0 - Logic and sets

Jean-Baptiste Campesato

Contents

1 Sets 1
2 Cartesian product 2
3 Basic logic 2
4 Quantifiers 5
5 Functions 6
6 Sigma notation 7

1 Sets

As in many areas of mathematics, we will use sets very often during this course. But we won't cover anything about axiomatic set theory. Instead we will only use a naive informal intuitive definition of what is a set and what is a function/map between two sets (you are already used to that from your linear algebra and calculus courses).
Definition 1 (Informal). A set is a (well-defined) "collection" of elements (order doesn't matter). Two sets are equal if they contain the same elements, so $\{1,2,2,3\}=\{1,2,3\}$ since they contain $1,2,3$.
Remark 2. We usually define a set either by giving explicitely the elements it contains, e.g.

$$
S=\{\text { apple }, \pi, 5\}
$$

or from an already constructed set by taking only the elements satisfying some property

$$
S=\{n \in \mathbb{Z}: \exists k \in \mathbb{Z}, n=2 k\}
$$

Notation 3. Given a set S, we write $a \in S$ to express that a is an element of S. It is read " a is in S " or " a is an element of $S^{\prime \prime}$.

Example 4.

- apple $\in\{$ apple, $\pi, 5\}$
- banana $\notin\{$ apple, $\pi, 5\}$

Notation 5. Given two sets S and T, we write $S \subset T$ to express that every element of S is an element of T, i.e.

$$
\forall a \in S, a \in T
$$

It is read " S is a subset of T " or " S is included in T ".
Remark 6. Two sets S and T are equal if and only if they have the same elements, i.e.

$$
S=T \Leftrightarrow(S \subset T \text { and } T \subset S)
$$

Remark 7. There exists a unique set containing no element, it is denoted by \varnothing and called the empty set.
Remark 8. Given a set E, the set of subsets of E is well-defined, it is denoted by $\mathcal{P}(E):=\{S: S \subset E\}$ and called the powerset of E.

2 Cartesian product

Definition 9. An n-tuple is an ordered list of n elements (x_{1}, \ldots, x_{n}). We say couple for a 2-tuple and triple for a 3-tuple.

Fundamental property 10. $\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{n}=y_{n}$

Remark 11.

- $\{1,2,3\}=\{3,2,1\}$ (sets)
- $(1,2,3) \neq(3,2,1) \quad$ (tuples)

Remark 12.

- $\{1,2,2,3\}=\{1,2,3\}$ (sets)
- $(1,2,2,3) \neq(1,2,3) \quad$ (tuples)

Theorem 13. Given two sets A and B, the following set is well-defined

$$
A \times B:=\{(a, b): a \in A, b \in B\}
$$

It is called the cartesian product of A and B.
Example 14. Set $A=\{\pi, e\}$ and $B=\{1, \sqrt{2}, \pi\}$ then

$$
A \times B=\{(\pi, 1),(\pi, \sqrt{2}),(\pi, \pi),(e, 1),(e, \sqrt{2}),(e, \pi)\}
$$

Theorem 15. Given sets $A_{1}, A_{2}, \ldots, A_{n}$, the following set is well-defined

$$
A_{1} \times A_{2} \times \cdots \times A_{n}:=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in A_{i}\right\}
$$

Remark 16. We will often identify the following sets although they are not formally equal:

- $(A \times B) \times C \ni((a, b), c)$
- $A \times(B \times C) \ni(a,(b, c))$
- $A \times B \times C \ni(a, b, c)$

3 Basic logic

Definition 17. A statement is a sentence which is either "true" (T) or "false" (F).
Definition 18. The negation of a statement P is the statement denoted by $\neg P$ (or no P) defined with the following truth table:

P	$\neg P$
V	F
F	V

Definition 19. The disjunction of two statements P and Q is the statement denoted by $P \vee Q$ (or P or Q) defined with the following truth table:

P	Q	$P \vee Q$
V	V	V
V	F	V
F	V	V
F	F	F

Beware: the disjunction is not exclusive.

Definition 20. The conjunction of two statements P and Q is the statement denoted by $P \wedge Q$ (or P and Q) defined with the following truth table:

P	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

Definition 21. Given two statements P and Q, we define the statement $P \Rightarrow Q$ with the following truth table:

P	Q	$P \Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

It is called the implication (or conditional statement) and it is read as follows " P imples Q " or "if P (is true) then Q (is true)".

Definition 22. The converse of $P \Rightarrow Q$ is defined as $Q \Rightarrow P$.
Definition 23. Given two statements P and Q, we define the statement $P \Leftrightarrow Q$ with the following truth table:

P	Q	$P \Leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

It is called the equivalence and it is read " P is equivalent to Q " or " P (is true) if and only if Q (is true)".
Definition 24. A tautology is a statement which is true whatever are the truth values of its components, we usually use the notation $\vDash P$.

Definition 25. We say that P and Q are logically equivalent when $P \Leftrightarrow Q$ is a tautology. It simply means that P and Q have the same truth table.

Remark 26. The above logical connectives could have been defined in terms of the disjunction and the negation. Indeed:

- $P \wedge Q$ is equivalent to $\neg((\neg P) \vee(\neg Q))$.

P	Q	$\neg P$	$\neg Q$	$(\neg P) \vee(\neg Q)$	$\neg((\neg P) \vee(\neg Q))$	$P \wedge Q$
V	V	F	F	F	V	V
V	F	F	V	V	F	F
F	V	V	F	V	F	F
F	F	V	V	V	F	F

- $P \Rightarrow Q$ is equivalent to $(\neg P) \vee Q$.

P	Q	$\neg P$	$(\neg P) \vee Q$	$P \Rightarrow Q$
V	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

- $P \Leftrightarrow Q$ is equivalent to $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$ or to $(P \wedge Q) \vee((\neg P) \wedge(\neg Q))$.

Example 27. Law of excluded middle: $\vDash P \vee(\neg P)$

P	$\neg P$	$P \vee(\neg P)$
V	F	V
F	V	V

The law of excluded middle simply means that either P is true, or its negation $\neg P$ is true.
Example 28. The modus ponens: $\vDash(P \wedge(P \Rightarrow Q)) \Rightarrow Q$

P	Q	$P \Rightarrow Q$	$P \wedge(P \Rightarrow Q)$	$(P \wedge(P \Rightarrow Q)) \Rightarrow Q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

It is the main inference rule in mathematics: if both P and $P \Rightarrow Q$ are true then so is Q.
Example 29. $\vDash(P \wedge Q) \Rightarrow P$
Example 30. $\vDash P \Rightarrow(P \vee Q)$
Proposition 31. The disjunction is commutative: $\vDash(P \vee Q) \Leftrightarrow(Q \vee P)$
Proposition 32. The disjunction is associative: $\vDash((P \vee Q) \vee R) \Leftrightarrow(P \vee(Q \vee R))$.
Proposition 33. The conjunction is commutative: $\vDash(P \wedge Q) \Leftrightarrow(Q \wedge P)$
Proposition 34. The conjunction is associative : $\vDash((P \wedge Q) \wedge R) \Leftrightarrow(P \wedge(Q \wedge R))$.
Proposition 35 (Double negation elimination). $\vDash(\neg(\neg P)) \Leftrightarrow P$
Proof.

P	$\neg P$	$\neg(\neg P)$
V	F	V
F	V	F

Proposition 36 (Morgan's laws).

- The negation of $P \vee Q$ is $(\neg P) \wedge(\neg Q)$:

$$
\vDash(\neg(P \vee Q)) \Leftrightarrow((\neg P) \wedge(\neg Q))
$$

- the negation of $P \wedge Q$ is $(\neg P) \vee(\neg Q)$:

$$
\vDash(\neg(P \wedge Q)) \Leftrightarrow((\neg P) \vee(\neg Q))
$$

Mnemonic device: the negation changes conjunctions in disjunctions and vice-versa.
Proof. I only prove the first one.

P	Q	$\neg P$	$\neg Q$	$(\neg P) \wedge(\neg Q)$	$P \vee Q$	$\neg(P \vee Q)$
V	V	F	F	F	V	F
V	F	F	V	F	V	F
F	V	V	F	F	V	F
F	F	V	V	V	F	V

Proposition 37 (Distributivity).

- $\vDash(P \wedge(Q \vee R)) \Leftrightarrow((P \wedge Q) \vee(P \wedge R))$
- $\vDash(P \vee(Q \wedge R)) \Leftrightarrow((P \vee Q) \wedge(P \vee R))$

Proposition 38 (Proof by contrapositive).
The statement $P \Rightarrow Q$ is logically equivalent to its contrapositive $(\neg Q) \Rightarrow(\neg P)$.
Proof.

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg Q$	$(\neg Q) \Rightarrow(\neg P)$
V	V	V	F	F	V
V	F	F	F	V	F
F	V	V	V	F	V
F	F	V	V	V	V

In some cases, it may be easier to prove $(\neg Q) \Rightarrow(\neg P)$ rather than $P \Rightarrow Q$.
Example 39. Let $n \in \mathbb{Z}$. Prove that if n^{2} is odd then n is odd.
Proposition 40 (Reductio ad absurdum). $(((\neg P) \Rightarrow Q) \wedge((\neg P) \Rightarrow(\neg Q))) \Rightarrow P$ is a tautology.
In practice, in order to prove P by contradiction, we assume that $\neg P$ is true and we look for a contradiction.

4 Quantifiers

Definition 41. A predicate $P(x, y, \ldots)$ is a statement whose truth value depends on variables x, y, \ldots occuring in it.

Definition 42 (Universal quantifier). The statement " $\forall x \in E, P(x)^{\prime \prime}$ means that $P(x)$ is true for any x in E. It is read "for all x in $E, P(x)$ is true".

Definition 43 (Existential quantifier). The statement " $\exists x \in E, P(x)$ " means that there exists at least one x in E such that $P(x)$ is true.
It is read "there exists x in E such that $P(x)$ is true".
Here x is a bound variable:

- we may replace " $\forall x \in E, P(x)$ " by " $\forall y \in E, P(y)$ "
- we may replace " $\exists x \in E, P(x)$ " by " $\exists y \in E, P(y)$ ".

Definition 44. The statement " $\exists!x \in E, P(x)$ " means that $P(x)$ is true for exactly one element x in E.
It is read "there exists a unique x in E such that $P(x)$ is true".
As we see in the following example, we can't permute the quantifiers \forall and \exists.

- $\exists n \in \mathbb{N}, \forall p \in \mathbb{N}, p \leq n$
- $\forall p \in \mathbb{N}, \exists n \in \mathbb{N}, p \leq n$

Nonetheless, we may permute two existential quantifiers or two universal quantifiers.
Remark 45. It is common to write " $\forall x, y \in E^{\prime \prime}$ for " $\forall x \in E, \forall y \in E^{\prime \prime}$ (that's an ellipsis). The same holds for the existential quantifier \exists.
Definition 46. The negation of " $\forall x \in E, P(x)$ " is " $\exists x \in E, \neg P(x)$ ".
Definition 47. The negation of " $\exists x \in E, P(x)$ " is " $\forall x \in E, \neg P(x)$ ".
Mnemonic device: the negation swaps \forall and \exists.
Axiom 48. The statement " $\exists x \in \varnothing, P(x)$ " is false for any predicate.
Proposition 49. The statement " $\forall x \in \varnothing, P(x)$ " is true for any predicate.
Proof. Indeed, $\exists x \in \varnothing,(\neg P(x))$ is false, so its negation $\forall x \in \varnothing, P(x)$ is true.

5 Functions

Definition 50 (informal). A function (or map) is the data of two sets A and B together with a "process" which assigns to each $x \in A$ a unique $f(x) \in B$:

$$
f:\left\{\begin{array}{ccc}
A & \rightarrow & B \\
x & \mapsto & f(x)
\end{array}\right.
$$

Here, f is the name of the function, A is the domain of f, and B is the codomain of f.
Remark 51. The domain and codomain are part of the definition of a function. For instance

$$
f:\left\{\begin{array}{ccc}
\mathbb{R} & \rightarrow & {[1,+\infty)} \\
x & \mapsto & x^{2}+1
\end{array} \quad \text { and } \quad g:\left\{\begin{array}{ccc}
\mathbb{R} & \rightarrow & \mathbb{R} \\
x & \mapsto & x^{2}+1
\end{array}\right.\right.
$$

are not the same function (the first one is surjective but not the second one).
A function is not simply a "formula", you need to specify the domain and the codomain.
Definitions 52. Given a function $f: A \rightarrow B$.

- The image of $E \subset A$ by f is $f(E):=\{f(x): x \in E\} \subset B$.
- The image off (or range of f) is Range $(f):=f(A)$.
- The preimage of $F \subset B$ by f is $f^{-1}(F):=\{x \in A: f(x) \in F\}$.
- The graph of f is the set $\Gamma_{f}:=\{(x, y) \in A \times B: y=f(x)\}$.
- We say that f is injective (or one-to-one) if $\forall x_{1}, x_{2} \in A, x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$ or equivalently by taking the contrapositive $\forall x_{1}, x_{2} \in A, f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$
- We say that f is surjective (or onto) if $\forall y \in B, \exists x \in A, y=f(x)$
- We say that f is bijective if it is injective and surjective, i.e. $\forall y \in B, \exists!x \in A, y=f(x)$

Figure 1: Injective

Figure 3: Surjective

Figure 2: Not injective

Figure 4: Not surjective

Figure 5: Bijective
Proposition 53. $f: A \rightarrow B$ is bijective if and only if there exists $g: B \rightarrow A$ such that $\left\{\begin{array}{l}\forall x \in A, g(f(x))=x \\ \forall y \in B, f(g(y))=y\end{array}\right.$. Then g is unique, it is called the inverse of f and denoted by $f^{-1}: B \rightarrow A$.

Figure 6: Bijective function

Figure 7: Its inverse

6 Sigma notation

Definition 54. For $m, n \in \mathbb{Z}$, we set

$$
\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n}
$$

Remark 55. If $m>n$ then $\sum_{i=m}^{n} a_{i}=0$ by convention.
Example 56. $\sum_{i=3}^{7} i^{2}=3^{2}+4^{2}+5^{2}+6^{2}+7^{2}=135$
Remark 57. If $m \leq n$ then there are $n-m+1$ terms in the sum $\sum_{i=m}^{n} a_{i}$.

