−1 ∈ ℚ. ■

Remark 61. According to the above proof,

𝑎𝑡𝑎𝑡−1 … 𝑎0.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠 = 𝑎𝑡𝑎𝑡−1 ⋯ 𝑎0
10 +

𝑟

∑
𝑘=1

𝑏𝑘
10𝑘 + 10−𝑟 𝑐1𝑐2 … 𝑐𝑠

10

10𝑠 − 1

= 𝑎𝑡𝑎𝑡−1 … 𝑎0
10 + 𝑏1𝑏2 … 𝑏𝑟

10

10𝑟 + 𝑐1𝑐2 … 𝑐𝑠
10

10𝑟+𝑠 − 10𝑟

= 𝑎𝑡𝑎𝑡−1 … 𝑎0𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠
10 − 𝑎𝑡𝑎𝑡−1 … 𝑎0𝑏1𝑏2 … 𝑏𝑟

10

10𝑟+𝑠 − 10𝑟

Example 62.

• 61.234314 = 61234314 − 61234
106 − 103 = 61173080

999000

• 0.3 = 3 − 0
10 − 1 = 3

9 • 42.012 = 42012 − 42
103 − 1

= 41970
999

6 √2 is irrational
Using the IVT, we may prove that there exists a unique positive real number 𝑥 > 0 such that 𝑥2 = 2.
We denote it by √2.

Theorem 63. √2 ∉ ℚ

Below are some of my favorite proofs for the irrationality of √2.

Proof 1 (Fundamental Theorem of Arithmetic).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ. Then 2𝑏2 = 𝑎2.
The prime factorization of the LHS has an odd number of primes (counted with exponents) whereas the
RHS has an even number of primes (counted with exponents).
Which is impossible since the prime factorization is unique up to order. ■
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Proof 2 (Euclid’s lemma).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Then 2𝑏2 = 𝑎2. Therefore 2|𝑎2. By Euclid’s lemma, 2|𝑎, so 𝑎 = 2𝑘.
Thus 2𝑏2 = 4𝑘2, from which we get 𝑏2 = 2𝑘2. By Euclid’s lemma, 2|𝑏.
Hence 2|gcd(𝑎, 𝑏) = 1, which is a contradiction. ■

Proof 3 (Gauss’ lemma).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Then 2𝑏2 = 𝑎2. Therefore 𝑏|𝑎2.
Since gcd(𝑎, 𝑏) = 1, by Gauss’ lemma (applied twice), 𝑏|1 and hence 𝑏 = 1 (since 𝑏 ∈ ℕ⧵{0} in lowest form).
Hence 𝑎2 = 2. Which is impossible (2 is not a perfect square: ∀𝑥 ∈ ℤ, 𝑥2 ≡ 0 (mod 3) or 𝑥2 ≡ 1 (mod 3)). ■

Proof 4 (proof by infinite descent).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ where 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ⧵ {0}.
Then 2𝑏2 = 𝑎2. Then 𝑎(𝑎 − 𝑏) = 𝑎2 − 𝑎𝑏 = 2𝑏2 − 𝑎𝑏 = 𝑏(2𝑏 − 𝑎). Hence √2 = 𝑎

𝑏 = 2𝑏−𝑎
𝑎−𝑏 .

Note that 1 < √2 = 𝑎
𝑏 , thus 0 < 𝑎 − 𝑏. Therefore 0 < 2𝑏 − 𝑎, so 𝑎 − 𝑏 < 𝑏.

Therefore we obtained another expression of √2 with a smaller positive denominator.
By repeating this process, we may construct an infinite sequence √2 = 𝑎

𝑏 = 𝑎1
𝑏1

= 𝑎2
𝑏2

= ⋯ such that 𝑎𝑘 > 0
and 0 < 𝑏𝑘+1 < 𝑏𝑘.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. ■

Proof 5 (by congruences).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form. Then 2𝑏2 = 𝑎2.
Since gcd(𝑎, 𝑏) = 1, we can’t have 𝑎 ≡ 0 (mod 3) and 𝑏 ≡ 0 (mod 3) simulatenously (otherwise 3|gcd(𝑎, 𝑏)).

• Either 𝑎 ≡ ±1 (mod 3) and 𝑏 ≡ 0 (mod 3), then 𝑎2 − 2𝑏2 ≡ 1 (mod 3),
• or 𝑎 ≡ 0 (mod 3) and 𝑏 ≡ ±1 (mod 3), then 𝑎2 − 2𝑏2 ≡ 1 (mod 3),
• or 𝑎 ≡ ±1 (mod 3) and 𝑏 ≡ ±1 (mod 3), then 𝑎2 − 2𝑏2 ≡ 2 (mod 3).

Therefore 𝑎2 − 2𝑏2 ≢ 0 (mod 3) and so 𝑎2 − 2𝑏2 ≠ 0. Which is a contradiction. ■

Proof 6 (by the well-ordering principle).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ. Then 𝑎 = √2𝑏.
Therefore 𝐸 = {𝑛 ∈ ℕ ∶ 𝑛√2 ∈ ℕ ⧵ {0}} is not empty since it contains |𝑏| as √2|𝑏| = |𝑎|.
By the well-ordering principle, 𝐸 admits a least element 𝑝. Then 𝑝√2 ∈ ℕ ⧵ {0}.
Set 𝑞 = 𝑝√2 − 𝑝. Then 𝑞 ∈ ℤ. Besides 𝑞 = 𝑝(√2 − 1) so that 0 < 𝑞 < 𝑝.
But 𝑞√2 = 2𝑝 − 𝑝√2 = 𝑝 − 𝑞 ∈ ℕ ⧵ {0}. So 𝑞 ∈ 𝐸.
Which is a contradiction since 𝑝 is the least element of 𝐸 and 𝑞 < 𝑝. ■

Proof 7 (by the rational root theorem).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Since √2 = 𝑎

𝑏 is a root of 𝑥2 − 2 = 0, we deduce from the rational root theorem that 𝑎|2 and 𝑏|1.
So either √2 = ±1 or √2 = ±2.
We obtain a contradiction in both cases since (±1)2 = 1 ≠ 2 and (±2)2 = 4 ≠ 2. ■
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Proof 8 (by the archimedean property).
For 𝑛 ∈ ℕ, set 𝑢𝑛 = (√2 − 1)

𝑛
. We may prove either by induction or using the binomial formula, that for

every 𝑛, there exist 𝑎𝑛, 𝑏𝑛 ∈ ℤ such that 𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛√2.
Since4 0 < √2 − 1 < 1

2 , we may also prove that 0 < 𝑢𝑛 ≤ 1
2𝑛 .

Assume by contradiction that √2 = 𝑝
𝑞 ∈ ℚ, then

𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛√2 = 𝑎𝑛 + 𝑏𝑛
𝑝
𝑞 = 𝑞𝑎𝑛 + 𝑝𝑏𝑛

𝑞

Since 𝑢𝑛 > 0 we get that |𝑞𝑎𝑛 + 𝑝𝑏𝑛| ≥ 1 and that 𝑢𝑛 ≥ 1
|𝑞| .

Therefore ∀𝑛 ∈ ℕ, 0 < 1
|𝑞| ≤ 𝑢𝑛 ≤ 1

2𝑛 . Which contradicts the archimedean property. ■

Proof 9 (geometric version of proof 4).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ where 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ⧵ {0}. Then 𝑎 = √2𝑏 > 𝑏.

𝑎
𝑏

𝑏

𝑎
𝑏

𝑏

(𝑎 − 𝑏)2

(𝑎 − 𝑏)2

(2𝑏 − 𝑎)2

By a direct computation of the side length, the square at the center has an area of 𝒜 = (2𝑏 − 𝑎)2.
But, by inclusion-exclusion, 𝒜 also satisfies 2(𝑎 − 𝑏)2 + 2𝑏2 − 𝒜 = 𝑎2.
So 𝒜 = 2(𝑎 − 𝑏)2 + 2𝑏2 − 𝑎2 = 2(𝑎 − 𝑏)2 since 𝑎2 = 2𝑏2.
Therefore 2(𝑎 − 𝑏)2 = 𝒜 = (2𝑏 − 𝑎)2. Thus 2 = (2𝑏−𝑎)2

(𝑎−𝑏)2 .
Hence √2 = 2𝑏−𝑎

𝑎−𝑏 with5 0 < 2𝑏 − 𝑎 and 0 < 𝑎 − 𝑏 < 𝑏.
By repeating this process, we may construct an infinite sequence √2 = 𝑎

𝑏 = 𝑎1
𝑏1

= 𝑎2
𝑏2

= ⋯ such that 𝑎𝑘 > 0
and 0 < 𝑏𝑘+1 < 𝑏𝑘.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. ■

Proof 10 (Pythagoras flavored).
Let 𝐴𝐵𝐶 be a isosceles right triangle in 𝐴. By the Pythagorean theorem 𝐵𝐶

𝐴𝐵
= √2.

Assuming that √2 is rational means geometrically that 𝐵𝐶 and 𝐴𝐵 are commensurable, i.e. they are both
integral multiple of a another length 𝑑6.
Put 𝐷 on [𝐵𝐶] such that 𝐵𝐷 = 𝐴𝐵.
Define 𝐸 as the intersection of (𝐴𝐶) with the line through 𝐷 which is perpendicular to (𝐵𝐶).

4Use the fact that (0, +∞) ∋ 𝑥 → 𝑥2 ∈ ℝ is increasing and that 2 ≤ (
3
2 )

2
to conclude that √2 ≤ 3

2 .
5See Proof 4 for 0 < 2𝑏 − 𝑎.
6That is the geometric version of irrationality used by ancient Greeks:

if √2 = 𝑎
𝑏 , set 𝑑 = 𝐴𝐵

𝑏 then 𝐴𝐵 = 𝑏𝑑 and 𝐵𝐶 = √2 × 𝐴𝐵 = 𝑎
𝑏 𝑏𝑑 = 𝑎𝑑.
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Note that7 𝐴𝐸 = 𝐸𝐷 = 𝐷𝐶 .
Thus 𝐶𝐷 = 𝐵𝐶 − 𝐴𝐵 and 𝐸𝐶 = 𝐴𝐶 − 𝐴𝐸 = 𝐴𝐵 − (𝐵𝐶 − 𝐴𝐵) = 2𝐴𝐵 − 𝐵𝐶 .
Therefore 𝐶𝐷 and 𝐸𝐶 are integral multiple of 𝑑.
Besides 𝐷𝐸𝐶 is a isosceles right triangle in 𝐷, therefore we may repeat this construction on the triangle
𝐷𝐸𝐶 in order to construct an infinite sequence of segment lines (𝐴𝐶, 𝐸𝐶, 𝐹 𝐶, …, see below) which are all
integral multiple of 𝑑 and with decreasing length.
Which is impossible.

𝐴 𝐵

𝐶

𝐴 𝐵

𝐶

𝐷

𝐸

𝐴 𝐵

𝐶

𝐷

𝐸

𝐹 𝐺

■

The above proof is actually another geometric version of Proof 4:

Algebraically: 2𝑏 − 𝑎
𝑎 − 𝑏 = 2 − 𝑎/𝑏

𝑎/𝑏 − 1 = 2 − √2
√2 − 1

= √2.

Geometrically: √2 = 𝐸𝐶
𝐶𝐷

= 2𝐴𝐵 − 𝐵𝐶
𝐵𝐶 − 𝐴𝐵

.

Proof 11 (my favorite one).
The proof is left as an exercise to the reader. ■

Before leaving √2, I would like to show you a funny proof relying on the tertium non datur.

Proposition 64. There exist 𝑎, 𝑏 > 0 irrational numbers such that 𝑎𝑏 ∈ ℚ.

Proof.

• Assume that √2
√2

∈ ℚ. Then we can take 𝑎 = 𝑏 = √2.

• Assume that √2
√2

∉ ℚ. Then we can take 𝑎 = √2
√2

and 𝑏 = √2. Indeed,
(

√2
√2

)

√2

= √2
2

= 2.

■

Remark 65. Note that in the above proof it is not necessary to know whether √2
√2

is rational or not in
order to conclude! That’s really cool! By the way, it is not rational using Gelfond–Schneider Theorem.

7Compare the triangles 𝐵𝐴𝐸 and 𝐵𝐷𝐸 which are respectively right in 𝐴 and 𝐷 with common hypotenuse and 𝐴𝐵 = 𝐷𝐵, so,
by the Pythagorean theorem, 𝐴𝐸 = 𝐸𝐷. Besides the triangle 𝐶𝐷𝐸 is isosceles right in 𝐴 by angle considerations, thus 𝐸𝐷 = 𝐷𝐶 .
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7 𝑒 is irrational

You know from your first year calculus that 𝑒 =
+∞

∑
𝑛=0

1
𝑛! .

Theorem 66. 𝑒 ∉ ℚ

Proof 1. Assume by contradiction that 𝑒 = 𝑎
𝑏 where 𝑎, 𝑏 ∈ ℕ ⧵ {0}. Note that 𝑏 > 1 since 𝑒 ∉ ℕ. Besides

𝑏!
⎛
⎜
⎜
⎝
𝑒 −

𝑏

∑
𝑛=0

1
𝑛!

⎞
⎟
⎟
⎠

= 𝑏!
( ∑

𝑛≥𝑏+1

1
𝑛!)

Note that the LHS is an integer. We are going to derive a contradiction by proving that the RHS is not an
integer. Indeed

0 < 𝑏!
( ∑

𝑛≥𝑏+1

1
𝑛!)

≤ ∑
𝑛≥1

1
(𝑏 + 1)𝑛 = 1

𝑏 < 1

■

It is also possible to use an approach similar to the eighth proof for the irrationality of √2:

Proof 2. For 𝑛 ∈ ℕ, set 𝑢𝑛 = ∫
1

0
𝑥𝑛𝑒𝑥d𝑥.

Using an induction and integration by part, we can prove that for 𝑛 ∈ ℕ, there exist 𝑎𝑛, 𝑏𝑛 ∈ ℤ such that
𝑢𝑛 = 𝑎𝑛 + 𝑒𝑏𝑛.
Assume by contradiction that 𝑒 = 𝑝

𝑞 where 𝑝, 𝑞 ∈ ℕ ⧵ {0}. Then 0 < 𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛
𝑝
𝑞 = 𝑞𝑎𝑛+𝑝𝑏𝑛

𝑞 .
Since 𝑢𝑛 > 0 we get that 𝑞𝑎𝑛 + 𝑝𝑏𝑛 ≥ 1 and that 𝑢𝑛 ≥ 1

𝑞 .

Therefore ∀𝑛 ∈ ℕ, 0 < 1
𝑞 ≤ 𝑢𝑛 ≤ ∫

1

0
𝑥𝑛𝑒d𝑥 = 𝑒

𝑛 + 1 .
Which is impossible. ■



18 The rationals and the reals

A Construction of ℝ via the Dedekind cuts
In this appendix, I briefly explain how to construct ℝ using Dedekind cuts (but without details, just ideas).

Definition 67. We say that (𝐴, 𝐵) is a Dedekind cut of ℚ if
• 𝐴, 𝐵 ⊂ ℚ, 𝐴 ≠ ∅, 𝐵 ≠ ∅
• 𝐴 ∩ 𝐵 = ∅
• 𝐴 ∪ 𝐵 = ℚ
• ∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 < 𝑏

Note that:
• 𝐴 determines 𝐵 entirely (and vice-versa), and that,
• 𝑟 ∈ ℚ may be defined by two cuts (either 𝑟 ∈ 𝐴 or 𝑟 ∈ 𝐵).

To remove these ambiguities, we define a cut as follows.

Definition 68. We say that 𝐴 ⊂ ℚ is a cut of ℚ if
• 𝐴 ≠ ∅
• 𝐴 ≠ ℚ
• ∀𝑎 ∈ 𝐴, ∀𝑎′ ∈ ℚ, 𝑎′ < 𝑎 ⟹ 𝑎′ ∈ 𝐴
• 𝐴 doesn’t have a greatest element

Definition 69. ℝ = {cuts of ℚ}

Example 70.
• √2 = {𝑎 ∈ ℚ ∶ 𝑎 < 0 or 𝑎2 < 2}
• ℚ ⊂ ℝ, indeed we identify 𝑞 ∈ ℚ with the cut {𝑎 ∈ ℚ ∶ 𝑎 < 𝑞}.

Definition 71. For 𝑥, 𝑦 ∈ ℝ, we set 𝑥 ≤ 𝑦 ⇔ 𝑥 ⊂ 𝑦.

Definition 72. For 𝑥, 𝑦 ∈ ℝ, we set 𝑥 + 𝑦 ≔ {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝑥 and 𝑏 ∈ 𝑦}.

Definition 73. For 𝑥, 𝑦 ≥ 0, we set 𝑥𝑦 ≔ {𝑐 ∈ ℚ ∶ ∃𝑎 ∈ 𝑥 ∩ ℚ≥0, ∃𝑏 ∈ 𝑦 ∩ ℚ≥0, 𝑐 ≤ 𝑎𝑏}.
We extend the multiplication by the sign rule.

We need to prove that we constructed a (totally) ordered field, which is a little bit challenging.
Nonetheless, by construction, we can easily prove that the cut property holds:

Theorem 74. ∀𝐴, 𝐵 ⊂ ℝ,
𝐴, 𝐵 ≠ ∅

ℝ = 𝐴 ∪ 𝐵
∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 < 𝑏

⎫⎪
⎬
⎪⎭

⟹ ∃!𝑐 ∈ ℝ, ∀𝑎 ∈ ℝ, ∀𝑏 ∈ 𝐵, 𝑎 ≤ 𝑐 ≤ 𝑏

We can derive from the cut property that the least upper bound principle holds.
Let 𝑆 ⊂ ℝ be such that 𝑆 ≠ ∅ and 𝑆 is bounded from above.
Then 𝐵 = {𝑏 ∈ ℝ ∶ 𝑏 is an upper bound of 𝑆} is non-empty. So is 𝐴 = ℝ ⧵ 𝐵.
We can check that (𝐴, 𝐵) is a Dedekind-cut of ℝ.
Therefore there exists 𝑐 ∈ ℝ such that ∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 ≤ 𝑐 ≤ 𝑏.

• 𝑐 is an upper bound of 𝑆: otherwise there exists 𝑠 ∈ 𝑆 such that 𝑐 < 𝑠, then 𝑎 = 𝑐+𝑠
2 ∈ 𝐴 since 𝑎 < 𝑠.

But then 𝑎 ∈ 𝐵 since (𝐴, 𝐵) is a Dedekind cut and 𝑐 < 𝑎.
• It is the least one: let 𝜀 > 0 then 𝑐 − 𝜀 < 𝑐 so 𝑐 − 𝜀 ∈ 𝐴.
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