0 - Logic and sets

Jean-Baptiste Campesato

Contents

1	Sets	1
2	Cartesian product	2
3	Basic logic	2
4	Quantifiers	5
5	Functions	6
6	Sigma notation	7

1 Sets

As in many areas of mathematics, we will use *sets* very often during this course. But we won't cover anything about axiomatic set theory. Instead we will only use a naive informal intuitive definition of what is a set and what is a function/map between two sets (you are already used to that from your linear algebra and calculus courses).

Definition 1 (Informal). A *set* is a (well-defined) "collection" of elements (order doesn't matter). Two sets are equal if they contain the same elements, so $\{1, 2, 2, 3\} = \{1, 2, 3\}$ since they contain 1, 2, 3.

Remark 2. We usually define a set either by giving explicitely the elements it contains, e.g.

 $S = \{ apple, \pi, 5 \}$

or from an already constructed set by taking only the elements satisfying some property

 $S = \{n \in \mathbb{Z} : \exists k \in \mathbb{Z}, n = 2k\}$

Notation 3. Given a set *S*, we write $a \in S$ to express that *a* is an element of *S*. It is read "*a* is in *S*" or "*a* is an element of *S*".

Example 4.

- apple \in {apple, π , 5}
- banana \notin {apple, π , 5}

Notation 5. Given two sets *S* and *T*, we write $S \subset T$ to express that every element of *S* is an element of *T*, i.e.

$$\forall a \in S, \ a \in T$$

It is read "S is a subset of T" or "S is included in T".

Remark 6. Two sets *S* and *T* are equal if and only if they have the same elements, i.e.

$$S = T \Leftrightarrow (S \subset T \text{ and } T \subset S)$$

Remark 7. There exists a unique set containing no element, it is denoted by Ø and called the *empty set*.

Remark 8. Given a set *E*, the set of subsets of *E* is well-defined, it is denoted by $\mathcal{P}(E) \coloneqq \{S : S \subset E\}$ and called the *powerset* of *E*.

2 Cartesian product

Definition 9. An *n*-tuple is an ordered list of *n* elements $(x_1, ..., x_n)$. We say *couple* for a 2-tuple and *triple* for a 3-tuple.

Fundamental property 10. $(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \Leftrightarrow x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n$

Remark 11.

• $\{1, 2, 3\} = \{3, 2, 1\}$ (sets)

• $(1,2,3) \neq (3,2,1)$ (tuples)

Remark 12.

- $\{1, 2, 2, 3\} = \{1, 2, 3\}$ (sets)
- $(1, 2, 2, 3) \neq (1, 2, 3)$ (tuples)

Theorem 13. Given two sets A and B, the following set is well-defined

 $A \times B \coloneqq \{(a, b) : a \in A, b \in B\}$

It is called the cartesian product of A and B.

Example 14. Set *A* = { π , *e*} and *B* = { $1, \sqrt{2}, \pi$ } then

$$A \times B = \left\{ (\pi, 1), (\pi, \sqrt{2}), (\pi, \pi), (e, 1), (e, \sqrt{2}), (e, \pi) \right\}$$

Theorem 15. Given sets A_1, A_2, \ldots, A_n , the following set is well-defined

$$A_1 \times A_2 \times \cdots \times A_n \coloneqq \{(a_1, a_2, \dots, a_n) : a_i \in A_i\}$$

Remark 16. We will often identify the following sets although they are not formally equal:

- $(A \times B) \times C \ni ((a, b), c)$
- $A \times (B \times C) \ni (a, (b, c))$
- $A \times B \times C \ni (a, b, c)$

3 Basic logic

Definition 17. A *statement* is a *sentence* which is either "true" (T) or "false" (F).

Definition 18. The *negation* of a statement *P* is the statement denoted by $\neg P$ (or no *P*) defined with the following truth table:

P	$\neg P$
V	F
F	V

Definition 19. The *disjunction* of two statements *P* and *Q* is the statement denoted by $P \lor Q$ (or *P* or *Q*) defined with the following truth table:

P	Q	$P \lor Q$
V	V	V
V	F	V
F	V	V
F	F	F

Beware: the disjunction is not exclusive.

Definition 20. The *conjunction* of two statements *P* and *Q* is the statement denoted by $P \land Q$ (or *P* and *Q*) defined with the following truth table:

Р	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

Definition 21. Given two statements *P* and *Q*, we define the statement $P \Rightarrow Q$ with the following truth table:

P	Q	$P \Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

It is called the *implication* (or *conditional statement*) and it is read as follows "*P* imples *Q*" or "if *P* (is true) then *Q* (is true)".

Definition 22. The *converse* of $P \Rightarrow Q$ is defined as $Q \Rightarrow P$.

Definition 23. Given two statements *P* and *Q*, we define the statement $P \Leftrightarrow Q$ with the following truth table:

Р	Q	$P \Leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

It is called the *equivalence* and it is read "P is equivalent to Q" or "P (is true) if and only if Q (is true)".

Definition 24. A *tautology* is a statement which is true whatever are the truth values of its components, we usually use the notation $\models P$.

Definition 25. We say that *P* and *Q* are *logically equivalent* when $P \Leftrightarrow Q$ is a tautology. It simply means that *P* and *Q* have the same truth table.

Remark 26. The above logical connectives could have been defined in terms of the disjunction and the negation. Indeed:

• $P \land Q$ is equivalent to $\neg ((\neg P) \lor (\neg Q))$.

P	Q	$\neg P$	$\neg Q$	$(\neg P) \lor (\neg Q)$	$\neg \left((\neg P) \lor (\neg Q) \right)$	$P \wedge Q$
V	V	F	F	F	V	V
V	F	F	V	V	F	F
F	V	V	F	V	F	F
F	F	V	V	V	F	F

• $P \Rightarrow Q$ is equivalent to $(\neg P) \lor Q$.

Р	Q	$\neg P$	$(\neg P) \lor Q$	$P \Rightarrow Q$
V	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

• $P \Leftrightarrow Q$ is equivalent to $(P \Rightarrow Q) \land (Q \Rightarrow P)$ or to $(P \land Q) \lor ((\neg P) \land (\neg Q))$.

Example 27. *Law of excluded middle*: $\models P \lor (\neg P)$

Р	$\neg P$	$P \lor (\neg P)$
V	F	V
F	V	V

The law of excluded middle simply means that either *P* is true, or its negation $\neg P$ is true. **Example 28.** The *modus ponens*: $\models (P \land (P \Rightarrow Q)) \Rightarrow Q$

P	Q	$P \Rightarrow Q$	$P \land (P \Rightarrow Q)$	$(P \land (P \Rightarrow Q)) \Rightarrow Q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

It is the main inference rule in mathematics: if both *P* and $P \Rightarrow Q$ are true then so is *Q*.

Example 29. \vDash ($P \land Q$) \Rightarrow P

Example 30. \models *P* \Rightarrow (*P* \lor *Q*)

Proposition 31. *The disjunction is commutative:* \vDash ($P \lor Q$) \Leftrightarrow ($Q \lor P$)

Proposition 32. *The disjunction is associative:* \models (($P \lor Q$) $\lor R$) \Leftrightarrow ($P \lor (Q \lor R$)).

Proposition 33. *The conjunction is commutative:* \vDash ($P \land Q$) \Leftrightarrow ($Q \land P$)

Proposition 34. *The conjunction is associative* : \vDash ($(P \land Q) \land R$) \Leftrightarrow ($P \land (Q \land R)$).

Proposition 35 (Double negation elimination). $\vDash (\neg(\neg P)) \Leftrightarrow P$

Proof.

P	$\neg P \neg (\neg P)$		
V	F	V	
F	V	F	

Proposition 36 (Morgan's laws).

• The negation of $P \lor Q$ is $(\neg P) \land (\neg Q)$:

$$\vDash (\neg (P \lor Q)) \Leftrightarrow ((\neg P) \land (\neg Q))$$

• *the negation of* $P \land Q$ *is* $(\neg P) \lor (\neg Q)$ *:*

$$\vDash (\neg (P \land Q)) \Leftrightarrow ((\neg P) \lor (\neg Q))$$

Mnemonic device: the negation changes conjunctions in disjunctions and vice-versa.

Proof. I only prove the first one.

P	Q	$\neg P$	$\neg Q$	$(\neg P) \land (\neg Q)$	$P \lor Q$	$\neg (P \lor Q)$
V	V	F	F	F	V	F
V	F	F	V	F	V	F
F	V	V	F	F	V	F
F	F	V	V	V	F	V

Proposition 37 (Distributivity).

- $\bullet \models (P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor (P \land R))$
- $\bullet \models (P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$

Proposition 38 (Proof by contrapositive).

The statement $P \Rightarrow Q$ *is logically equivalent to its contrapositive* $(\neg Q) \Rightarrow (\neg P)$ *. Proof.*

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg Q$	$(\neg Q) \Rightarrow (\neg P)$
V	V	V	F	F	V
V	F	F	F	V	F
F	V	V	V	F	V
F	F	V	V	V	V

In some cases, it may be easier to prove $(\neg Q) \Rightarrow (\neg P)$ rather than $P \Rightarrow Q$.

Example 39. Let $n \in \mathbb{Z}$. Prove that if n^2 is odd then n is odd.

Proposition 40 (Reductio ad absurdum). $(((\neg P) \Rightarrow Q) \land ((\neg P) \Rightarrow (\neg Q))) \Rightarrow P$ is a tautology.

In practice, in order to prove *P* by contradiction, we assume that $\neg P$ is true and we look for a contradiction.

4 Quantifiers

Definition 41. A *predicate* P(x, y, ...) is a statement whose truth value depends on variables x, y, ... occuring in it.

Definition 42 (Universal quantifier). The statement " $\forall x \in E$, P(x)" means that P(x) is true for any x in E. It is read "for all x in E, P(x) is true".

Definition 43 (Existential quantifier). The statement " $\exists x \in E$, P(x)" means that there exists at least one x in E such that P(x) is true.

It is read "there exists x in E such that P(x) is true".

Here *x* is a bound variable:

- we may replace " $\forall x \in E$, P(x)" by " $\forall y \in E$, P(y)"
- we may replace " $\exists x \in E$, P(x)" by " $\exists y \in E$, P(y)".

Definition 44. The statement " $\exists !x \in E$, P(x)" means that P(x) is true for exactly one element x in E. It is read "there exists a unique x in E such that P(x) is true".

As we see in the following example, we can't permute the quantifiers \forall and \exists .

- $\exists n \in \mathbb{N}, \forall p \in \mathbb{N}, p \leq n$
- $\forall p \in \mathbb{N}, \exists n \in \mathbb{N}, p \leq n$

Nonetheless, we may permute two existential quantifiers or two universal quantifiers.

Remark 45. It is common to write " $\forall x, y \in E$ " for " $\forall x \in E, \forall y \in E$ " (that's an ellipsis). The same holds for the existential quantifier \exists .

Definition 46. The negation of " $\forall x \in E$, P(x)" is " $\exists x \in E$, $\neg P(x)$ ".

Definition 47. The negation of " $\exists x \in E$, P(x)" is " $\forall x \in E$, $\neg P(x)$ ".

Mnemonic device: the negation swaps \forall *and* \exists *.*

Axiom 48. The statement " $\exists x \in \emptyset$, P(x)" is false for any predicate.

Proposition 49. The statement " $\forall x \in \emptyset$, P(x)" is true for any predicate.

Proof. Indeed, $\exists x \in \emptyset$, $(\neg P(x))$ is false, so its negation $\forall x \in \emptyset$, P(x) is true.

5 Functions

Definition 50 (informal). A *function* (or *map*) is the data of two sets *A* and *B* together with a "process" which assigns to each $x \in A$ a unique $f(x) \in B$:

$$f: \left\{ \begin{array}{ccc} A & \to & B \\ x & \mapsto & f(x) \end{array} \right.$$

Here, *f* is the name of the function, *A* is the *domain* of *f*, and *B* is the *codomain* of *f*.

Remark 51. The domain and codomain are part of the definition of a function. For instance

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & [1, +\infty) \\ x & \mapsto & x^2 + 1 \end{array} \right. \quad \text{and} \quad g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2 + 1 \end{array} \right.$$

are not the same function (the first one is surjective but not the second one). A function is not simply a "formula", you need to specify the domain and the codomain.

Definitions 52. Given a function $f : A \rightarrow B$.

- The *image of* $E \subset A$ by f is $f(E) := \{f(x) : x \in E\} \subset B$.
- The *image of f* (or *range of f*) is $\text{Range}(f) \coloneqq f(A)$.
- The preimage of $F \subset B$ by f is $f^{-1}(F) := \{x \in A : f(x) \in F\}.$
- The graph of f is the set $\Gamma_f := \{(x, y) \in A \times B : y = f(x)\}.$
- We say that *f* is *injective* (or *one-to-one*) if $\forall x_1, x_2 \in A$, $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ or equivalently by taking the contrapositive $\forall x_1, x_2 \in A$, $f(x_1) = f(x_2) \implies x_1 = x_2$
- We say that *f* is *surjective* (or *onto*) if $\forall y \in B, \exists x \in A, y = f(x)$
- We say that *f* is *bijective* if it is injective and surjective, i.e. $\forall y \in B, \exists ! x \in A, y = f(x)$

Figure 1: Injective

Figure 3: Surjective

Figure 5: Bijective

Figure 2: Not injective

Figure 4: Not surjective

Proposition 53. $f : A \to B$ is bijective if and only if there exists $g : B \to A$ such that $\begin{cases} \forall x \in A, g(f(x)) = x \\ \forall y \in B, f(g(y)) = y \end{cases}$. Then g is unique, it is called the inverse of f and denoted by $f^{-1} : B \to A$.

Figure 6: Bijective function

Figure 7: Its inverse

6 Sigma notation

Definition 54. For $m, n \in \mathbb{Z}$, we set

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

Remark 55. If m > n then $\sum_{i=m}^{n} a_i = 0$ by convention.

Example 56.
$$\sum_{i=3}^{7} i^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2 = 135$$

Remark 57. If $m \le n$ then there are n - m + 1 terms in the sum $\sum_{i=m}^{n} a_i$.