# University of Toronto - MAT334H1-F - LEC0101 <br> Complex Variables 

# 19 - The Schwarz-Christoffel formula 

Jean-Baptiste Campesato

December $7^{\text {th }}, 2020$

## 1 Informal introduction

According to the Riemann mapping theorem, given $U \subsetneq \mathbb{C}$ a simply connected open subset which is not $\mathbb{C}$, there exists a biholomorphism mapping $f: \mathbb{H} \rightarrow U$ where $\mathbb{H}=\{z \in \mathbb{C}: \mathfrak{J}(z)>0\}$.
However the statement doesn't give an explicit expression for $f$ (which, in general, can be quite complicated: for instance $U$ can be the interior of the Koch snowflake or the set defined in the last example of the previous chapter, in these cases the behavior of $f$ around the boundary of $U$ should be quite complicated).

In this chapter we are going to focus on the special case where $U$ is the interior of a polygon.


The Schwarz-Christoffel formula is a differential equation satisfied by such a $f$.
Although this equation doesn't admit a closed solution in general, it can be used in some special cases to obtain an explicit $f$.

## 2 A preliminary remark

Let $U \subset \mathbb{C}$ be open, $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic and $\gamma:[a, b] \rightarrow \mathbb{C}$ be a smooth curve entirely included in $U$ such that $\forall t \in(a, b), \gamma^{\prime}(t) \neq 0$.

Then

$$
\arg \left((f \circ \gamma)^{\prime}(t)\right)=\arg \left(\gamma^{\prime}(t)\right)+\arg \left(f^{\prime}(\gamma(t))\right)
$$

If $\gamma$ runs through the real axis from the left to the right then $\gamma^{\prime}(t) \in(0, \infty)$ so that

$$
\arg \left((f \circ \gamma)^{\prime}(t)\right)=\arg \left(f^{\prime}(\gamma(t))\right)
$$

Particularly, if $\arg \left(f^{\prime}(z)\right)$ is constant then $f \circ \gamma$ is also a segment line.

## 3 The intuition behind the statement

Let's fix a simple polygon $P$ with consecutive vertices $w_{0}, \ldots, w_{n}$ (i.e. $P$ has $n+1$ sides) and let $\theta_{0}, \ldots, \theta_{n} \in$ $(-\pi, \pi)$ be the external angles at the vertices.


Then $\theta_{1}+\theta_{2}+\cdots+\theta_{n}=2 \pi$.
The idea is to place $x_{1}<\cdots<x_{n} \in \mathbb{R}$ such that $x_{i}$ will be mapped to $w_{i}$, i.e. $w_{i}=f\left(x_{i}\right)$.
We set $x_{0}=\infty \in \mathbb{R} \cup\{\infty\}$, i.e. $w_{0}=\lim _{x \rightarrow \pm \infty} f(x)$.
Obviously, $\arg \left(f^{\prime}(x)\right)$ should jump each time $x$ passes through a $x_{i}$.
We set $\alpha_{i}=-\frac{\theta_{i}}{\pi}$ then $\alpha_{i} \in(-1,1)$ and $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=-2$.
Let $f$ be a function such that $f\left(x_{i}\right)=w_{i}$ and $f^{\prime}(z)=A\left(z-x_{1}\right)^{\alpha_{1}} \cdots\left(z-x_{n}\right)^{\alpha_{n}}$. Then

$$
\begin{aligned}
x_{n}<x & \Longrightarrow \arg \left(f^{\prime}(x)\right)=\arg A \\
x_{n-1}<x<x_{n} & \Longrightarrow \arg \left(f^{\prime}(x)\right)=\arg A+\pi \alpha_{n} \\
x_{n-2}<x<x_{n-1} & \Longrightarrow \arg \left(f^{\prime}(x)\right)=\arg A+\pi \alpha_{n-1}+\pi \alpha_{n} \\
& \vdots \\
x<x_{1} & \Longrightarrow \arg \left(f^{\prime}(x)\right)=\arg A+\pi \alpha_{1}+\pi \alpha_{2}+\cdots+\pi \alpha_{n}
\end{aligned}
$$

## 4 The statement

Theorem 1 (Schwarz-Christoffel). Let P be a simple polygon with consecutive vertices $w_{0}, \ldots, w_{n}$ (i.e. P has $n+1$ sides) and let $\theta_{0}, \ldots, \theta_{n} \in(-\pi, \pi)$ be the external angles at the vertices.


We set $\alpha_{i}=-\frac{\theta_{i}}{\pi}$ so that $\alpha_{i} \in(-1,1)$ and $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=-2$.
Then there exists an injective holomorphic function from the Poincaré half-plane $\mathbb{H}:=\{z \in \mathbb{C}: \mathfrak{J}(z)>0\}$ onto the interior of $P$ satisfying

$$
f^{\prime}(z)=A\left(z-x_{1}\right)^{\alpha_{1}} \cdots\left(z-x_{n}\right)^{\alpha_{n}}
$$

where $x_{1}<x_{2}<\cdots<x_{n}$ are some real numbers and $A \in \mathbb{C} \backslash\{0\}$.

