The Riemann sphere

September $21^{\text {st }}, 2020$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$ and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$ and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$ and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$ and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$ and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$ and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

We define the

$$
\psi:\left\{\begin{array}{ccc}
P & \rightarrow & S^{2} \backslash\{N\} \\
K & \mapsto & (N K) \cap S^{2}
\end{array}\right.
$$

We define the

$$
\psi:\left\{\begin{array}{ccc}
P & \rightarrow & S^{2} \backslash\{N\} \\
K & \mapsto & (N K) \cap S^{2}
\end{array}\right.
$$

We define the

$$
\psi:\left\{\begin{array}{ccc}
P & \rightarrow & S^{2} \backslash\{N\} \\
K & \mapsto & (N K) \cap S^{2}
\end{array}\right.
$$

We define the

$$
\psi:\left\{\begin{array}{ccc}
P & \rightarrow & S^{2} \backslash\{N\} \\
K & \mapsto & (N K) \cap S^{2}
\end{array}\right.
$$

We define the

$$
\psi:\left\{\begin{array}{ccc}
P & \rightarrow & S^{2} \backslash\{N\} \\
K & \mapsto & (N K) \cap S^{2}
\end{array}\right.
$$

We can see that φ and ψ are inverse of each other (go to my notes for a formal proof with the formulae).

Hence the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

is a bijection (even a homeomorphism) from the sphere minus the north pole $S^{2} \backslash\{N\}$ to \mathbb{C}. Every point of $S^{2} \backslash\{N\}$ corresponds exactly to a unique point of \mathbb{C}.

You may see it as the complex plane wraping up the sphere minus the north pole $S^{2} \backslash\{N\}$.
Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^{2} may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer M is to N, the farther $\varphi(M)$ is to the origin.

Hence the North Pole may be seen as the point at infinity. This way the Riemann Sphere is a model of the extended complex plane $\hat{\mathbb{C}}:=\mathbb{C} \sqcup\{\infty\}$.

A neighborhood of N in S^{2} is mapped by φ to the complement of a bounded set in \mathbb{C}. Conversely, the complement of a bounded set in \mathbb{C} is mapped by ψ to a neighborhood of N.

A neighborhood of N in S^{2} is mapped by φ to the complement of a bounded set in \mathbb{C}. Conversely, the complement of a bounded set in \mathbb{C} is mapped by ψ to a neighborhood of N.

Thus, we define:

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^{c}:=\mathbb{C} \backslash V$ is bounded.

Proposition

$V \subset \mathbb{C}$ is a a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0},\{z \in \mathbb{C}:|z|>R\} \subset V$.
Geometrically, it means that we can approach ∞ from all the possible directions:

Thus, we define:

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^{c}:=\mathbb{C} \backslash V$ is bounded.

Proposition

$V \subset \mathbb{C}$ is a a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0},\{z \in \mathbb{C}:|z|>R\} \subset V$.
Geometrically, it means that we can approach ∞ from all the possible directions:

The first quadrant $\{z \in \mathbb{C}: \mathfrak{R}(z)>0, \mathfrak{J}(z)>0\}$ is not a neighborhood of ∞ (despite being unbounded):

The first quadrant $\{z \in \mathbb{C}: \mathfrak{R}(z)>0, \mathfrak{J}(z)>0\}$ is not a neighborhood of ∞ (despite being unbounded):

Remember that a set is open if and only if it is a neighborhood of each of its points. Hence, we defined a topology on $\widehat{\mathbb{C}}$. It makes $\varphi: S^{2} \rightarrow \widehat{\mathbb{C}}$ a homeomorphism.

Definition: Open sets of $\widehat{\mathbb{C}}$

A subset $S \subset \widehat{\mathbb{C}}$ is open if

- $S \subset \mathbb{C}$ is open or
- $S=\{\infty\} \cup U$ where $U=K^{c} \subset \mathbb{C}$ is the complement of $K \subset \mathbb{C}$ closed and bounded (compact).

Beware: the Riemann sphere is only one model of $\hat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}$ among others (e.g. complex projective line). So, what you need to remember is that:

- $\hat{\mathbb{C}}:=\mathbb{C} \sqcup\{\infty\}$ is \mathbb{C} extended by a unique additional point at infinity,
- definition of a neighborhood of ∞,
- open sets of $\hat{\mathbb{C}}$.

NOT part of MAT334: there are also other ways to compactify \mathbb{C} : with $\hat{\mathbb{C}}$, all the directions tend to the same point at ∞, but, for instance, it is also possible to compactify \mathbb{C} with a circle at infinity to keep track of the directions. In MAT334, we will only work with $\hat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}$ with a unique point at infinity.

The extended inversion

We may extend the inversion ${ }^{a}$ to $\widehat{\mathbb{C}}$ by inv : $\left\{\begin{array}{rlc}\hat{\mathbb{C}} & \rightarrow & \widehat{\mathbb{C}} \\ z & \mapsto & z^{-1} \\ 0 & \mapsto & \infty \\ \infty & \mapsto & 0\end{array}\right.$ if $z \in \mathbb{C} \backslash\{0\}$
${ }^{a}$ Actually, it is possible to define division by 0 , what is not possible is to define a multiplicative inverse of 0 .

Remark

The inversion inv : $\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ maps a neighborhood of 0 to a neighborhood of ∞ and vice-versa.
In some sense, it swaps 0 and ∞.

