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1 Definition and first properties
Definition 1. A linear fractional transformation (orMöbius transformation, orhomography) is a function
of the form

𝑇 ∶
ℂ̂ → ℂ̂
𝑧 ↦ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ satisfy 𝑎𝑑 − 𝑏𝑐 ≠ 0.

By convention 𝑇 (− 𝑑
𝑐 ) = ∞ and 𝑇 (∞) = 𝑎

𝑐 where the latter is ∞ if 𝑐 = 0 (note that 𝑎 and 𝑐 can’t be simulat-
neously 0).

Remark 2. Note that 𝑎𝑑 − 𝑏𝑐 = det(
𝑎 𝑏
𝑐 𝑑). Hence the condition 𝑎𝑑 − 𝑏𝑐 ≠ 0 means that (𝑎, 𝑏) and (𝑐, 𝑑) are

linearly independent, i.e. that 𝑇 is not constant.
Proposition 3.

1. The composition 𝑇1 ∘ 𝑇2 of two linear fractional transformations is a linear fractional transformation.
2. A linear fraction transformation 𝑇 ∶ ℂ̂ → ℂ̂ is bijective and its inverse 𝑇 −1 ∶ ℂ̂ → ℂ̂ is a linear fractional

transformation too.
3. The inversion 𝑧 ↦ 1

𝑧 and the identity 𝑧 ↦ 𝑧 are linear fractional transformations.
Proof.
(1) Assume that 𝑇1(𝑧) = 𝑎1𝑧+𝑏1

𝑐1𝑧+𝑑1
and that 𝑇2(𝑧) = 𝑎2𝑧+𝑏2

𝑐2𝑧+𝑑2
. Then

𝑇1(𝑇2(𝑧)) =
𝑎1

𝑎2𝑧+𝑏2
𝑐2𝑧+𝑑2

+ 𝑏1

𝑐1
𝑎2𝑧+𝑏2
𝑐2𝑧+𝑑2

+ 𝑑1
= (𝑎1𝑎2 + 𝑏1𝑐2)𝑧 + (𝑎1𝑏2 + 𝑏1𝑑2)

(𝑐1𝑎2 + 𝑑1𝑐2)𝑧 + (𝑐1𝑏2 + 𝑑1𝑑2)

and (𝑎1𝑎2 + 𝑏1𝑐2)(𝑐1𝑏2 + 𝑑1𝑑2) − (𝑎1𝑏2 + 𝑏1𝑑2)(𝑐1𝑎2 + 𝑑1𝑐2) = (𝑎1𝑑1 − 𝑏1𝑐1)(𝑎2𝑑2 − 𝑏2𝑐2) ≠ 0 (⋆)

(2) 𝑤 = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ⇔ 𝑤(𝑐𝑧 + 𝑑) = (𝑎𝑧 + 𝑏) ⇔ 𝑧(𝑐𝑤 − 𝑎) = (−𝑑𝑤 + 𝑏) ⇔ 𝑧 = −𝑑𝑤 + 𝑏

𝑐𝑤 − 𝑎 .

It is compatible with 𝑇 −1(∞) = − 𝑑
𝑐 and 𝑇 −1

(
𝑎
𝑐 ) = ∞.

(3) Note that
𝑧 = 1 ⋅ 𝑧 + 0

0 ⋅ 𝑧 + 1 and ∞ ↦ ∞

1
𝑧 = 0 ⋅ 𝑧 + 1

1 ⋅ 𝑧 + 0 and 0 ↦ ∞ & ∞ ↦ 0

■

Remark 4. We saw in the proof that if 𝑇 (𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑 then 𝑇 −1(𝑧) = 𝑑𝑧−𝑏

−𝑐𝑧+𝑎 .



2 Linear fractional transformations

2 Matrix representation

Definition 5. To a 2 × 2 invertible matrix 𝑀 = (
𝑎 𝑏
𝑐 𝑑), we associate the linear fractional transformation

𝑇𝑀 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 .

Remark 6. The function
GL2(ℂ) → {linear fractional transformations}

𝑀 ↦ 𝑇𝑀

is surjective : any linear fractional transformation comes from a 2 × 2 invertible matrix.
But it is not injective : twodifferentmatricesmay bemapped to the same linear fractional transformation.

Indeed, for 𝑀 = (
1 0
0 1) and 𝑁 = (

𝑖 0
0 𝑖) we have 𝑇𝑀 = 𝑇𝑁 .

Proposition 7.
1. 𝑇𝐼2 = id

2. 𝑇𝑀𝑁 = 𝑇𝑀 ∘ 𝑇𝑁

3. 𝑇𝑀−1 = (𝑇𝑀 )−1

Proof. (1) Trivial.

(2) (
𝑎1 𝑏1
𝑐1 𝑑1) (

𝑎2 𝑏2
𝑐2 𝑑2) = (

𝑎1𝑎2 + 𝑏1𝑐2 𝑎1𝑏2 + 𝑏1𝑑2
𝑐1𝑎2 + 𝑑1𝑐1 𝑐1𝑏2 + 𝑑1𝑑2) and compare with the proof of 3.(1).

(3) 𝑀−1 = (
𝑎 𝑏
𝑐 𝑑)

−1
= 1

𝑎𝑑 − 𝑏𝑐 (
𝑑 −𝑏

−𝑐 𝑎 ) hence 𝑇𝑀−1(𝑧) = 𝑑𝑧 − 𝑏
−𝑐𝑧 + 𝑎 = (𝑇𝑀 )−1(𝑧) by the proof of 3.(2). ■

Remark 8. We recover (⋆) since det(𝑀𝑁) = det(𝑀)det(𝑁).

3 Fixed points
Proposition 9.

1. A linear fractional transformation admits at least one fixed point (i.e. a 𝑧0 ∈ ℂ̂ such that 𝑇 (𝑧0) = 𝑧0).

2. If a linear fractional transformation admits more than 2 fixed points then it is the identity.
Particularly, a linear fractional transformation which is not the identity has either 1 or 2 fixed points.
So if a linear fractional transformation has 3 fixed points then it is the identity.
Remark 10. Itmay be that∞ is the only fixedpoint, i.e. there is no 𝑧 ∈ ℂ such that 𝑇 (𝑧) = 𝑧 (e.g. 𝑇 (𝑧) = 𝑧+1).

Proof. Let 𝑇 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 .

First case: ∞ is a fixed point, i.e. 𝑐 = 0.
Let’s see if there is another fixed point 𝑧 ∈ ℂ:

𝑇 (𝑧) = 𝑧 ⇔ (𝑑 − 𝑎)𝑧 − 𝑏 = 0
Either 𝑑 = 𝑎 and 𝑏 = 0 then 𝑇 is the identity.
Or the above polynomial is of degree at most 1 and hence has at most 1 root (so, with ∞, 𝑇 has at least 1
fixed point and at most 2 fixed points).

Second case: 𝑐 ≠ 0 (i.e. ∞ is not a fixed point).
Let’s see if there is a fixed point 𝑧 ∈ ℂ:

𝑇 (𝑧) = 𝑧 ⇔ 𝑐𝑧2 + (𝑑 − 𝑎)𝑧 − 𝑏 = 0
By the FTA, this polynomial has either 1double root or 2 simple roots (so 𝑇 has either 1 or 2fixedpoints). ■
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4 Triples

Proposition 11. Let 𝑇 , 𝑆 ∶ ℂ̂ → ℂ̂ be two linear fractional transformations.
Let 𝑧1, 𝑧2, 𝑧3 ∈ ℂ̂ be three distinct points.
If 𝑇 (𝑧𝑖) = 𝑆(𝑧𝑖), 𝑖 = 1, 2, 3, then 𝑇 = 𝑆.

Proof. Then 𝑆−1 ∘ 𝑇 is a linear fractional transformations (since the inverse of a LFT is a LFT and the com-
position of LFTs is a LFT) with three distinct fixed points 𝑧1, 𝑧2, 𝑧3 hence 𝑆−1 ∘ 𝑇 = id and 𝑆 = 𝑇 . ■

Proposition 12. Let 𝑧1, 𝑧2, 𝑧3 ∈ ℂ̂ be three distinct points. There exists a unique linear fractional transformation
𝑇 ∶ ℂ̂ → ℂ̂ such that 𝑇 (𝑧1) = 0, 𝑇 (𝑧2) = 1 and 𝑇 (𝑧3) = ∞.

Proof. Uniqueness derives from the previous result, so it is enough to show the existence.
But 𝑇 (𝑧) = (

𝑧−𝑧1
𝑧−𝑧3 ) (

𝑧2−𝑧3
𝑧2−𝑧1 ) is a suitable linear fractional transformation (check it). ■

Proposition 13. Let 𝑧1, 𝑧2, 𝑧3 ∈ ℂ̂ be three distinct points and let 𝑤1, 𝑤2, 𝑤3 ∈ ℂ̂ be another triple of distinct points.
Then there exists a unique linear fractional transformation 𝑇 ∶ ℂ̂ → ℂ̂ such that 𝑇 (𝑧1) = 𝑤1, 𝑇 (𝑧2) = 𝑤2 and
𝑇 (𝑧3) = 𝑤3.

Proof. Once again, we already know that if such a linear fractional transformation exists then it is unique.
Hence it is enough to show the existence.
Define 𝑆 ∶ ℂ̂ → ℂ̂ as the unique linear fractional transformation such that 𝑆(𝑧1) = 0, 𝑆(𝑧2) = 1 and
𝑆(𝑧3) = ∞, and 𝑅 ∶ ℂ̂ → ℂ̂ as the unique linear fractional transformation such that 𝑅(𝑤1) = 0, 𝑅(𝑤2) = 1
and 𝑅(𝑤3) = ∞.
Then 𝑇 = 𝑅−1 ∘ 𝑆 is a suitable linear fractional transformation. ■

5 Circles & Lines
Theorem 14. A linear fractional transformation maps {lines and circles of ℂ} to {lines and circles of ℂ}.

Remark 15. Careful: a circle may be mapped to a line and vice-versa.

Proof. Let 𝑇 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 . Note that 𝑇 (𝑧) = 𝑎

𝑐 − 𝑎𝑑 − 𝑏𝑐
𝑐

1
𝑐𝑧 + 𝑑 .

Hence 𝑇 is given by a composition of translations, scalings and inversions, but we know that {lines,circles}
is invariant for such maps (see lecture from Sep 16). ■

Remark 16. Remember that a line in ℂ is a circle on ℂ̂ passing through ∞. Hence wemay simplify the above
statement by saying that linear fraction transformations preserve circles of ℂ̂.

6 Cross ratio
Definition 17. The cross-ratio of four distinct elements 𝑧0, 𝑧1, 𝑧2, 𝑧3 ∈ ℂ̂ is

[𝑧0, 𝑧1, 𝑧2, 𝑧3] = 𝑧0 − 𝑧1
𝑧0 − 𝑧2

𝑧3 − 𝑧2
𝑧3 − 𝑧1

Proposition 18. Let 𝑧1, 𝑧2, 𝑧3 ∈ ℂ̂ be three distinct points and 𝑇 ∶ ℂ̂ → ℂ̂ be a linear fractional transformation.
Then [𝑧, 𝑧1, 𝑧2, 𝑧3] = [𝑇 (𝑧), 𝑇 (𝑧1), 𝑇 (𝑧2), 𝑇 (𝑧3)].

Proof. We may assume that 𝑇 (𝑧1) = 0, 𝑇 (𝑧2) = 1 and 𝑇 (𝑧3) = ∞, i.e. 𝑇 (𝑧) = 𝑧 − 𝑧1
𝑧 − 𝑧3

𝑧2 − 𝑧3
𝑧2 − 𝑧1

.

Then [𝑇 (𝑧), 𝑇 (𝑧1), 𝑇 (𝑧2), 𝑇 (𝑧3)] = 𝑇 (𝑧)
𝑇 (𝑧)−1 =

𝑧−𝑧1
𝑧−𝑧3

𝑧2−𝑧3
𝑧2−𝑧1

𝑧−𝑧1
𝑧−𝑧3

𝑧2−𝑧3
𝑧2−𝑧1

−1 = (𝑧−𝑧1)(𝑧2−𝑧3)
(𝑧−𝑧1)(𝑧2−𝑧3)−(𝑧−𝑧3)(𝑧2−𝑧1) = (𝑧−𝑧1)(𝑧2−𝑧3)

(𝑧−𝑧2)(𝑧1−𝑧3) = [𝑧, 𝑧1, 𝑧2, 𝑧3].
■



4 Linear fractional transformations

Proposition 19. Let 𝑧0, 𝑧1, 𝑧2, 𝑧3 ∈ ℂ be four distinct complex numbers.
Then [𝑧0, 𝑧1, 𝑧2, 𝑧3] ∈ ℝ if and only if either the 𝑧𝑖 lie on a line or they lie on a circle.

Proof. Let 𝑇 ∶ ℂ̂ → ℂ̂ be the unique linear fractional transformation such that 𝑇 (𝑧1) = 1, 𝑇 (𝑧2) = 0 and
𝑇 (𝑧3) = −1.
Then [𝑧0, 𝑧1, 𝑧2, 𝑧3] = [𝑇 (𝑧0), 1, 0, −1] = 𝑇 (𝑧0)−1

𝑇 (𝑧0) .
Hence [𝑧0, 𝑧1, 𝑧2, 𝑧3] ∈ ℝ iff 𝑇 (𝑧0)−1

𝑇 (𝑧0) ∈ ℝ iff 𝑇 (𝑧0) ∈ ℝ iff the 𝑇 (𝑧𝑖) lie on the real axis.
But linear fractional transformations preserve {lines, circles} hence 𝑇 (𝑧0), 𝑇 (𝑧1), 𝑇 (𝑧2), 𝑇 (𝑧3) are on the real
axis iff 𝑧0, 𝑧1, 𝑧2, 𝑧3 are either on a line or on a circle. ■

7 Automorphisms of the unit disk
Theorem 20. The biholomorphic maps 𝑇 ∶ 𝐷1(0) → 𝐷1(0) are exactly the linear fractional transformations

𝑇 (𝑧) = 𝜆 𝑎 − 𝑧
1 − ̄𝑎𝑧

where |𝜆| = 1 and |𝑎| < 1.

Proof.
Step 1: for ℎ𝑎(𝑧) = 𝑎 − 𝑧

1 − ̄𝑎𝑧 with |𝑎| < 1, we have ℎ𝑎(𝐷1(0)) = 𝐷1(0), ℎ𝑎(𝑎) = 0 and ℎ𝑎(0) = 𝑎.

Indeed |ℎ𝑎(𝑧)|2 = |𝑎 − 𝑧|2

|1 − ̄𝑎𝑧|2 = |𝑎|2 − 2ℜ( ̄𝑎𝑧) + |𝑧|2

1 − 2ℜ( ̄𝑎𝑧) + |𝑎|2|𝑧|2 so that

|ℎ𝑎(𝑧)|2 < 1 ⇔ |𝑎|2 + |𝑧|2 < 1 + |𝑎|2|𝑧|2 ⇔ (1 − |𝑎|2)(1 − |𝑧|2) > 0 ⇔ |𝑧| < 1

Step 2: let 𝑓 ∶ 𝐷1(0) → 𝐷1(0) be a biholomorphic map.
There exists a unique 𝑎 ∈ 𝐷1(0) such that 𝑓(𝑎) = 0.
Then 𝑔 = 𝑓 ∘ ℎ𝑎 ∶ 𝐷1(0) → 𝐷1(0) is a biholomorphic map such that 𝑔(0) = 0.
By Schwarz lemma, |𝑔′(0)| ≤ 1 and similarly 1

|𝑔′(0)| = |(𝑔−1)′(0)| ≤ 1.
Hence |𝑔′(0)| = 1 and 𝑔(𝑧) = 𝜆𝑧 where |𝜆| = 1. ■
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