MAT334H1-F – LEC0101 Complex Variables

THE RIEMANN SPHERE

September 21st, 2020

We set $S^2 := \{(r, s, t) \in \mathbb{R}^3 : r^2 + s^2 + t^2 = 1\}$ and N = (0, 0, 1) (the *north pole* of S^2). We identify \mathbb{C} with the equatorial plane $P = \{t = 0\}$. We define the stereographic projection with respect to N:

$$\varphi: \left\{ \begin{array}{cc} S^2 \setminus \{N\} & \to & P \\ M & \mapsto & (NM) \cap P \end{array} \right.$$

We can see that φ and ψ are inverse of each other (go to my notes for a formal proof with the formulae).

Hence the stereographic projection with respect to *N*:

$$\varphi: \left\{ \begin{array}{ccc} S^2 \setminus \{N\} & \to & P \\ M & \mapsto & (NM) \cap P \end{array} \right.$$

is a bijection (even a homeomorphism) from the sphere minus the north pole $S^2 \setminus \{N\}$ to \mathbb{C} . Every point of $S^2 \setminus \{N\}$ corresponds exactly to a unique point of \mathbb{C} .

You may see it as the complex plane wraping up the sphere minus the north pole $S^2 \setminus \{N\}$.

Hence the sphere S^2 may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer *M* is to *N*, the farther $\varphi(M)$ is to the origin.

Hence the sphere S^2 may be seen as the complex plane with an additional point, the point at infinity. Indeed, the closer *M* is to *N*, the farther $\varphi(M)$ is to the origin.

A neighborhood of *N* in S^2 is mapped by φ to the complement of a bounded set in \mathbb{C} . Conversely, the complement of a bounded set in \mathbb{C} is mapped by ψ to a neighborhood of *N*.

Thus, we define:

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^c := \mathbb{C} \setminus V$ is bounded.

Proposition

 $V \subset \mathbb{C}$ is a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0}$, $\{z \in \mathbb{C} : |z| > R\} \subset V$.

Geometrically, it means that we can approach ∞ from all the possible directions:

The first quadrant $\{z \in \mathbb{C} : \Re(z) > 0, \Im(z) > 0\}$ is not a neighborhood of ∞ (despite being unbounded):

Remember that a set is open if and only if it is a neighborhood of each of its points. Hence, we defined a topology on $\widehat{\mathbb{C}}$. It makes $\varphi : S^2 \to \widehat{\mathbb{C}}$ a homeomorphism.

Definition: Open sets of $\widehat{\mathbb{C}}$

A subset $S \subset \widehat{\mathbb{C}}$ is open if

- $S \subset \mathbb{C}$ is open or
- $S = \{\infty\} \cup U$ where $U = K^c \subset \mathbb{C}$ is the complement of $K \subset \mathbb{C}$ closed and bounded (compact).

Beware: the Riemann sphere is only one model of $\hat{\mathbb{C}} = \mathbb{C} \sqcup \{\infty\}$ among others (e.g. complex projective line). So, what you need to remember is that:

- Ĉ := C ⊔ {∞} is C extended by a unique additional point at infinity,
- definition of a neighborhood of ∞ ,
- open sets of Ĉ.

NOT part of MAT334: there are also other ways to compactify \mathbb{C} : with $\hat{\mathbb{C}}$, all the directions tend to the same point at ∞ , but, for instance, it is also possible to compactify \mathbb{C} with a circle at infinity to keep track of the directions. In MAT334, we will only work with $\hat{\mathbb{C}} = \mathbb{C} \sqcup \{\infty\}$ with a unique point at infinity.

The extended inversion

We may extend the inversion^{*a*} to
$$\widehat{\mathbb{C}}$$
 by inv :
$$\begin{cases} \widehat{\mathbb{C}} \to \widehat{\mathbb{C}} \\ z \mapsto z^{-1} & \text{if } z \in \mathbb{C} \setminus \{0\} \\ 0 \mapsto \infty \\ \infty \mapsto 0 \end{cases}$$

^aActually, it is possible to define division by 0, what is **not** possible is to define a multiplicative inverse of 0.

Remark

The inversion inv : $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$ maps a neighborhood of 0 to a neighborhood of ∞ and vice-versa.

In some sense, it swaps 0 and ∞ .