## University of Toronto – MAT334H1-F – LEC0101 *Complex Variables*

# 19 - The Schwarz-Christoffel formula

Jean-Baptiste Campesato

December 7<sup>th</sup>, 2020

## **1** Informal introduction

According to the Riemann mapping theorem, given  $U \subsetneq \mathbb{C}$  a simply connected open subset which is not  $\mathbb{C}$ , there exists a biholomorphism mapping  $f : \mathbb{H} \to U$  where  $\mathbb{H} = \{z \in \mathbb{C} : \mathfrak{T}(z) > 0\}$ .

However the statement doesn't give an explicit expression for f (which, in general, can be quite complicated: for instance U can be the interior of the Koch snowflake or the set defined in the last example of the previous chapter, in these cases the behavior of f around the boundary of U should be quite complicated).

In this chapter we are going to focus on the special case where U is the interior of a polygon.



The Schwarz–Christoffel formula is a differential equation satisfied by such a f. Although this equation doesn't admit a closed solution in general, it can be used in some special cases to obtain an explicit f.

### 2 A preliminary remark

Let  $U \subset \mathbb{C}$  be open,  $f : U \to \mathbb{C}$  be holomorphic/analytic and  $\gamma : [a, b] \to \mathbb{C}$  be a smooth curve entirely included in U such that  $\forall t \in (a, b), \gamma'(t) \neq 0$ .

Then

$$\arg((f \circ \gamma)'(t)) = \arg(\gamma'(t)) + \arg(f'(\gamma(t)))$$

If  $\gamma$  runs through the real axis from the left to the right then  $\gamma'(t) \in (0, \infty)$  so that

$$\arg((f \circ \gamma)'(t)) = \arg(f'(\gamma(t)))$$

Particularly, if  $\arg(f'(z))$  is constant then  $f \circ \gamma$  is also a segment line.

#### **3** The intuition behind the statement

Let's fix a simple polygon *P* with consecutive vertices  $w_0, \ldots, w_n$  (i.e. *P* has n + 1 sides) and let  $\theta_0, \ldots, \theta_n \in (-\pi, \pi)$  be the external angles at the vertices.



Then  $\theta_1 + \theta_2 + \dots + \theta_n = 2\pi$ .

The idea is to place  $x_1 < \cdots < x_n \in \mathbb{R}$  such that  $x_i$  will be mapped to  $w_i$ , i.e.  $w_i = f(x_i)$ . We set  $x_0 = \infty \in \mathbb{R} \cup \{\infty\}$ , i.e.  $w_0 = \lim_{x \to \pm\infty} f(x)$ .

Obviously,  $\arg(f'(x))$  should *jump* each time *x* passes through a  $x_i$ .

We set  $\alpha_i = -\frac{\theta_i}{\pi}$  then  $\alpha_i \in (-1, 1)$  and  $\alpha_1 + \alpha_2 + \dots + \alpha_n = -2$ . Let *f* be a function such that  $f(x_i) = w_i$  and  $f'(z) = A(z - x_1)^{\alpha_1} \dots (z - x_n)^{\alpha_n}$ . Then

$$\begin{split} x_n < x \implies & \arg(f'(x)) = \arg A \\ x_{n-1} < x < x_n \implies & \arg(f'(x)) = \arg A + \pi \alpha_n \\ x_{n-2} < x < x_{n-1} \implies & \arg(f'(x)) = \arg A + \pi \alpha_{n-1} + \pi \alpha_n \\ & \vdots \\ x < x_1 \implies & \arg(f'(x)) = \arg A + \pi \alpha_1 + \pi \alpha_2 + \dots + \pi \alpha_n \end{split}$$

#### 4 The statement

**Theorem 1** (Schwarz–Christoffel). Let *P* be a simple polygon with consecutive vertices  $w_0, \ldots, w_n$  (i.e. *P* has n+1 sides) and let  $\theta_0, \ldots, \theta_n \in (-\pi, \pi)$  be the external angles at the vertices.



We set  $\alpha_i = -\frac{\theta_i}{\pi}$  so that  $\alpha_i \in (-1, 1)$  and  $\alpha_1 + \alpha_2 + \dots + \alpha_n = -2$ . Then there exists an injective holomorphic function f from the Poincaré half-plane  $\mathbb{H} := \{z \in \mathbb{C} : \mathfrak{T}(z) > 0\}$  onto the interior of P satisfying

$$f'(z) = A(z - x_1)^{\alpha_1} \cdots (z - x_n)^{\alpha_n}$$

where  $x_1 < x_2 < \cdots < x_n$  are some real numbers and  $A \in \mathbb{C} \setminus \{0\}$ .