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1 Sets
As inmany areas ofmathematics, wewill use sets very often during this course. Butwewon’t cover anything
about axiomatic set theory. Instead we will only use a naive informal intuitive definition of what is a set
and what is a function/map between two sets (you are already used to that from your linear algebra and
calculus courses).
Definition 1 (Informal). A set is a (well-defined) ”collection” of elements (order doesn’t matter).
Two sets are equal if they contain the same elements, so {1, 2, 2, 3} = {1, 2, 3} since they contain 1, 2, 3.
Remark 2. We usually define a set either by giving explicitely the elements it contains, e.g.

𝑆 = {apple, 𝜋, 5}
or from an already constructed set by taking only the elements satisfying some property

𝑆 = {𝑛 ∈ ℤ ∶ ∃𝑘 ∈ ℤ, 𝑛 = 2𝑘}

Notation 3. Given a set 𝑆, we write 𝑎 ∈ 𝑆 to express that 𝑎 is an element of 𝑆. It is read ”𝑎 is in 𝑆” or ”𝑎 is
an element of 𝑆”.
Example 4.

• apple ∈ {apple, 𝜋, 5}
• banana ∉ {apple, 𝜋, 5}

Notation 5. Given two sets 𝑆 and 𝑇 , we write 𝑆 ⊂ 𝑇 to express that every element of 𝑆 is an element of 𝑇 ,
i.e.

∀𝑎 ∈ 𝑆, 𝑎 ∈ 𝑇
It is read ”𝑆 is a subset of 𝑇 ” or ”𝑆 is included in 𝑇 ”.
Remark 6. Two sets 𝑆 and 𝑇 are equal if and only if they have the same elements, i.e.

𝑆 = 𝑇 ⇔ (𝑆 ⊂ 𝑇 and 𝑇 ⊂ 𝑆)
Remark 7. There exists a unique set containing no element, it is denoted by ∅ and called the empty set.
Remark 8. Given a set 𝐸, the set of subsets of 𝐸 is well-defined, it is denoted by 𝒫(𝐸) ≔ {𝑆 ∶ 𝑆 ⊂ 𝐸} and
called the powerset of 𝐸.



2 Logic and sets

2 Cartesian product

Definition 9. An 𝑛-tuple is an ordered list of 𝑛 elements (𝑥1, … , 𝑥𝑛). We say couple for a 2-tuple and triple for
a 3-tuple.

Fundamental property 10. (𝑥1, … , 𝑥𝑛) = (𝑦1, … , 𝑦𝑛) ⇔ 𝑥1 = 𝑦1, 𝑥2 = 𝑦2, … , 𝑥𝑛 = 𝑦𝑛

Remark 11.
• {1, 2, 3} = {3, 2, 1} (sets)
• (1, 2, 3) ≠ (3, 2, 1) (tuples)

Remark 12.
• {1, 2, 2, 3} = {1, 2, 3} (sets)
• (1, 2, 2, 3) ≠ (1, 2, 3) (tuples)

Theorem 13. Given two sets 𝐴 and 𝐵, the following set is well-defined

𝐴 × 𝐵 ≔ {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

It is called the cartesian product of 𝐴 and 𝐵.

Example 14. Set 𝐴 = {𝜋, 𝑒} and 𝐵 = {1, √2, 𝜋} then

𝐴 × 𝐵 = {(𝜋, 1), (𝜋, √2) , (𝜋, 𝜋), (𝑒, 1), (𝑒, √2) , (𝑒, 𝜋)}

Theorem 15. Given sets 𝐴1, 𝐴2, … , 𝐴𝑛, the following set is well-defined

𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 ≔ {(𝑎1, 𝑎2, … , 𝑎𝑛) ∶ 𝑎𝑖 ∈ 𝐴𝑖}

Remark 16. We will often identify the following sets although they are not formally equal:
• (𝐴 × 𝐵) × 𝐶 ∋ ((𝑎, 𝑏), 𝑐)
• 𝐴 × (𝐵 × 𝐶) ∋ (𝑎, (𝑏, 𝑐))
• 𝐴 × 𝐵 × 𝐶 ∋ (𝑎, 𝑏, 𝑐)

3 Basic logic

Definition 17. A statement is a sentencewhich is either “true” (𝑇 ) or “false” (𝐹 ).

Definition 18. The negation of a statement 𝑃 is the statement denoted by ¬𝑃 (or no𝑃 ) defined with the
following truth table:

𝑃 ¬𝑃
𝑉 𝐹
𝐹 𝑉

Definition 19. The disjunction of two statements 𝑃 and 𝑄 is the statement denoted by 𝑃 ∨ 𝑄 (or 𝑃 or𝑄)
defined with the following truth table:

𝑃 𝑄 𝑃 ∨ 𝑄
𝑉 𝑉 𝑉
𝑉 𝐹 𝑉
𝐹 𝑉 𝑉
𝐹 𝐹 𝐹

Beware: the disjunction is not exclusive.
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Definition 20. The conjunction of two statements 𝑃 and 𝑄 is the statement denoted by 𝑃 ∧ 𝑄 (or 𝑃 and𝑄)
defined with the following truth table:

𝑃 𝑄 𝑃 ∧ 𝑄
𝑉 𝑉 𝑉
𝑉 𝐹 𝐹
𝐹 𝑉 𝐹
𝐹 𝐹 𝐹

Definition 21. Given two statements 𝑃 and 𝑄, we define the statement 𝑃 ⇒ 𝑄 with the following truth
table:

𝑃 𝑄 𝑃 ⇒ 𝑄
𝑉 𝑉 𝑉
𝑉 𝐹 𝐹
𝐹 𝑉 𝑉
𝐹 𝐹 𝑉

It is called the implication (or conditional statement) and it is read as follows ”𝑃 imples 𝑄” or ”if 𝑃 (is true)
then 𝑄 (is true)”.

Definition 22. The converse of 𝑃 ⇒ 𝑄 is defined as 𝑄 ⇒ 𝑃 .

Definition 23. Given two statements 𝑃 and 𝑄, we define the statement 𝑃 ⇔ 𝑄 with the following truth
table:

𝑃 𝑄 𝑃 ⇔ 𝑄
𝑉 𝑉 𝑉
𝑉 𝐹 𝐹
𝐹 𝑉 𝐹
𝐹 𝐹 𝑉

It is called the equivalence and it is read ”𝑃 is equivalent to 𝑄” or ”𝑃 (is true) if and only if 𝑄 (is true)”.

Definition 24. A tautology is a statement which is true whatever are the truth values of its components, we
usually use the notation ⊨ 𝑃 .

Definition 25. We say that 𝑃 and 𝑄 are logically equivalentwhen 𝑃 ⇔ 𝑄 is a tautology.
It simply means that 𝑃 and 𝑄 have the same truth table.

Remark 26. The above logical connectives could have been defined in terms of the disjunction and the
negation. Indeed:

• 𝑃 ∧ 𝑄 is equivalent to ¬ ((¬𝑃 ) ∨ (¬𝑄)).

𝑃 𝑄 ¬𝑃 ¬𝑄 (¬𝑃 ) ∨ (¬𝑄) ¬ ((¬𝑃 ) ∨ (¬𝑄)) 𝑃 ∧ 𝑄
𝑉 𝑉 𝐹 𝐹 𝐹 𝑉 𝑉
𝑉 𝐹 𝐹 𝑉 𝑉 𝐹 𝐹
𝐹 𝑉 𝑉 𝐹 𝑉 𝐹 𝐹
𝐹 𝐹 𝑉 𝑉 𝑉 𝐹 𝐹

• 𝑃 ⇒ 𝑄 is equivalent to (¬𝑃 ) ∨ 𝑄.

𝑃 𝑄 ¬𝑃 (¬𝑃 ) ∨ 𝑄 𝑃 ⇒ 𝑄
𝑉 𝑉 𝐹 𝑉 𝑉
𝑉 𝐹 𝐹 𝐹 𝐹
𝐹 𝑉 𝑉 𝑉 𝑉
𝐹 𝐹 𝑉 𝑉 𝑉

• 𝑃 ⇔ 𝑄 is equivalent to (𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃 ) or to (𝑃 ∧ 𝑄) ∨ ((¬𝑃 ) ∧ (¬𝑄)).
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Example 27. Law of excluded middle: ⊨ 𝑃 ∨ (¬𝑃 )

𝑃 ¬𝑃 𝑃 ∨ (¬𝑃 )
𝑉 𝐹 𝑉
𝐹 𝑉 𝑉

The law of excluded middle simply means that either 𝑃 is true, or its negation ¬𝑃 is true.

Example 28. The modus ponens: ⊨ (𝑃 ∧ (𝑃 ⇒ 𝑄)) ⇒ 𝑄

𝑃 𝑄 𝑃 ⇒ 𝑄 𝑃 ∧ (𝑃 ⇒ 𝑄) (𝑃 ∧ (𝑃 ⇒ 𝑄)) ⇒ 𝑄
𝑉 𝑉 𝑉 𝑉 𝑉
𝑉 𝐹 𝐹 𝐹 𝑉
𝐹 𝑉 𝑉 𝐹 𝑉
𝐹 𝐹 𝑉 𝐹 𝑉

It is the main inference rule in mathematics: if both 𝑃 and 𝑃 ⇒ 𝑄 are true then so is 𝑄.

Example 29. ⊨ (𝑃 ∧ 𝑄) ⇒ 𝑃

Example 30. ⊨ 𝑃 ⇒ (𝑃 ∨ 𝑄)

Proposition 31. The disjunction is commutative: ⊨ (𝑃 ∨ 𝑄) ⇔ (𝑄 ∨ 𝑃 )

Proposition 32. The disjunction is associative: ⊨ ((𝑃 ∨ 𝑄) ∨ 𝑅) ⇔ (𝑃 ∨ (𝑄 ∨ 𝑅)).

Proposition 33. The conjunction is commutative: ⊨ (𝑃 ∧ 𝑄) ⇔ (𝑄 ∧ 𝑃 )

Proposition 34. The conjunction is associative : ⊨ ((𝑃 ∧ 𝑄) ∧ 𝑅) ⇔ (𝑃 ∧ (𝑄 ∧ 𝑅)).

Proposition 35 (Double negation elimination). ⊨ (¬(¬𝑃 )) ⇔ 𝑃

Proof.
𝑃 ¬𝑃 ¬(¬𝑃 )
𝑉 𝐹 𝑉
𝐹 𝑉 𝐹

■

Proposition 36 (Morgan’s laws).
• The negation of 𝑃 ∨ 𝑄 is (¬𝑃 ) ∧ (¬𝑄):

⊨ (¬(𝑃 ∨ 𝑄)) ⇔ ((¬𝑃 ) ∧ (¬𝑄))

• the negation of 𝑃 ∧ 𝑄 is (¬𝑃 ) ∨ (¬𝑄):

⊨ (¬(𝑃 ∧ 𝑄)) ⇔ ((¬𝑃 ) ∨ (¬𝑄))

Mnemonic device: the negation changes conjunctions in disjunctions and vice-versa.

Proof. I only prove the first one.

𝑃 𝑄 ¬𝑃 ¬𝑄 (¬𝑃 ) ∧ (¬𝑄) 𝑃 ∨ 𝑄 ¬(𝑃 ∨ 𝑄)
𝑉 𝑉 𝐹 𝐹 𝐹 𝑉 𝐹
𝑉 𝐹 𝐹 𝑉 𝐹 𝑉 𝐹
𝐹 𝑉 𝑉 𝐹 𝐹 𝑉 𝐹
𝐹 𝐹 𝑉 𝑉 𝑉 𝐹 𝑉

■
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Proposition 37 (Distributivity).
• ⊨ (𝑃 ∧ (𝑄 ∨ 𝑅)) ⇔ ((𝑃 ∧ 𝑄) ∨ (𝑃 ∧ 𝑅))
• ⊨ (𝑃 ∨ (𝑄 ∧ 𝑅)) ⇔ ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑅))

Proposition 38 (Proof by contrapositive).
The statement 𝑃 ⇒ 𝑄 is logically equivalent to its contrapositive (¬𝑄) ⇒ (¬𝑃 ).
Proof.

𝑃 𝑄 𝑃 ⇒ 𝑄 ¬𝑃 ¬𝑄 (¬𝑄) ⇒ (¬𝑃 )
𝑉 𝑉 𝑉 𝐹 𝐹 𝑉
𝑉 𝐹 𝐹 𝐹 𝑉 𝐹
𝐹 𝑉 𝑉 𝑉 𝐹 𝑉
𝐹 𝐹 𝑉 𝑉 𝑉 𝑉

■

In some cases, it may be easier to prove (¬𝑄) ⇒ (¬𝑃 ) rather than 𝑃 ⇒ 𝑄.

Example 39. Let 𝑛 ∈ ℤ. Prove that if 𝑛2 is odd then 𝑛 is odd.

Proposition 40 (Reductio ad absurdum). (((¬𝑃 ) ⇒ 𝑄) ∧ ((¬𝑃 ) ⇒ (¬𝑄))) ⇒ 𝑃 is a tautology.

In practice, in order to prove 𝑃 by contradiction, we assume that ¬𝑃 is true and we look for a contradiction.

4 Quantifiers
Definition 41. A predicate 𝑃 (𝑥, 𝑦, …) is a statement whose truth value depends on variables 𝑥, 𝑦, … occuring
in it.

Definition 42 (Universal quantifier). The statement ”∀𝑥 ∈ 𝐸, 𝑃 (𝑥)” means that 𝑃 (𝑥) is true for any 𝑥 in 𝐸.
It is read ”for all 𝑥 in 𝐸, 𝑃 (𝑥) is true”.
Definition 43 (Existential quantifier). The statement ”∃𝑥 ∈ 𝐸, 𝑃 (𝑥)” means that there exists at least one 𝑥
in 𝐸 such that 𝑃 (𝑥) is true.
It is read ”there exists 𝑥 in 𝐸 such that 𝑃 (𝑥) is true”.
Here 𝑥 is a bound variable:

• we may replace ”∀𝑥 ∈ 𝐸, 𝑃 (𝑥)” by ”∀𝑦 ∈ 𝐸, 𝑃 (𝑦)”
• we may replace ”∃𝑥 ∈ 𝐸, 𝑃 (𝑥)” by ”∃𝑦 ∈ 𝐸, 𝑃 (𝑦)”.

Definition 44. The statement ”∃!𝑥 ∈ 𝐸, 𝑃 (𝑥)” means that 𝑃 (𝑥) is true for exactly one element 𝑥 in 𝐸.
It is read ”there exists a unique 𝑥 in 𝐸 such that 𝑃 (𝑥) is true”.
As we see in the following example, we can’t permute the quantifiers ∀ and ∃.

• ∃𝑛 ∈ ℕ, ∀𝑝 ∈ ℕ, 𝑝 ≤ 𝑛
• ∀𝑝 ∈ ℕ, ∃𝑛 ∈ ℕ, 𝑝 ≤ 𝑛

Nonetheless, we may permute two existential quantifiers or two universal quantifiers.

Remark 45. It is common to write ”∀𝑥, 𝑦 ∈ 𝐸” for ”∀𝑥 ∈ 𝐸, ∀𝑦 ∈ 𝐸” (that’s an ellipsis).
The same holds for the existential quantifier ∃.
Definition 46. The negation of ”∀𝑥 ∈ 𝐸, 𝑃 (𝑥)” is ”∃𝑥 ∈ 𝐸, ¬𝑃 (𝑥)”.
Definition 47. The negation of ”∃𝑥 ∈ 𝐸, 𝑃 (𝑥)” is ”∀𝑥 ∈ 𝐸, ¬𝑃 (𝑥)”.
Mnemonic device: the negation swaps ∀ and ∃.
Axiom 48. The statement ”∃𝑥 ∈ ∅, 𝑃 (𝑥)” is false for any predicate.

Proposition 49. The statement ”∀𝑥 ∈ ∅, 𝑃 (𝑥)” is true for any predicate.

Proof. Indeed, ∃𝑥 ∈ ∅, (¬𝑃 (𝑥)) is false, so its negation ∀𝑥 ∈ ∅, 𝑃 (𝑥) is true. ■
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5 Functions
Definition 50 (informal). A function (or map) is the data of two sets 𝐴 and 𝐵 together with a ”process”
which assigns to each 𝑥 ∈ 𝐴 a unique 𝑓(𝑥) ∈ 𝐵:

𝑓 ∶ {
𝐴 → 𝐵
𝑥 ↦ 𝑓(𝑥)

Here, 𝑓 is the name of the function, 𝐴 is the domain of 𝑓 , and 𝐵 is the codomain of 𝑓 .
Remark 51. The domain and codomain are part of the definition of a function. For instance

𝑓 ∶ {
ℝ → [1, +∞)
𝑥 ↦ 𝑥2 + 1 and 𝑔 ∶ {

ℝ → ℝ
𝑥 ↦ 𝑥2 + 1

are not the same function (the first one is surjective but not the second one).
A function is not simply a ”formula”, you need to specify the domain and the codomain.

Definitions 52. Given a function 𝑓 ∶ 𝐴 → 𝐵.
• The image of 𝐸 ⊂ 𝐴 by 𝑓 is 𝑓(𝐸) ≔ {𝑓(𝑥) ∶ 𝑥 ∈ 𝐸} ⊂ 𝐵.
• The image of f (or range of 𝑓) is Range(𝑓 ) ≔ 𝑓(𝐴).
• The preimage of 𝐹 ⊂ 𝐵 by 𝑓 is 𝑓 −1(𝐹 ) ≔ {𝑥 ∈ 𝐴 ∶ 𝑓(𝑥) ∈ 𝐹 }.
• The graph of 𝑓 is the set Γ𝑓 ≔ {(𝑥, 𝑦) ∈ 𝐴 × 𝐵 ∶ 𝑦 = 𝑓(𝑥)}.
• We say that 𝑓 is injective (or one-to-one) if ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑥1 ≠ 𝑥2 ⟹ 𝑓(𝑥1) ≠ 𝑓(𝑥2)

or equivalently by taking the contrapositive ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑓(𝑥1) = 𝑓(𝑥2) ⟹ 𝑥1 = 𝑥2
• We say that 𝑓 is surjective (or onto) if ∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)
• We say that 𝑓 is bijective if it is injective and surjective, i.e. ∀𝑦 ∈ 𝐵, ∃!𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)
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Figure 1: Injective
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Figure 2: Not injective
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Figure 3: Surjective
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Figure 4: Not surjective
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Figure 5: Bijective

Proposition 53. 𝑓 ∶ 𝐴 → 𝐵 is bijective if and only if there exists 𝑔 ∶ 𝐵 → 𝐴 such that {
∀𝑥 ∈ 𝐴, 𝑔(𝑓(𝑥)) = 𝑥
∀𝑦 ∈ 𝐵, 𝑓(𝑔(𝑦)) = 𝑦 .

Then 𝑔 is unique, it is called the inverse of 𝑓 and denoted by 𝑓 −1 ∶ 𝐵 → 𝐴.
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Figure 6: Bijective function
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Figure 7: Its inverse

6 Sigma notation
Definition 54. For 𝑚, 𝑛 ∈ ℤ, we set

𝑛

∑
𝑖=𝑚

𝑎𝑖 = 𝑎𝑚 + 𝑎𝑚+1 + ⋯ + 𝑎𝑛

Remark 55. If 𝑚 > 𝑛 then
𝑛

∑
𝑖=𝑚

𝑎𝑖 = 0 by convention.

Example 56.
7

∑
𝑖=3

𝑖2 = 32 + 42 + 52 + 62 + 72 = 135

Remark 57. If 𝑚 ≤ 𝑛 then there are 𝑛 − 𝑚 + 1 terms in the sum
𝑛

∑
𝑖=𝑚

𝑎𝑖.
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