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Informally, prime numbers are the integers greater than 1 which can’t be factorized further. More pre-
cisely they are the natural numbers admitting exactly two positive divisors. Otherwise stated, a natural
number 𝑛 ≥ 2 is a prime number if and only if its only positive divisors are 1 and 𝑛 itself.

They play a crucial role in number theory since every natural number admit a unique expression as a
product of prime numbers. They will also appear quite often later when we will study modular arithmetic.

All the results presented below were already known in Euclid’s Elements (circa 300BC). Nonetheless,
there are still many conjectures involving prime numbers which are easy to state but still open (some of
them despite several centuries of attempts). For instance:

• Goldbach conjecture (1742): any even natural number greater than 2 may be written as a sum of two
prime numbers (e.g. 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 10 = 5 + 5 = 7 + 3…).

• The twin prime conjecture (1849): there are infinitelymany prime numbers 𝑝 such that 𝑝+2 is also prime
(e.g. (3, 5), (5, 7), (11, 13)…).

• Legendre conjecture (1912): given 𝑛 ∈ ℕ ⧵ {0}, we may always find a prime between 𝑛2 and (𝑛 + 1)2.

1 Prime numbers
Definition 1. We say that a natural number 𝑝 is a prime number if it has exactly two distinct positive divisors.
A positive natural number with more than 2 positive divisors is said to be a composite number.

Remark 2.
• 0 is not a prime number since any natural number is a divisor of 0.
• 1 is not a prime number because it has only one positive divisor.

Hence a natural number 𝑝 is prime if and only if 𝑝 ≥ 2 and the only positive divisors of 𝑝 are 1 and 𝑝.

Example 3. The first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97…

We face two natural questions:
1. How to check whether a natural number is a prime number?
2. How many prime numbers are there?

Proposition 4. Let 𝑛 ∈ ℕ. Then 𝑛 is composite if and only if there exist 𝑎, 𝑏 ∈ ℕ ⧵ {0, 1} such that 𝑛 = 𝑎𝑏.

Proof. Let 𝑛 ∈ ℕ.
⇒ assume that 𝑛 is a composite number, then it admits a divisor 𝑘 ∈ ℕ such that 𝑘 ≠ 1 and 𝑘 ≠ 𝑛.
So 𝑛 = 𝑘𝑚 for some 𝑚 ∈ ℕ. Note that 𝑘, 𝑚 ≠ 0 since otherwise 𝑛 = 0. Note that 𝑚 ≠ 1 since otherwise 𝑘 = 𝑛.
⇐ Assume that 𝑛 = 𝑎𝑏 for some 𝑎, 𝑏 ∈ ℕ ⧵ {0, 1}.
Note that 𝑎 ≠ 𝑛, since otherwise 𝑏 = 1 and that 𝑛 ≠ 1 since otherwise 𝑎|1, i.e. 𝑎 = 1.
Therefore 1, 𝑎, 𝑛 are three distinct positive divisors of 𝑛, so that 𝑛 is a composite number. ■

Proposition 5. A composite number 𝑎 admits a positive divisor 𝑏 such that 1 < 𝑏2 ≤ 𝑎.

Proof. Write 𝑎 = 𝑏1𝑏2 for some 𝑏1, 𝑏2 ∈ ℕ ⧵ {0, 1}. Then 𝑏2
1, 𝑏2

2 > 1.
Assume by contradiction that both 𝑏2

1 > 𝑎 and 𝑏2
2 > 𝑎. Then 𝑎2 = (𝑏1𝑏2)2 = 𝑏2

1𝑏2
2 > 𝑎2. Hence a contradiction.

■

Example 6. We want to prove that 97 is a prime number.
Since 102 = 100 > 97, it is enough to check that none of 2, 3, 4, 5, 6, 7, 8 and 9 are divisors of 97.
We will see later criteria to check divisibility.



2 Prime numbers

Lemma 7. A natural number 𝑛 ≥ 2 has at least one prime divisor.

Proof. We are going to prove with a strong induction that every natural number 𝑛 ≥ 2 has a prime divisor.
Base case at 𝑛 = 2: 2 admits a prime divisor (itself).
Induction step: assume that all the natural numbers 2, … , 𝑛 admit a prime divisor for some 𝑛 ≥ 2.

• First case: 𝑛 + 1 is a prime number, then it has a prime divisor (itself).
• Second case: 𝑛 + 1 is a composite, then 𝑛 + 1 = 𝑎𝑏 where 𝑎, 𝑏 ∈ ℕ ⧵ {0, 1}.

Note that 𝑎 ≠ 𝑛 + 1 since otherwise 𝑏 = 1.
Since 2 ≤ 𝑎 ≤ 𝑛, 𝑎 admits a prime divisor 𝑝 by the induction hypothesis, i.e. 𝑎 = 𝑝𝑘 for some 𝑘 ∈ ℕ.
Then 𝑛 + 1 = 𝑎𝑏 = 𝑝𝑘𝑏. Thus the prime number 𝑝 is a divisor of 𝑛 + 1.

Which proves the induction step. ■

Theorem 8. There are infinitely many prime numbers.

Proof. Assume by contradiction that there exist only finitely many prime numbers 𝑝1, 𝑝2, … , 𝑝𝑛.
We set 𝑞 = 𝑝1𝑝2 ⋯ 𝑝𝑛 + 1. By Lemma 7, 𝑞 has a prime divisor. Thus there exists 𝑖 ∈ {1, 2, … , 𝑛} such that 𝑝𝑖|𝑞.
Then, since 𝑝𝑖|𝑝1𝑝2 … 𝑝𝑛 and 𝑝𝑖|𝑞, we have that 𝑝𝑖|(𝑞 − 𝑝1𝑝2 … 𝑝𝑛), i.e. 𝑝𝑖|1.
Therefore 𝑝𝑖 = 1, which is a contradiction because 1 is not a prime number. ■

2 The fundamental theorem of arithmetic
Lemma 9 (Euclid’s lemma). Let 𝑎, 𝑏 ∈ ℤ and 𝑝 be a prime number. If 𝑝|𝑎𝑏 then 𝑝|𝑎 or 𝑝|𝑏 (or both).

Proof. Let 𝑎, 𝑏 ∈ ℤ and 𝑝 be a prime number such that 𝑝|𝑎𝑏.
Assume that 𝑝 ∤ 𝑎 then gcd(𝑎, 𝑝) = 1 since the only positive divisors of 𝑝 are 1 and itself.
Hence, by Gauss’ lemma, 𝑝|𝑏. ■

Theorem 10 (The fundamental theorem of arithmetic). Any integer greater than 1 can be written as a product
of primes, moreover this expression as a product of primes is unique up to the order of the prime factors.

Remark 11. The above theorem states two things: the existence of a prime factorization, and itsuniqueness.

Proof.
• Existence. We are going to prove with a strong induction that 𝑛 ≥ 2 admits a prime factorization.

Base case for 𝑛 = 2: 2 is a prime number, so there is nothing to do.
Induction step: assume that all the integers 2, 3, … , 𝑛 have a prime factorization for some 𝑛 ≥ 2.
We want to prove that 𝑛 + 1 admits a prime factorization.
By Lemma 7, 𝑛 + 1 admits a prime factor, so 𝑛 + 1 = 𝑝𝑘 where 𝑝 is a prime number and 𝑘 ∈ ℕ ⧵ {0}.
If 𝑘 = 1 then there is nothing to do. So we may assume that 𝑘 ≥ 2.
Since 1 < 𝑝, we have that 𝑘 < 𝑝𝑘 = 𝑛 + 1.
Since 2 ≤ 𝑘 ≤ 𝑛, by the induction hypothesis, 𝑘 admits a prime factorization 𝑘 = 𝑝1𝑝2 … 𝑝𝑙.
Finally 𝑛 + 1 = 𝑝𝑝1𝑝2 … 𝑝𝑙, which proves the induction step.

• Uniqueness (up to order).
Assume by contradiction that there exists an integer greater than 1 with (at least) two distinct prime
factorizations. Denote by 𝑛 the least such integer (which exists by the well-ordering principle).
Let 𝑛 = 𝑝1𝑝2 … 𝑝𝑟 and 𝑛 = 𝑞1𝑞2 … 𝑞𝑠 be two distinct prime factorizations of 𝑛.
Then 𝑝1𝑝2 … 𝑝𝑟 = 𝑞1𝑞2 … 𝑞𝑠.
By Euclid’s lemma 𝑝1 divides one of the 𝑞𝑗 .
Up to reordering the indices, we may assume that 𝑝1|𝑞1.
Since 𝑞1 is a prime number, either 𝑝1 = 1 or 𝑝1 = 𝑞1.
And thus 𝑝1 = 𝑞1 since 𝑝1 is also a prime number (and 1 is not).
Therefore, by cancellation, 𝑚 = 𝑝2 … 𝑝𝑟 = 𝑞2 … 𝑞𝑠 is a number with two distinct prime factorizations.
Note that 𝑚 > 1 since otherwise 𝑛 = 𝑝1 = 𝑞1 is not two distinct prime factorizations.
And, since 1 < 𝑝1 we get that 𝑚 = 𝑝2 … 𝑝𝑟 < 𝑝1𝑝2 … 𝑝𝑟 = 𝑛.
Which contradicts the fact that 𝑛 is the least integer greater than 1 with two prime factorizations. ■
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Corollary 12. Any natural number 𝑛 ∈ ℕ ⧵ {0} admits a unique expression 𝑛 = ∏
𝑝 prime

𝑝𝛼𝑝 where 𝛼𝑝 ∈ ℕ

(i.e. the 𝛼𝑝 are uniquely determined).

Remarks 13.
• The above product is finite since all but finitely many exponents are equal to 0.
• 1 is the special case when 𝛼𝑝 = 0 for all prime numbers 𝑝.

Example 14. 60798375 = 32 × 53 × 11 × 173

Corollary 15. Write 𝑎 = ∏
𝑝 prime

𝑝𝛼𝑝 and 𝑏 = ∏
𝑝 prime

𝑝𝛽𝑝 with 𝛼𝑝, 𝛽𝑝 ∈ ℕ all but finitely many equal to 0. Then

• 𝑎|𝑏 if and only if for every prime number 𝑝, 𝛼𝑝 ≤ 𝛽𝑝.
• gcd(𝑎, 𝑏) = ∏

𝑝 prime
𝑝min(𝛼𝑝,𝛽𝑝).

Example 16. gcd(32 × 53 × 11 × 173, 3 × 55 × 172 × 23) = 3 × 53 × 172

Corollary 17. Write 𝑛 = ∏
𝑝 prime

𝑝𝛼𝑝 with 𝛼𝑝 ∈ ℕ all but finitely many equal to 0. Then the positive divisors of 𝑛 are

exactly the numbers of the form 𝑛 = ∏
𝑝 prime

𝑝𝛾𝑝 with 0 ≤ 𝛾𝑝 ≤ 𝛼𝑝 for all prime numbers 𝑝.

Particularly, 𝑛 has ∏
𝑝 prime

(𝛼𝑝 + 1) positive divisors.


	Prime numbers
	The fundamental theorem of arithmetic

