2 - Integers

Jean-Baptiste Campesato

In this chapter, we are going to construct the set \mathbb{Z} of integers and then to study its properties. The informal idea consists in extending \mathbb{N} by adding its *symmetry* with respect to 0:

-5 -4 -3 -2 -1 0 1 2 3 4 5

For this purpose, we have to give a meaning to the notation -n where n is a natural number and then we have to extend from \mathbb{N} to \mathbb{Z} the operations $(+, \times)$ and the order (\leq) .

There are several ways to formally do that. The usual one consists in defining $\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/\sim$ for the equivalence relation $(a, b) \sim (c, d) \Leftrightarrow a + d = b + c$. Let me explain what does it mean: intuitively (a, b) stands for a - b, but, since such an expression is not unique (e.g. 7 - 5 = 10 - 8), we need to "identify" some couples (e.g. (7, 5) = (10, 8)). This construction has several advantages (it is easy to extend +, × and ≤) but it needs an additional layer of abstraction (equivalence relations, equivalence classes...).

Instead, I will use a more naive approach. The counterpart is that extending the operations will be a little bit tedious with several cases to handle (e.g. the definition of a + b will depend on the signs of a and b, so we have 4 cases just to define the addition...).

Note that what we are going to describe in a few lines took centuries to be developped and accepted: during the 18th century, most mathematicians were still reluctant about using negative numbers.

Contents

1	Construction of the integers	2
	1.1 Definition	2
	1.2 Operations	2
	1.3 Order	3
2	Absolute value	4
3	Euclidean division	4
4	Divisibility	6
5	Greatest common divisor	6
6	Euclid's algorithm	8
7	Coprime integers	9
8	A diophantine equation	9
A	Appendix: properties of the strict order	10
B	Appendix: implementation of Euclid's algorithm in Julia	11

1 Construction of the integers

1.1 Definition

Definition 1. For any $n \in \mathbb{N} \setminus \{0\}$, we formally introduce the symbol -n read as *minus* n and we fix the convention that -0 = 0.

We define the set $-\mathbb{N} \coloneqq \{-n : n \in \mathbb{N}\}$. Then the set of integers is $\mathbb{Z} \coloneqq (-\mathbb{N}) \cup \mathbb{N}$.

Remark 2. $(-\mathbb{N}) \cap \mathbb{N} = \{0\}$

1.2 Operations

Definition 4. For $m, n \in \mathbb{N}$, we set:

- (i) m + n for the usual addition in \mathbb{N}
- (ii) (-m) + (-n) = -(m+n)

(iii) $m + (-n) = \begin{cases} k \text{ where } k \text{ is the unique natural integer such that } m = n + k \text{ if } n \le m \\ -k \text{ where } k \text{ is the unique natural integer such that } n = m + k \text{ if } m \le n \\ (\text{iv}) (-m) + n = n + (-m) \text{ where } n + (-m) \text{ is defined in (iii)} \end{cases}$ We've just defined + : $\begin{array}{c} \mathbb{Z} \times \mathbb{Z} & \to & \mathbb{Z} \\ (a,b) & \mapsto & a + b \end{array}$

Remark 5. We have to check that the overlapping cases m = 0 or n = 0 are not contradictory.

Definition 6. For $m, n \in \mathbb{N}$, we set:

(i) $m \times n$ for the usual product in \mathbb{N} (ii) $(-m) \times (-n) = m \times n$ (iii) $m \times (-n) = -(m \times n)$ (iv) $(-m) \times n = -(m \times n)$ We've just defined \times : $\begin{array}{ccc} \mathbb{Z} \times \mathbb{Z} & \to & \mathbb{Z} \\ (a,b) & \mapsto & a \times b \end{array}$

Remark 7. We may simply write *ab* for $a \times b$ when there is no possible confusion.

Remark 8. Note that the addition and product on \mathbb{Z} are compatible with the addition and product on \mathbb{N} .

Definition 9. For $n \in \mathbb{N}$, we set -(-n) = n. Then -a is well-defined for every $a \in \mathbb{Z}$.

Proposition 10.

- + *is associative:* $\forall a, b, c \in \mathbb{Z}, (a + b) + c = a + (b + c)$
- 0 is the unit of $+: \forall a \in \mathbb{Z}, a + 0 = 0 + a = a$
- -a is the additive inverse of a: $\forall a \in \mathbb{Z}, a + (-a) = (-a) + a = 0$
- + is commutative: $\forall a, b \in \mathbb{Z}, a + b = b + a$
- \times is associative: $\forall a, b, c \in \mathbb{Z}$, (ab)c = a(bc)
- \times is distributive with respect to +: $\forall a, b, c \in \mathbb{Z}$, $a \times (b + c) = ab + ac \ et \ (a + b)c = ac + bc$
- 1 is the unit of \times : $\forall a \in \mathbb{Z}$, $1 \times a = a \times 1 = a$
- \times is commutative: $\forall a, b \in \mathbb{Z}, ab = ba$
- $\forall a, b \in \mathbb{Z}, ab = 0 \Rightarrow (a = 0 \text{ or } b = 0)$

The above properties are easy to prove but the proofs are tedious with several cases depending on the signs.

Remark. From now on, we may simply write a - b for a + (-b) and -a + b for (-a) + b.

Corollary 11. $\forall a, b, c \in \mathbb{Z}$, $(ac = bc \text{ and } c \neq 0) \implies a = b$

Proof. Let $a, b, c \in \mathbb{Z}$ be such that ac = bc and $c \neq 0$. Then (a - b)c = 0. So either a - b = 0 or c = 0. Since $c \neq 0$, we get a - b = 0, i.e. a = b.

1.3 Order

Definition 12. We define the binary relation \leq on \mathbb{Z} by

$$\forall a, b \in \mathbb{Z}, \ a \le b \Leftrightarrow b - a \in \mathbb{N}$$

Proposition 13. \leq *defines a total order on* \mathbb{Z} *.*

Proof.

- *Reflexivity.* Let $a \in \mathbb{Z}$, then $a a = 0 \in \mathbb{N}$ so $a \le a$.
- *Antisymmetry.* Let $a, b \in \mathbb{Z}$. Assume that $a \leq b$ and that $b \leq a$. Then $b a \in \mathbb{N}$ and $a b \in \mathbb{N}$. So $a b = -(b a) \in (-\mathbb{N})$. Hence $a b \in (-\mathbb{N}) \cap \mathbb{N} = \{0\}$ and thus a = b.
- *Transitivity*. Let $a, b, c \in \mathbb{Z}$. Assume that $a \le b$ and that $b \le c$. Then $b a \in \mathbb{N}$ and $c b \in \mathbb{N}$. Thus $c a = (c b) + (b a) \in \mathbb{N}$, i.e. $a \le c$.
- Let $a, b \in \mathbb{Z}$. Then $b a \in \mathbb{Z} = (-\mathbb{N}) \cup (\mathbb{N})$. *First case:* $b - a \in \mathbb{N}$ then $a \le b$. *Second case:* $b - a \in (-\mathbb{N})$, then $a - b = -(b - a) \in \mathbb{N}$ and $b \le a$. Hence the order is total.

Proposition 14. *The order on* \mathbb{Z} *is compatible with the order on* \mathbb{N} *.*

Proof. Let $a, b \in \mathbb{N}$.

- Assume that $a \leq_{\mathbb{Z}} b$. Then $k = b a \in \mathbb{N}$. So b = a + k, i.e. $a \leq_{\mathbb{N}} b$.
- Assume that $a \leq_{\mathbb{N}} b$. Then b = a + k for some $k \in \mathbb{N}$. Then $b a = k \in \mathbb{N}$, i.e. $a \leq_{\mathbb{Z}} b$.

Proposition 15.

- 1. $\mathbb{N} = \{a \in \mathbb{Z}, 0 \le a\}$
- 2. $\forall a, b, c \in \mathbb{Z}, a \leq b \Leftrightarrow a + c \leq b + c$
- 3. $\forall a, b, c, d \in \mathbb{Z}, (a \le b \text{ and } c \le d) \Rightarrow a + c \le b + d$
- 4. $\forall a, b \in \mathbb{Z}, \forall c \in \mathbb{N} \setminus \{0\}, a \leq b \Leftrightarrow ac \leq bc$
- 5. $\forall a, b \in \mathbb{Z}, \forall c \in (-\mathbb{N}) \setminus \{0\}, a \leq b \Leftrightarrow bc \leq ac$

Proof.

- 1. Let $a \in \mathbb{Z}$. Then $0 \le a \Leftrightarrow a = a 0 \in \mathbb{N}$.
- 2. Let $a, b, c \in \mathbb{Z}$. Then $a \leq b \Leftrightarrow b a \in \mathbb{N} \Leftrightarrow (b + c) (a + c) \in \mathbb{N} \Leftrightarrow a + c \leq b + c$.
- 3. Let $a, b, c, d \in \mathbb{Z}$. Assume that $a \le b$ and that $c \le d$. Then $b a \in \mathbb{N}$ and $d c \in \mathbb{N}$. Hence $(b + d) - (a + c) = (b - a) + (d - c) \in \mathbb{N}$, i.e. $a + c \le b + d$.
- 4. Let *a*, *b* ∈ Z and *c* ∈ N. ⇒: Assume that *a* ≤ *b*. Then *b* − *a* ∈ N, thus *bc* − *ac* = (*b* − *a*)*c* ∈ N. Therefore *ac* ≤ *bc*. ⇐: Assume that *c* ≠ 0 and that *ac* ≤ *bc*. Then *bc* − *ac* = (*b* − *a*)*c* ∈ N. Assume by contradiction that (*b* − *a*) ∈ (−N) \ {0} then, by definition of the multiplication, (*b* − *a*)*c* ∈ (−N) \ {0}, which is a contradiction. Hence *b* − *a* ∈ N, i.e. *a* ≤ *b*.
- 5. Let $a, b \in \mathbb{Z}$ and $c \in (-\mathbb{N})$.

⇒: Assume that $a \leq b$. Then $b - a \in \mathbb{N}$, thus $ac - bc = (b - a)(-c) \in \mathbb{N}$. Therefore $bc \leq ac$.

⇐: Assume that $c \neq 0$ and that $bc \leq ac$. Then $ac - bc = (b - a)(-c) \in \mathbb{N}$. And we conclude as in 4.

Remark 16. Given $a, b, c \in \mathbb{Z}$, it is common to lighten the notation by writing $a \le b \le c$ for $(a \le b \text{ and } b \le c)$.

Theorem 17.

1. A non-empty subset A of \mathbb{Z} which is bounded from below has a least element, i.e.

$$\exists m \in A, \forall a \in A, m \leq a$$

2. A non-empty subset A of \mathbb{Z} which is bounded from above has a greatest element, i.e.

$$\exists M \in A, \forall a \in A, a \leq M$$

Proof.

- 1. Assume that *A* is a non-empty subset of \mathbb{Z} which is bounded from below. Then there exists $k \in \mathbb{Z}$ such that $\forall a \in A, k \leq a$. Define $S = \{a - k : a \in A\}$. Then *S* is a non-empty subset of \mathbb{N} (indeed, $\forall a \in A, 0 \leq a - k$). By the well-ordering principle, there exists $\tilde{m} \in S$ such that $\forall a \in A, \tilde{m} \leq a - k$. Then $m = \tilde{m} + k$ is the least element of *A* (note that $\tilde{m} \in S$ so $m = \tilde{m} + k \in A$)
- 2. Assume that A is a non-empty subset of Z which is bounded from above. Then (−A) = {−a : a ∈ A} is a non-empty subset of Z which is bounded from below (prove it). By the above, there exists m ∈ (−A) such that ∀a ∈ A, m ≤ −a. Hence ∀a ∈ A, a ≤ −m. Thus M := −m is the greatest element of A.

2 Absolute value

Definition 18. For $n \in \mathbb{Z}$, we define the *absolute value of n* by $|n| := \begin{cases} n & \text{if } n \in \mathbb{N} \\ -n & \text{if } n \in (-\mathbb{N}) \end{cases}$.

Proposition 19.

- (*i*) $\forall n \in \mathbb{Z}, |n| \in \mathbb{N}$
- (*ii*) $\forall n \in \mathbb{Z}, n \leq |n|$
- $(iii) \ \forall n \in \mathbb{Z}, \ |n| = 0 \Leftrightarrow n = 0$
- $(iv) \ \forall a, b \in \mathbb{Z}, \ |ab| = |a||b|$
- (v) $\forall a, b \in \mathbb{Z}, |a| \le b \Leftrightarrow -b \le a \le b$
- (vi) $\forall a, b \in \mathbb{Z}, |a+b| \le |a| + |b|$ (triangle inequality)

Proof.

- (i) *First case:* if $n \in \mathbb{N}$ then $|n| = n \in \mathbb{N}$. *Second case:* if $n \in (-\mathbb{N})$ then n = -m for some $m \in \mathbb{N}$ and $|n| = -n = -(-m) = m \in \mathbb{N}$.
- (ii) *First case:* $n \in \mathbb{N}$. Then $n \le n = |n|$. *Second case:* $n \in (-\mathbb{N})$. Then $n \le 0 \le |n|$.
- (iii) Note that |0| = 0 and that if $n \neq 0$ then $|n| \neq 0$.
- (iv) You have to study separately the four cases depending on the signs of *a* and *b*.
- (v) If b < 0 then $|a| \le b$ and $-b \le a \le b$ are both false. So we may assume that $b \in \mathbb{N}$. Then *First case:* $a \in \mathbb{N}$. Then $|a| \le b \Leftrightarrow a \le b \Leftrightarrow -b \le a \le b$. Second case: $a \in (-\mathbb{N})$. Then $|a| \le b \Leftrightarrow -a \le b \Leftrightarrow -b \le a \Leftrightarrow -b \le a \le b$.
- (vi) Since $a + b \le |a| + |b|$ and $-(a + b) = -a b \le |-a| + |-b| = |a| + |b|$, we get $|a + b| \le |a| + |b|$.

3 Euclidean division

Theorem 20 (Euclidean division).

Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z} \setminus \{0\}$, there exists a unique couple $(q, r) \in \mathbb{Z}^2$ such that

$$\begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases}$$

The integers q and r are respectively called the quotient and the remainder of the division of a by b.

Proof.

Existence:

First case: assume that 0 < b.

- We set¹ $E = \{p \in \mathbb{Z} : bp \le a\}.$
 - $E \neq \emptyset$, indeed if $0 \le a$ then $0 \in E$, otherwise $a \in E$.
 - |a| is an upper bound of *E*. Indeed, let $p \in E$. If $p \le 0$ then $p \le 0 \le |a|$.

Otherwise, if 0 < p then $1 \le b \implies p \le bp \le a \le |a|$.

Thus *E* is a non-empty subset of \mathbb{Z} which is bounded from above.

Hence it admits a greatest element, i.e. there exists $q \in E$ such that $\forall p \in E, p \leq q$.

We set r = a - bq. Since $q \in E$, $r = a - bq \ge 0$.

And $q + 1 \notin E$ since q + 1 > q whereas q is the greatest element of E.

Therefore b(q + 1) > a, so r = a - bq < b = |b|.

We wrote a = bq + r with $0 \le r < |b|$ as expected.

Second case: assume that b < 0.

Then we apply the first case to *a* and -b > 0: there exists $(q, r) \in \mathbb{Z}^2$ such that a = -bq + r = b(-q) + r with $0 \le r < -b = |b|$.

Uniqueness: assume that we have two suitable couples (q, r) and (q', r').

Then r' - r = (a - bq') - (a - bq) = b(q - q'). Besides

$$\left\{\begin{array}{ll} 0 \le r < |b| \\ 0 \le r' < |b| \end{array} \implies \left\{\begin{array}{l} -|b| < -r \le 0 \\ 0 \le r' < |b| \end{array} \implies -|b| < r' - r < |b| \end{array}\right.$$

Thus -|b| < b(q - q') < |b|, from which we get |b||q - q'| = |b(q - q')| < |b|. Since |b| > 0, we obtain $0 \le |q - q'| < 1$.

But we proved in the first chapter that there is no natural number between 0 and 1. Therefore |q - q'| = 0, which implies that q - q' = 0, i.e. q = q'. Finally, r' = b - aq' = b - aq = r.

Examples 21.

- Division of 22 by 5: $22 = 5 \times 4 + 2$. The quotient is q = 4 and the remainder is r = 2.
- Division of -22 by 5: $-22 = 5 \times (-5) + 3$. The quotient is q = -5 and the remainder is r = 3.
- Division of 22 by -5: $22 = (-5) \times (-4) + 2$. The quotient is q = -4 and the remainder is r = 2.
- Division of -22 by -5: $-22 = (-5) \times 5 + 3$. The quotient is q = 5 and the remainder is r = 3.

Proposition 22. *Given* $n \in \mathbb{Z}$ *,*

- *either* n = 2k *for some* $k \in \mathbb{Z}$ (then we say that n is even),
- or n = 2k + 1 for some $k \in \mathbb{Z}$ (then we say that *n* is odd),

and these cases are exclusive.

Proof. Let $n \in \mathbb{Z}$. By the Euclidean division by 2, there exist $k, r \in \mathbb{Z}$ such that n = 2k + r and $0 \le r \le 1$. But we know from the last chapter that there is no natural number between 0 and 1. Hence either r = 0 or r = 1. These cases are exclusive by the uniqueness of the Euclidean division.

¹When b > 0, the informal idea of this proof consists in determining *how many times* we can add *b* before exceeding *a*, which will give the quotient. Then the remainder will be obtained by filling the difference in order to reach *a*.

Intuitively, if the quotient exists, it has to be the greatest *p* such that $bp \le a$. We have to prove the existence of such a number and then to check formally that this idea is actually correct.

4 Divisibility

Definition 23. Given $a, b \in \mathbb{Z}$, we say that *a* is *divisible by b* if there exists $k \in \mathbb{Z}$ such that a = bk. In this case we write b|a and we also say that *b* is *divisor of a* or that *a* is *a multiple of b*.

Examples 24. \bullet (-5)|10 \bullet 5 \ddagger (-11) (we will study divisibility criteria later in the term)

Remarks 25.

- Any integer is a divisor of 0, i.e $\forall b \in \mathbb{Z}$, $b \mid 0$. Indeed, $0 = b \times 0$.
- Any integer is divisible by 1 and itself, i.e. $\forall a \in \mathbb{Z}$, 1|*a* and *a*|*a*. Indeed, $a = 1 \times a = a \times 1$.
- The only integer divisible by 0 is 0 itself, i.e. $\forall a \in \mathbb{Z}, 0 | a \implies a = 0.$
 - Indeed, then $a = 0 \times k$ for some $k \in \mathbb{Z}$ and hence a = 0.
- When $b \neq 0$, b|a if and only if the remainder of the Euclidean division of a by b is r = 0.

Proposition 26.

- 1. $\forall a, b \in \mathbb{Z}, (a|b \text{ and } b|a) \implies |a| = |b|$
- 2. $\forall a, b, c \in \mathbb{Z}, (a|b \text{ and } b|c) \implies a|c$
- 3. $\forall a, b, c, d \in \mathbb{Z}, (a|b \text{ and } c|d) \implies ac|bd$
- 4. $\forall a, b, c, \lambda, \mu \in \mathbb{Z}, (a|b \text{ and } a|c) \implies a|(\lambda b + \mu c)$
- 5. $\forall a \in \mathbb{Z}, a | 1 \implies |a| = 1$

Proof.

- 1. Let $a, b \in \mathbb{Z}$ satisfying a|b and b|a. If a = 0 then b = 0 (from 0|b). So we may assume that $a \neq 0$. There exist $k, l \in \mathbb{Z}$ such that b = ak and a = bl. Then a = bl = akl, thus 1 = kl since $a \neq 0$. Therefore, $1 = |1| = |kl| = |k| \times |l|$. Since $|k|, |l| \in \mathbb{N}$, we get that |k| = |l| = 1. Finally, $|a| = |bl| = |b| \times |l| = |b| \times 1 = |b|$.
- 2. Let $a, b, c \in \mathbb{Z}$ satisfying a|b and b|c. Then b = ak and c = bl for some $k, l \in \mathbb{Z}$. Therefore c = bl = akl, so a|c.
- 3. Let $a, b, c, d \in \mathbb{Z}$ satisfying a|b and c|d. Then b = ak and d = cl for some $k, l \in \mathbb{Z}$. Therefore bd = ackl, so ac|bd.
- 4. Let $a, b, c \in \mathbb{Z}$ satisfying a|b and a|c. Then b = ka and c = la for some $k, l \in \mathbb{Z}$. Hence $\lambda b + \mu c = \lambda ka + \mu la = (\lambda k + \mu l)a$. Thus $a|(\lambda b + \mu c)$.
- 5. Let $a \in \mathbb{Z}$. Assume that a|1. Then a|1 and 1|a. So by the first item, |a| = 1.

5 Greatest common divisor

Theorem 27. *Given* $a, b \in \mathbb{Z}$ *not both zero, the set common divisors of a and b admits a greatest element denoted* gcd(a, b) *and called the* greatest common divisor of a and b.

Proof. Let $a, b \in \mathbb{Z}$ not both zero. We set $S = \{d \in \mathbb{Z} : d | a \text{ and } d | b\}$.

• *S* is non-empty since it contains 1.

• Since *a* and *b* are not both zero, we know that $a \neq 0$ or $b \neq 0$. Without loss of generality, let assume that $a \neq 0$. Let $d \in S$ then a = dk for some $k \in \mathbb{Z}$. Note that $k \neq 0$ (otherwise a = dk = 0), hence $1 \leq |k|$. Thus $d \leq |d| \leq |d| \times |k| = |dk| = |a|$. Hence *S* is bounded from above by |a|.

Therefore, *S* admits a greatest element (as an non-empty subset of \mathbb{Z} bounded from above).

Remark 28. Note that $gcd(a, b) \ge 1$ since 1 is a common divisor of *a* and *b* (particularly $gcd(a, b) \in \mathbb{N}$).

Proposition 29. Let $a, b \in \mathbb{Z}$ not both zero and $d \in \mathbb{N} \setminus \{0\}$. Then

$$\left\{ \begin{array}{l} d|a \\ d|b \\ \forall \delta \in \mathbb{N}, \left(\delta | a \text{ and } \delta | b \right) \implies \delta | d \end{array} \right| \implies d = \gcd(a, b)$$

Proof. Let $a, b \in \mathbb{Z}$ not both zero and $d \in \mathbb{N} \setminus \{0\}$. Assume that d|a, d|b and that d is a multiple of every non-negative common divisors, i.e.

$$\forall \delta \in \mathbb{N}, (\delta | a \text{ and } \delta | b) \implies \delta | d$$

Then *d* is a common divisor of *a* and *b*. We need to prove that it is the greatest one.

Let $\delta \in \mathbb{Z}$ be a common divisor of *a* and *b*.

- If $\delta \leq 0$ then $\delta \leq d$.
- If $\delta > 0$ then $d = \delta k$ for some $k \in \mathbb{Z}$.
- Note that $k \ge 1$ since $d, \delta > 0$. Thus $\delta \le \delta k = d$

The following theorem is extremely useful! We will use it quite often to study gcd and also when studying modular arithmetic!

Theorem 31 (Bézout's identity). *Given a*, $b \in \mathbb{Z}$ *not both zero, there exist u*, $v \in \mathbb{Z}$ *such that*

$$au + bv = \gcd(a, b)$$

Example 32. $gcd(15, 25) = 5 = 15 \times 2 + 25 \times (-1)$.

We will see below an algorithm in order to find a suitable couple (u, v).

Remarks 33.

- The couple (u, v) is not unique: $5 = 15 \times 27 + 25 \times (-16)$.
- The converse is false: $2 = 3 \times 4 + 5 \times (-2)$ but $gcd(3,5) = 1 \neq 2$. Nonetheless, we will see later that there is a partial converse when gcd(a, b) = 1.

Proof of Theorem 31. Let $a, b \in \mathbb{Z}$ not both zero. Set $S = \{n \in \mathbb{N} \setminus \{0\} : \exists u, v \in \mathbb{Z}, n = au + bv\}$. Without loss of generality we may assume that $a \neq 0$.

Note that S is not empty. Indeed,

- If a < 0 then $n = a \times (-1) + b \times 0$ is in *S*, or,
- If a > 0 then $n = a \times 1 + b \times 0$ is in *S*.

Thus, by the well-ordering principle, *S* admits a least element *d*. Since $d \in S$, we know that d = au + bv for some $u, v \in \mathbb{Z}$. Let's prove that d = gcd(a, b).

• By Euclidean division, there exist $q, r \in \mathbb{Z}$ such that a = dq + r and $0 \le r < |d| = d$. Assume by contradiction that $r \ne 0$. Then r = a, ad = a, $a(au + bu) = a \ge (1 - au) + b \ge (-au)$ is in S. Which contradicts the

Then $r = a - qd = a - q(au + bv) = a \times (1 - qu) + b \times (-qv)$ is in *S*. Which contradicts the fact that *d* is the least element of *S*. Hence r = 0 and a = dq, i.e. d|a.

- Similarly d|b.
- Let $\delta \in \mathbb{Z}$ be another common divisor of *a* and *b*. Since $\delta | a$ and $\delta | b$, $a = \delta k$ and $b = \delta l$ for some $k, l \in \mathbb{Z}$. Hence $d = au + bv = \delta(ku + lv)$, i.e. $\delta | d$.

Therefore, by Proposition 29, d = gcd(a, b). Hence gcd(a, b) = au + bv as requested.

Proposition 34. $\forall a \in \mathbb{Z} \setminus \{0\}, \operatorname{gcd}(a, 0) = |a|$

Proof. By definition, gcd(a, 0) is the greatest divisor of *a*.

Since $a = |a| \times (\pm 1)$, we know that |a| is a divisor of a. We have to check that it is the greatest one. Let d be a non-negative divisor of a, then a = dk for some $k \in \mathbb{Z}$.

Since $a \neq 0$, we know that $k \neq 0$.

Hence $1 \le |k|$ from which we get that $d \le d|k| = |d| \times |k| = |dk| = |a|$.

Proposition 35. Let $a, b \in \mathbb{Z}$ not both zero, then

- 1. gcd(a, b) = gcd(b, a)
- 2. gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b)
- 3. $\forall \delta \in \mathbb{Z}, (\delta | a \text{ and } \delta | b) \implies \delta | \operatorname{gcd}(a, b)$
- 4. $\forall \lambda \in \mathbb{Z} \setminus \{0\}, \operatorname{gcd}(\lambda a, \lambda b) = |\lambda| \operatorname{gcd}(a, b)$
- 5. $\forall k \in \mathbb{Z}, \operatorname{gcd}(a + kb, b) = \operatorname{gcd}(a, b)$

Proof. I will just prove 3, 4 and 5, the first two being easy to prove.

- 3. Let $a, b \in \mathbb{Z}$. Let $\delta \in \mathbb{Z}$. Assume that $\delta | a$ and $\delta | b$. By Bézout's theorem, gcd(a, b) = au + bv for some $u, v \in \mathbb{Z}$. Since $\delta | a$ and $\delta | b$, we have that $\delta | au + bv = gcd(a, b)$.
- 4. Let $a, b \in \mathbb{Z}$ let $\lambda \in \mathbb{Z} \setminus \{0\}$. Since $|\lambda|$ divides λa and λb , then it divides $gcd(\lambda a, \lambda b)$ by the third item. Hence $gcd(\lambda a, \lambda b) = |\lambda| \times d$ for some $d \in \mathbb{Z}$. Let's prove that d = gcd(a, b). Let $n \in \mathbb{Z}$, then $n|a, b \Leftrightarrow |\lambda| n |\lambda a, \lambda b \Leftrightarrow |\lambda| n | gcd(\lambda a, \lambda b) \Leftrightarrow n | d$.
- 5. Let $a, b, k \in \mathbb{Z}$. gcd(a, b)|a, b hence gcd(a, b)|a + kb. Thus gcd(a, b)|gcd(a + kb, b). Similarly, gcd(a + kb, b)|a + kb, b hence gcd(a + kb, b)|a + kb - kb = a. Thus gcd(a + kb, b)|gcd(a, b). Hence |gcd(a + kb, b)| = |gcd(a, b)|. Since they are both non-negative, we get gcd(a + kb, b) = gcd(a, b).

6 Euclid's algorithm

Euclid's algorithm is an efficient way to compute the gcd of two numbers.

Let $a, b \in \mathbb{Z}$ not both zero.

Initialization of the algorithm. We set $a_0 := |a|$ and $b_0 := |b|$. Note that $gcd(a_0, b_0) = gcd(\pm a, \pm b) = gcd(a, b)$. *Iteration.* Assume that $a_n, b_n \in \mathbb{Z}$ are already constructed with $a_n, b_n \ge 0$ not both zero.

• If $b_n = 0$ then $gcd(a_n, b_n) = a_n$ and the algorithm stops.

• Otherwise, by Euclidean division, there exist $q_n, r_n \in \mathbb{R}$ such that $a_n = b_n q_n + r_n$ and $0 \le r_n < b_n$. We set $a_{n+1} \coloneqq b_n$ and $b_{n+1} \coloneqq r_n$, then $a_{n+1} = b_n > 0$ and $0 \le b_{n+1} < b_n$. Moreover, using Proposition 35.(5),

$$gcd(a_n, b_n) = gcd(b_nq_n + r_n, b_n) = gcd(r_n, b_n) = gcd(b_n, r_n) = gcd(a_{n+1}, b_{n+1})$$

We repeat the iterative process with a_{n+1} and b_{n+1} . *Conclusion.* Since the b_n are natural numbers and $0 \le b_{n+1} < b_n$, there exists $N \in \mathbb{N}$ such that $b_N = 0$. It proves that the algorithm ends after finitely many steps. Furthermore

$$gcd(a, b) = gcd(a_0, b_0) = gcd(a_1, b_1) = \dots = gcd(a_N, b_N) = a_N$$

So the algorithm computes gcd(a, b) as expected.

Algorithm: Euclid's algorithm in pseudocode

Result: gcd(a, b) where $a, b \in \mathbb{Z}$ not both zero. $a \leftarrow |a|$ $b \leftarrow |b|$ **while** $b \neq 0$ **do** $\begin{vmatrix} r \leftarrow a\%b \ (the remainder of the Euclidean division \ a = bq + r \ with \ 0 \le r < b) \\ a \leftarrow b \\ b \leftarrow r$ end return a **Example 36.** We want to compute gcd(600, -136):

 $a_0 = 600, \quad b_0 = 136$ gcd(600, -136) = gcd(600, 136)600 = $136 \times 4 + 56$ gcd(600, 136) = gcd(136, 56) $a_1 = 136, b_1 = 56$ $136 = 56 \times 2 + 24 \mid a_2 = 56,$ $b_2 = 24$ gcd(136, 56) = gcd(56, 24) $56 = 24 \times 2 + 8 \mid a_3 = 24,$ gcd(56, 24) = gcd(24, 8) $b_3 = 8$ 24 $8 \times 3 + 0 \mid a_4 = 8,$ $b_4 = 0$ gcd(24, 8) = gcd(8, 0) = 8=

Hence gcd(600, -136) = 8.

It is possible to obtain a suitable Bézout's identity from the above algorithm by going backward.

 $8 = 56 + 24 \times (-2) \qquad \text{since } 8 = 56 - 24 \times 2$ = 56 + (136 + 56 \times (-2)) \times (-2) \times (-2) = 136 \times (-2) + 56 \times 5 = 136 \times (-2) + (600 + 136 \times (-4)) \times 5 \times since 56 = 600 - 136 \times 4 8 = 600 \times 5 + (-136) \times 22

7 Coprime integers

Definition 37. Let $a, b \in \mathbb{Z}$ not both zero. We say that a and b are *coprime* (or *relatively prime*) if gcd(a, b) = 1. The following result states that the converse of Bézout's identity holds **for coprime numbers**.

Proposition 38. Let $a, b \in \mathbb{Z}$ not both zero. Then

$$gcd(a, b) = 1 \Leftrightarrow \exists u, v \in \mathbb{Z}, au + bv = 1$$

Proof.

 \Rightarrow : it is simply Bézout's identity.

 \Leftarrow : let *a*, *b* ∈ \mathbb{Z} not both zero. Assume that au + bv = 1 for some $u, v \in \mathbb{Z}$. Set $d = \gcd(a, b)$. Then d|a and d|b, hence d|(au + bv) = 1. So |d| = 1. But since $d \in \mathbb{N}$, we get that d = 1.

Theorem 39 (Gauss' lemma). $\forall a, b, c \in \mathbb{Z}, \begin{cases} \gcd(a, b) = 1 \\ a|bc \end{cases} \implies a|c$

Proof. Let $a, b, c \in \mathbb{Z}$ such that gcd(a, b) = 1 and a|bc. Then there exists $k \in \mathbb{Z}$ such that bc = ka. By Bézout's identity, there exist $u, v \in \mathbb{Z}$ such that 1 = au + bv.

Thus c = (au + bv)c = auc + bcv = auc + kav = a(uc + kv). Hence a|c.

The following result is very useful.

Proposition 40. Let $a, b, c \in \mathbb{Z}$. If a|c, b|c and gcd(a, b) = 1 then ab|c.

Proof. Since a|c and b|c, there exist $k, l \in \mathbb{Z}$ such that c = ak and c = bl. Since gcd(a, b) = 1, by Bézout's identity, there exists $u, v \in \mathbb{Z}$ such that au + bv = 1. Then c = auc + bvc = aubl + bvak = ab(ul + vk), so that ab|c.

8 A diophantine equation

Theorem 41. Let $a, b, c \in \mathbb{Z}$ with a and b not both zero.

Then the equation ax + by = c *has an integer solution if and only if* gcd(a, b)|c*.*

Proof.

⇒: Assume that ax + by = c for some $(x, y) \in \mathbb{Z}^2$.

Since gcd(a, b)|a and gcd(a, b)|b, we get that gcd(a, b)|ax + by = c.

⇐: Assume that gcd(a, b)|c, then there exists $k \in \mathbb{Z}$ such that c = k gcd(a, b).

By Bézout's identity, there exists $(u, v) \in \mathbb{Z}^2$ such that au + bv = gcd(a, b) hence aku + bkv = k gcd(a, b) = c. Therefore (ku, kv) is an integer solution of the equation.

How to find all the integer solutions of an equation of the form ax + by = c with $a \neq 0$, $b \neq 0$ and gcd(a, b)|c?

- *Step 1:* reduction to the case where gcd(a, b) = 1. There exist $\tilde{a}, \tilde{b}, \tilde{c} \in \mathbb{Z}$ such that $a = \tilde{a} gcd(a, b), b = \tilde{b} gcd(a, b)$ and $c = \tilde{c} gcd(a, b)$. Hence $ax + by = c \Leftrightarrow \tilde{a}x + \tilde{b}y = \tilde{c}$. Note that $gcd(a, b) = gcd(\tilde{a} gcd(a, b), \tilde{b} gcd(a, b)) = gcd(a, b) gcd(\tilde{a}, \tilde{b})$. Hence $gcd(\tilde{a}, \tilde{b}) = 1$.
- *Step 2:* find a first solution. By Bézout's identity, there exist $u, v \in \mathbb{Z}$ such that $\tilde{a}u + \tilde{b}v = 1$ (we may find such a couple (u, v) using Euclid's algorithm). Thence $\tilde{a}\tilde{c}u + \tilde{b}\tilde{c}v = \tilde{c}$. Therefore we obtain a solution $(x_0, y_0) = (\tilde{c}u, \tilde{c}v)$ of $\tilde{a}x + \tilde{b}y = \tilde{c}$.
- *Step 3:* study the other solutions. Let $(x, y) \in \mathbb{Z}^2$ satisfying $\tilde{a}x + \tilde{b}y = \tilde{c}$. Then $\tilde{a}(x - x_0) + \tilde{b}(y - y_0) = 0$, i.e. $\tilde{b}(y - y_0) = \tilde{a}(x_0 - x)$. Since $\tilde{a}|\tilde{b}(y - y_0)$ and $gcd(\tilde{a}, \tilde{b}) = 1$, by Gauss' lemma, $\tilde{a}|y - y_0$, i.e. there exists $k \in \mathbb{Z}$ such that $k\tilde{a} = y - y_0$, i.e. $y = y_0 + k\tilde{a}$. Then $\tilde{a}(x_0 - x) = \tilde{b}(y - y_0) = k\tilde{a}\tilde{b}$. Since $\tilde{a} \neq 0$, we get $x_0 - x = k\tilde{b}$, i.e. $x = x_0 - k\tilde{b}$. We proved that there exists $k \in \mathbb{Z}$ such that $(x, y) = (x_0 - k\tilde{b}, y_0 + k\tilde{a})$.
- *Step 4:* check the converse! We proved that if $(x, y) \in \mathbb{Z}^2$ is a solution, then there exists $k \in \mathbb{Z}$ such that $(x, y) = (x_0 - k\tilde{b}, y_0 + k\tilde{a})$. It means that the solutions are among $(x, y) \in \{(x_0 - k\tilde{b}, y_0 + k\tilde{a}) : k \in \mathbb{Z}\}$. Otherwise stated, it means that $\{(x, y) \in \mathbb{Z}^2 : \tilde{a}x + \tilde{b}y = \tilde{c}\} \subset \{(x_0 - k\tilde{b}, y_0 + k\tilde{a}) : k \in \mathbb{Z}\}$. It doesn't mean that they are all solutions, we need to check that separately, i.e. we need to prove the other inclusion. Conversely, let's prove that for every $k \in \mathbb{Z}$, $(x, y) = (x_0 - k\tilde{b}, y_0 + k\tilde{a})$ is a solution:

 $\tilde{a}(x_0-k\tilde{b})+\tilde{b}(y_0+k\tilde{a})=\tilde{a}x_0+\tilde{b}y_0=\tilde{c}$

• *Step 5:* Conclusion! The solutions are exactly the $(x, y) = (x_0 - k\tilde{b}, y_0 + k\tilde{a})$ for $k \in \mathbb{Z}$.

See Slide 6 of Lecture 7 (Feb 2) for a concrete example.

A Appendix: properties of the strict order

Recall that given $a, b \in \mathbb{Z}$, a < b means $(a \le b \text{ and } a \ne b)$. The following properties of < are easy to derive from the ones of \le .

- $\forall a, b, c \in \mathbb{Z}, (a < b \text{ and } b \leq c) \implies a < c$
- $\forall a, b, c \in \mathbb{Z}, (a \le b \text{ and } b < c) \implies a < c$
- $\forall a, b, c, d \in \mathbb{Z}, (a < b \text{ and } c \leq d) \implies a + c < b + d$
- $\forall a, b, c \in \mathbb{Z}, a < b \implies a + c < b + c$ (that's a special case of the previous one where d = c)
- $\forall a, b, c \in \mathbb{Z}, (a < b \text{ and } c > 0) \implies ac < bc$
- $\forall a, b, c \in \mathbb{Z}, (a < b \text{ and } c < 0) \implies ac > bc$
- $\forall a, b \in \mathbb{Z}, a < b \Leftrightarrow a + 1 \le b$
- Given $a, b \in \mathbb{Z}$, exactly one of the following occurs:
 - (i) *a* < *b*
 - (ii) a = b
 - (iii) a > b

Particularly, the negation of $a \le b$ if a > b.

B Appendix: implementation of Euclid's algorithm in Julia

Euclid's algorithm in Julia (iterative)

```
function euclid(a::Integer, b::Integer)
1
     a != 0 || b != 0 || error("a and b must not be both zero")
2
     a = abs(a)
4
     b = abs(b)
5
     while b != 0
6
         r = a%b
7
         a = b
8
        b = r
9
     end
     return a
  end
```

Actually, it is not important to replace a and b by their respective absolute values in the initialization. In this case, the sequence (b_n) is eventually non-negative so the algorithm stops as earlier and we just have to make sure that we return the absolute value of a at the end.

That being said, you should be careful because most programming languages don't use the above convention for Euclidean division. Instead, they require the remainder r to have the same sign as b, i.e. r satisfies $0 \le r < b$ if b > 0 or $b < r \le 0$ if b < 0.

But it doesn't matter for Euclid's algorithm: indeed, with this convention, the sequence $|b_n|$ is still decreasing, so the algorithm stops.

Therefore, we can simply write the following program (here gcd(0, 0) = 0 by convention).

Euclid's algorithm in Julia (recursive)

```
1 function euclid(a::Integer, b::Integer)
2 b != 0 || return abs(a)
3 return euclid(b,a%b)
4 end
```