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1 Simple connectedness
Definition 1. A hole of 𝑆 ⊂ ℂ is a bounded connected component of ℂ ⧵ 𝑆.

Definition 2. We say that 𝑆 ⊂ ℂ is simply connected if it is path connected and has no hole.

Remark 3. The above definition is not informal since we formally defined what is a hole.

(a) A simply connected set
(b) A set NOT simply connected

(c) A set NOT simply connected

ℂ ⧵ {0}

(d) A set NOT simply connected



2 Cauchy’s Integral Formula

Theorem 4. 𝑆 ⊂ ℂ is simply connected if and only if it is path-connected and for any simple closed curve included
in 𝑆, its inside ⋆ is also included in 𝑆.

(a) A set NOT simply connected

𝛾

(b) A set NOT simply connected

ℂ ⧵ {0}

𝛾

Remark 5. An important property † of simply connected sets is that any closed curve on it can be continu-
ously deformed to a constant curve without leaving the set:

⋆ See Jordan curve theorem from September 28.
† That’s actually the usual definition of simple connectedness: a path connected set is simply connected if any closed curve on it is homotopic to a point.
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2 Cauchy’s integral theorem

Theorem 6 (Cauchy’s integral theorem – version 1).
Let 𝑈 ⊂ ℂ be an open subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth simple closed curve on 𝑈 whose inside is also entirely included in 𝑈 , then

∫𝛾
𝑓(𝑧)d𝑧 = 0

Proof. There is an easy proof with the extra assumption that 𝑓 ′ is continuous ⋆ :

∫𝛾
𝑓 = 𝑖 ∬𝛾∪Inside (

𝜕𝑓
𝜕𝑥 + 𝑖𝜕𝑓

𝜕𝑦 ) by Green’s theorem

= 𝑖 ∬ 0 by the Cauchy–Riemann equations

= 0

■

Remark 7. In the next corollaries we assume that the domain is simply connected. It ensures that for a
simple closed curve on 𝑈 , its inside is also included on 𝑈 , so that we can use Cauchy’s integral theorem.

Corollary 8. Let 𝑈 ⊂ ℂ be an open simply connected subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Then there exists 𝐹 ∶ 𝑈 → ℂ holomorphic/analytic such that 𝐹 ′ = 𝑓 .
We say that 𝐹 is a (complex) antiderivative/primitive of 𝑓 on 𝑈 .

Proof. Fix 𝑧0 ∈ 𝑈 and for 𝑧 ∈ 𝑈 set 𝐹 (𝑧) = ∫𝛾
𝑓(𝑧)d𝑧 where 𝛾 is a polygonal curve from 𝑧0 to 𝑧.

We need to check that 𝐹 is well defined, i.e. that 𝐹 doesn’t depend on the choice of 𝛾 . For that, we check
that if 𝜂 is another such curve then

∫𝛾
𝑓(𝑧)d𝑧 − ∫𝜂

𝑓(𝑧)d𝑧 = ∫𝛾−𝜂
𝑓(𝑧)d𝑧 = 0

Indeed the integrals cancel each other on common edges with reversed orientation, and by the previous
theorem, each integral around a simple closed polygonal curve is 0, see the drawing below.

𝛾

−𝜂

𝑧0

𝑧

⋆ It is always the case: the derivative of a holomorphic/analytic function is always continuous but you don’t know that yet. To
avoid circular arguments, it would be better to give a proof without this assumption. There is such a proof (due to Goursat),
but it is far more technical. So I am cheating a little bit here.
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Finally

|
𝐹 (𝑧 + ℎ) − 𝐹 (𝑧)

ℎ − 𝑓(𝑧)| =
|
∫[𝑧,𝑧+ℎ] 𝑓(𝑤)d𝑤

ℎ − 𝑓(𝑧)
|

=
|
∫[𝑧,𝑧+ℎ] 𝑓(𝑤)d𝑤 − ℎ𝑓(𝑧)

ℎ |

=
|
∫[𝑧,𝑧+ℎ] 𝑓(𝑤)d𝑤 − ∫[𝑧,𝑧+ℎ] 𝑓(𝑧)d𝑤

ℎ |

= |∫[𝑧,𝑧+ℎ]

𝑓(𝑤) − 𝑓(𝑧)
ℎ d𝑤|

≤ ( max
𝑤∈[𝑧,𝑧+ℎ]

|𝑓 (𝑤) − 𝑓(𝑧)|)
ℒ([𝑧, 𝑧 + ℎ])

|ℎ|

= ( max
𝑤∈[𝑧,𝑧+ℎ]

|𝑓 (𝑤) − 𝑓(𝑧)|) −−−→
ℎ→0

0

■

Remark 9. Let 𝐹 be a primitive of 𝑓 on 𝑈 and 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth curve on 𝑈 then

∫𝛾
𝑓(𝑧)d𝑧 = ∫

𝑏

𝑎
𝑓(𝛾(𝑡))𝛾′(𝑡)d𝑡 = ∫

𝑏

𝑎
(𝐹 ∘ 𝛾)′(𝑡)d𝑡 = 𝐹 (𝛾(𝑏)) − 𝐹 (𝛾(𝑎))

The two following corollaries (path independence of the line integral of a holomorphic function) are
consequences of the previous remark together with the fact that a holomorphic function on a simply con-
nected domain admits a primitive.

Corollary 10. Let 𝑈 ⊂ ℂ be an open simply connected subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth closed curve included ⋆ in 𝑈 , then

∫𝛾
𝑓(𝑧)d𝑧 = 0

Corollary 11. Let 𝑈 ⊂ ℂ be an open simply connected subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾1 ∶ [𝑎1, 𝑏1] → ℂ and 𝛾2 ∶ [𝑎2, 𝑏2] → ℂ be two piecewise smooth curves included ⋆ in 𝑈 with same endpoints † ,
then

∫𝛾1
𝑓(𝑧)d𝑧 = ∫𝛾2

𝑓(𝑧)d𝑧

When the domain is simply connected, we proved:

Theorem 12 (Cauchy’s integral theorem – version 2). Let 𝑈 ⊂ ℂ be an open simply connected subset and
𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Then

• For 𝛾 ∶ [𝑎, 𝑏] → ℂ a piecewise smooth closed curve included in 𝑈 ,

∫𝛾
𝑓(𝑧)d𝑧 = 0

• For 𝛾𝑖 ∶ [𝑎𝑖, 𝑏𝑖] → ℂ, 𝑖 = 1, 2 two piecewise smooth curves included in 𝑈 with same endpoints,

∫𝛾1
𝑓(𝑧)d𝑧 = ∫𝛾2

𝑓(𝑧)d𝑧

• 𝑓 admits a primitive/antiderivative ‡ 𝐹 on 𝑈 , i.e. there exists 𝐹 ∶ 𝑈 → ℂ holomorphic/analytic such that 𝐹 ′ = 𝑓 .
⋆ i.e. ∀𝑡 ∈ [𝑎, 𝑏], 𝛾(𝑡) ∈ 𝑈 .
† i.e. 𝛾1(𝑎1) = 𝛾2(𝑎2) and 𝛾1(𝑏1) = 𝛾2(𝑏2).
‡ Actually a function 𝑓 ∶ 𝑈 → ℂ, where 𝑈 ⊂ ℂ is simply connected, is holomorphic if and only if it admits a (complex) antiderivative: indeed,

we will see soon that the derivative of a holomorphic function is holomorphic too.
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Remark 13. The simple connectedness assumption of the domain is essential. Indeed 𝑓 ∶ ℂ ⧵ {0} → ℂ
defined by 𝑓(𝑧) = 1/𝑧 is holomorphic, but :

• For 𝛾 ∶ [0, 2𝜋] → ℂ defined by 𝛾(𝑡) = 𝑒𝑖𝑡, we have ∫𝛾

1
𝑧d𝑧 = 2𝑖𝜋 ≠ 0

• 𝑓 has no antiderivative on ℂ ⧵ {0}.

The following (improper) integrals are difficult to compute using only ”real” methods. We present an
easy computation relying on Cauchy’s integral formula.

Example 14 (Frenel’s integrals).

∫
+∞

0
cos (𝑡2)d𝑡 = ∫

+∞

0
sin (𝑡2)d𝑡 = 1

2√
𝜋
2

Proof.

ℜ

ℑ

𝛾1

𝛾2𝛾3

0 𝑟

𝑟(1 + 𝑖)

• ∫𝛾1
𝑒−𝑧2d𝑧 = ∫

𝑟

0
𝑒−𝑡2d𝑡 −−−−−→

𝑟→+∞
√𝜋

2 .

• |∫𝛾2
𝑒−𝑧2d𝑧| = |∫

1

0
𝑖𝑟𝑒(𝑡2−1)𝑟2𝑒2𝑖𝑡𝑟2d𝑡| ≤ 𝑟𝑒−𝑟2

∫
1

0
𝑒𝑡2𝑟2d𝑡 ≤ 𝑟𝑒−𝑟2

∫
1

0
𝑒𝑡𝑟2d𝑡 = 1 − 𝑒−𝑟2

𝑟 −−−−−→
𝑟→+∞

0

• ∫𝛾3
𝑒−𝑧2d𝑧 = ∫

𝑟

0
(1 + 𝑖)𝑒((1+𝑖)𝑡)2d𝑡 = (1 + 𝑖) ∫

𝑟

0
𝑒−2𝑖𝑡2d𝑡 = 𝑒𝑖 𝜋

4 ∫

𝑟
√2

0
𝑒−𝑖𝑡2d𝑡

By Cauchy’s integral theorem 0 = ∫𝛾1+𝛾2−𝛾3
𝑒−𝑧2d𝑧 = ∫𝛾1

𝑒−𝑧2d𝑧 + ∫𝛾2
𝑒−𝑧2d𝑧 − ∫𝛾3

𝑒−𝑧2d𝑧.

So, by taking the limit when 𝑟 → +∞ in the above equality,∫
+∞

0
𝑒−𝑖𝑡2d𝑡 = 𝑒−𝑖 𝜋

4
√𝜋

2 , that we may rewrite

∫
+∞

0
cos (𝑡2)d𝑡 − 𝑖 ∫

+∞

0
sin (𝑡2)d𝑡 = 1

2√
𝜋
2 − 𝑖1

2√
𝜋
2

We conclude by identifying the real and imaginary parts. ■
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3 Cauchy’s integral formula
Theorem 15. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth positively oriented simple closed curve on 𝑈 whose inside Ω ≔ Inside(𝛾) is
also included in 𝑈 then

∀𝑧 ∈ Ω, 𝑓(𝑧) = 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤

Proof. Define 𝑔 ∶ 𝑈 → ℂ by

𝑔(𝑤) = {
𝑓(𝑤)−𝑓(𝑧)

𝑤−𝑧 if 𝑤 ≠ 𝑧
𝑓 ′(𝑧) if 𝑤 = 𝑧 .

Then 𝑔 is holomorphic on 𝑈 ⧵ {𝑧} and continuous on 𝑈 .
By Cauchy’s integral theorem ∫𝛾

𝑔(𝑤)d𝑤 = 0, thence

∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤 = ∫𝛾

𝑓(𝑧)
𝑤 − 𝑧d𝑤 = 𝑓(𝑧) ∫𝛾

1
𝑤 − 𝑧d𝑤

From the next lemma, we have ∫𝛾

1
𝑤 − 𝑧d𝑤 = 2𝑖𝜋, which ends the proof. ■

Lemma 16. Let 𝑈 ⊂ ℂ be open. Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth positively oriented simple closed curve on
𝑈 whose inside Ω ≔ Inside(𝛾) is also included in 𝑈 then

∀𝑧 ∈ Ω, ∫𝛾

1
𝑤 − 𝑧d𝑤 = 2𝑖𝜋

Proof. Let 𝑧 ∈ Ω. There exists 𝜀 > 0 such that 𝐷𝜀(𝑧) ⊂ Ω.
We can’t directly apply Cauchy’s integral theorem because 𝑤 ↦ 1

𝑤−𝑧 is not defined at 𝑧 contained in the
inside of 𝛾 . So we divide Ω ⧵ 𝐷𝜀(𝑧) into two simply connected pieces which don’t contain 𝑧 in their insides,
as in the following drawing.

𝛾

𝑧𝜎

Then

0 = 0 + 0

= ∫orange

1
𝑤 − 𝑧d𝑤 + ∫red

1
𝑤 − 𝑧d𝑤 by Cauchy’s integral theorem

= ∫𝛾

1
𝑤 − 𝑧d𝑤 + ∫𝜎

1
𝑤 − 𝑧d𝑤 since the segment lines are counted twice with reversed orientation

= ∫𝛾

1
𝑤 − 𝑧d𝑤 − 2𝑖𝜋 since 𝜎(𝑡) = 𝑧 + 𝑒−𝑖𝑡, 𝑡 ∈ [0, 2𝜋]

■
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Corollary 17. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth positively oriented simple closed curve on 𝑈 whose inside is also included in
𝑈 .

• If 𝑧 ∈ 𝑈 is in the inside of 𝛾 then

∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤 = 2𝑖𝜋𝑓(𝑧)

• If 𝑧 ∈ 𝑈 is in the outside of 𝛾 then

∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤 = 0

Proof. First case: it is Cauchy’s integral formula.
Second case: it is a consequence of Cauchy’s integral theorem. ■

Remark 18. We don’t say anything then 𝑧 ∈ 𝛾 (the integrand 𝑤 ↦ 𝑓(𝑤)
𝑤−𝑧 is not defined at 𝑧).

Remark 19. The above corollary could be improved using ”winding numbers”.

Next lecture, we will see that Cauchy’s integral formula has deep consequences concerning properties
of holomorphic functions. In the meantime, let’s use it to compute a difficult real improper integral.

Example 20.

∫
+∞

−∞

cos(𝑡)
1 + 𝑡2d𝑡 = 𝜋

𝑒
Proof.

ℜ

ℑ

𝛾1

𝛾2

𝑟−𝑟
𝑖

−𝑖

• Assume that 𝑟 > 1, then

∫𝛾1+𝛾2

𝑒𝑖𝑧

1 + 𝑧2d𝑧 = 1
2𝑖 (∫𝛾1+𝛾2

𝑒𝑖𝑧

𝑧 − 𝑖d𝑧 − ∫𝛾1+𝛾2

𝑒𝑖𝑧

𝑧 + 𝑖d𝑧) since 1
1 + 𝑧2 = 1

2𝑖 (
1

𝑧 − 𝑖 − 1
𝑧 + 𝑖)

= 1
2𝑖 (2𝑖𝜋𝑒𝑖2 − 0) by Cauchy’s integral formula and theorem

= 𝜋
𝑒

• |∫𝛾2

𝑒𝑖𝑧

1 + 𝑧2d𝑧| ≤ Length(𝛾2) 1
𝑟2 − 1

= 𝜋𝑟
𝑟2 − 1

−−−−−→
𝑟→+∞

0 (
|𝑒𝑖𝑧| ≤ 1 since ℑ(𝑧) ≥ 0
|1 + 𝑧2| ≥ 𝑟2 − 1 ).

• ∫𝛾1

𝑒𝑖𝑧

1 + 𝑧2d𝑧 = ∫
𝑟

−𝑟

𝑒𝑖𝑡

𝑡2 + 1
d𝑡 = ∫

𝑟

−𝑟

cos(𝑡) + 𝑖 sin(𝑡)
𝑡2 + 1

d𝑡 = ∫
𝑟

−𝑟

cos(𝑡)
𝑡2 + 1

d𝑡 since sin is odd.

Since |
cos(𝑡)
1 + 𝑡2 | ≤ 1

1 + 𝑡2 , ∫
+∞

−∞

cos(𝑡)
1 + 𝑡2d𝑡 is absolutely convergent.

Hence ∫
+∞

−∞

cos(𝑡)
1 + 𝑡2d𝑡 = lim

𝑟→+∞ ∫
𝑟

−𝑟

cos(𝑡)
1 + 𝑡2d𝑡 (we can use the same variable for both bounds).

Therefore 𝜋
𝑒 = lim

𝑟→+∞ ∫𝛾1+𝛾2

𝑒𝑖𝑧

1 + 𝑧2d𝑧 = ∫
+∞

−∞

cos(𝑡)
1 + 𝑡2d𝑡 + 0. ■
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