University of Toronto - MAT334H1-F - LEC0101
 Complex Variables

16 - Linear fractional transformations

Jean-Baptiste Campesato

November $23^{\text {rd }}, 2020$ and November $25^{\text {th }}, 2020$

1 Definition and first properties

Definition 1. A linear fractional transformation (or Möbius transformation, or homography) is a function of the form

$$
T: \begin{array}{ccc}
\hat{\mathbb{C}} & \rightarrow & \widehat{\mathbb{C}} \\
z & \mapsto & \frac{a z+b}{c z+d}
\end{array}
$$

where $a, b, c, d \in \mathbb{C}$ satisfy $a d-b c \neq 0$.
By convention $T\left(-\frac{d}{c}\right)=\infty$ and $T(\infty)=\frac{a}{c}$ where the latter is ∞ if $c=0$ (note that a and c can't be simulatneously 0).
Remark 2. Note that $a d-b c=\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Hence the condition $a d-b c \neq 0$ means that (a, b) and (c, d) are linearly independent, i.e. that T is not constant.

Proposition 3.

1. The composition $T_{1} \circ T_{2}$ of two linear fractional transformations is a linear fractional transformation.
2. A linear fraction transformation $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is bijective and its inverse $T^{-1}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a linear fractional transformation too.
3. The inversion $z \mapsto \frac{1}{z}$ and the identity $z \mapsto z$ are linear fractional transformations.

Proof.
(1) Assume that $T_{1}(z)=\frac{a_{1} z+b_{1}}{c_{1} z+d_{1}}$ and that $T_{2}(z)=\frac{a_{2} z+b_{2}}{c_{2} z+d_{2}}$. Then

$$
T_{1}\left(T_{2}(z)\right)=\frac{a_{1} \frac{a_{2} z+b_{2}}{c_{2} z+d_{2}}+b_{1}}{c_{1} \frac{a_{2} z+b_{2}}{c_{2} z+d_{2}}+d_{1}}=\frac{\left(a_{1} a_{2}+b_{1} c_{2}\right) z+\left(a_{1} b_{2}+b_{1} d_{2}\right)}{\left(c_{1} a_{2}+d_{1} c_{2}\right) z+\left(c_{1} b_{2}+d_{1} d_{2}\right)}
$$

and $\quad\left(a_{1} a_{2}+b_{1} c_{2}\right)\left(c_{1} b_{2}+d_{1} d_{2}\right)-\left(a_{1} b_{2}+b_{1} d_{2}\right)\left(c_{1} a_{2}+d_{1} c_{2}\right)=\left(a_{1} d_{1}-b_{1} c_{1}\right)\left(a_{2} d_{2}-b_{2} c_{2}\right) \neq 0$
(2) $w=\frac{a z+b}{c z+d} \Leftrightarrow w(c z+d)=(a z+b) \Leftrightarrow z(c w-a)=(-d w+b) \Leftrightarrow z=\frac{-d w+b}{c w-a}$.

It is compatible with $T^{-1}(\infty)=-\frac{d}{c}$ and $T^{-1}\left(\frac{a}{c}\right)=\infty$.
(3) Note that

$$
\begin{gathered}
z=\frac{1 \cdot z+0}{0 \cdot z+1} \quad \text { and } \quad \infty \mapsto \infty \\
\frac{1}{z}=\frac{0 \cdot z+1}{1 \cdot z+0} \quad \text { and } \quad 0 \mapsto \infty \quad \& \quad \infty \mapsto 0
\end{gathered}
$$

Remark 4. We saw in the proof that if $T(z)=\frac{a z+b}{c z+d}$ then $T^{-1}(z)=\frac{d z-b}{-c z+a}$.

2 Matrix representation

Definition 5. To a 2×2 invertible matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we associate the linear fractional transformation

$$
T_{M}(z)=\frac{a z+b}{c z+d}
$$

Remark 6. The function

$$
\begin{array}{ccc}
\mathrm{GL}_{2}(\mathbb{C}) & \rightarrow & \text { \{linear fractional transformations }\} \\
M & \mapsto & T_{M}
\end{array}
$$

is surjective : any linear fractional transformation comes from a 2×2 invertible matrix.
But it is not injective : two different matrices may be mapped to the same linear fractional transformation. Indeed, for $M=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $N=\left(\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right)$ we have $T_{M}=T_{N}$.

Proposition 7.

1. $T_{I_{2}}=\mathrm{id}$
2. $T_{M N}=T_{M} \circ T_{N}$
3. $T_{M^{-1}}=\left(T_{M}\right)^{-1}$

Proof. (1) Trivial.
(2) $\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{ll}a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\ c_{1} a_{2}+d_{1} c_{1} & c_{1} b_{2}+d_{1} d_{2}\end{array}\right)$ and compare with the proof of 3.(1).
(3) $M^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ hence $T_{M^{-1}}(z)=\frac{d z-b}{-c z+a}=\left(T_{M}\right)^{-1}(z)$ by the proof of 3.(2).

Remark 8. We recover (\star) since $\operatorname{det}(M N)=\operatorname{det}(M) \operatorname{det}(N)$.

3 Fixed points

Proposition 9.

1. A linear fractional transformation admits at least one fixed point (i.e. a $z_{0} \in \widehat{\mathbb{C}}$ such that $T\left(z_{0}\right)=z_{0}$).
2. If a linear fractional transformation admits more than 2 fixed points then it is the identity.

Particularly, a linear fractional transformation which is not the identity has either 1 or 2 fixed points.
So if a linear fractional transformation has 3 fixed points then it is the identity.
Remark 10. It may be that ∞ is the only fixed point, i.e. there is no $z \in \mathbb{C}$ such that $T(z)=z($ e.g. $T(z)=z+1)$.
Proof. Let $T(z)=\frac{a z+b}{c z+d}$.
First case: ∞ is a fixed point, i.e. $c=0$.
Let's see if there is another fixed point $z \in \mathbb{C}$:

$$
T(z)=z \Leftrightarrow(d-a) z-b=0
$$

Either $d=a$ and $b=0$ then T is the identity.
Or the above polynomial is of degree at most 1 and hence has at most 1 root (so, with ∞, T has at least 1 fixed point and at most 2 fixed points).

Second case: $c \neq 0$ (i.e. ∞ is not a fixed point).
Let's see if there is a fixed point $z \in \mathbb{C}$:

$$
T(z)=z \Leftrightarrow c z^{2}+(d-a) z-b=0
$$

By the FTA, this polynomial has either 1 double root or 2 simple roots (so T has either 1 or 2 fixed points).

4 Triples

Proposition 11. Let $T, S: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be two linear fractional transformations.
Let $z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ be three distinct points.
If $T\left(z_{i}\right)=S\left(z_{i}\right), i=1,2,3$, then $T=S$.
Proof. Then $S^{-1} \circ T$ is a linear fractional transformations (since the inverse of a LFT is a LFT and the composition of LFTs is a LFT) with three distinct fixed points z_{1}, z_{2}, z_{3} hence $S^{-1} \circ T=$ id and $S=T$.

Proposition 12. Let $z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ be three distinct points. There exists a unique linear fractional transformation $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ such that $T\left(z_{1}\right)=0, T\left(z_{2}\right)=1$ and $T\left(z_{3}\right)=\infty$.

Proof. Uniqueness derives from the previous result, so it is enough to show the existence.
But $T(z)=\left(\frac{z-z_{1}}{z-z_{3}}\right)\left(\frac{z_{2}-z_{3}}{z_{2}-z_{1}}\right)$ is a suitable linear fractional transformation (check it).
Proposition 13. Let $z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ be three distinct points and let $w_{1}, w_{2}, w_{3} \in \widehat{\mathbb{C}}$ be another triple of distinct points. Then there exists a unique linear fractional transformation $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ such that $T\left(z_{1}\right)=w_{1}, T\left(z_{2}\right)=w_{2}$ and $T\left(z_{3}\right)=w_{3}$.

Proof. Once again, we already know that if such a linear fractional transformation exists then it is unique. Hence it is enough to show the existence.
Define $S: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ as the unique linear fractional transformation such that $S\left(z_{1}\right)=0, S\left(z_{2}\right)=1$ and $S\left(z_{3}\right)=\infty$, and $R: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ as the unique linear fractional transformation such that $R\left(w_{1}\right)=0, R\left(w_{2}\right)=1$ and $R\left(w_{3}\right)=\infty$.
Then $T=R^{-1} \circ S$ is a suitable linear fractional transformation.

5 Circles \& Lines

Theorem 14. A linear fractional transformation maps $\{$ lines and circles of $\mathbb{C}\}$ to $\{$ lines and circles of $\mathbb{C}\}$.
Remark 15. Careful: a circle may be mapped to a line and vice-versa.
Proof. Let $T(z)=\frac{a z+b}{c z+d}$. Note that $T(z)=\frac{a}{c}-\frac{a d-b c}{c} \frac{1}{c z+d}$.
Hence T is given by a composition of translations, scalings and inversions, but we know that \{lines,circles\} is invariant for such maps (see lecture from Sep 16).
Remark 16. Remember that a line in \mathbb{C} is a circle on $\widehat{\mathbb{C}}$ passing through ∞. Hence we may simplify the above statement by saying that linear fraction transformations preserve circles of $\widehat{\mathbb{C}}$.

6 Cross ratio

Definition 17. The cross-ratio of four distinct elements $z_{0}, z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ is

$$
\left[z_{0}, z_{1}, z_{2}, z_{3}\right]=\frac{z_{0}-z_{1}}{z_{0}-z_{2}} \frac{z_{3}-z_{2}}{z_{3}-z_{1}}
$$

Proposition 18. Let $z_{1}, z_{2}, z_{3} \in \widehat{\mathbb{C}}$ be three distinct points and $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a linear fractional transformation. Then $\left[z, z_{1}, z_{2}, z_{3}\right]=\left[T(z), T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right)\right]$.
Proof. We may assume that $T\left(z_{1}\right)=0, T\left(z_{2}\right)=1$ and $T\left(z_{3}\right)=\infty$, i.e. $T(z)=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}}$.
Then $\left[T(z), T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right)\right]=\frac{T(z)}{T(z)-1}=\frac{\frac{z-z_{1}}{z-z_{3}-z_{3}}}{\frac{z_{2}-z_{1}}{z_{1}}} \frac{z-z_{3}}{z 2-2 z_{3}} z_{2}-z_{1}-1 ~=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)-\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}=\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}=\left[z, z_{1}, z_{2}, z_{3}\right]$.

Proposition 19. Let $z_{0}, z_{1}, z_{2}, z_{3} \in \mathbb{C}$ be four distinct complex numbers.
Then $\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \in \mathbb{R}$ if and only if either the z_{i} lie on a line or they lie on a circle.
Proof. Let $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be the unique linear fractional transformation such that $T\left(z_{1}\right)=1, T\left(z_{2}\right)=0$ and $T\left(z_{3}\right)=-1$.
Then $\left[z_{0}, z_{1}, z_{2}, z_{3}\right]=\left[T\left(z_{0}\right), 1,0,-1\right]=\frac{T\left(z_{0}\right)-1}{T\left(z_{0}\right)}$.
Hence $\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \in \mathbb{R}$ iff $\frac{T\left(z_{0}\right)-1}{T\left(z_{0}\right)} \in \mathbb{R}$ iff $T\left(z_{0}\right) \in \mathbb{R}$ iff the $T\left(z_{i}\right)$ lie on the real axis.
But linear fractional transformations preserve \{lines, circles \} hence $T\left(z_{0}\right), T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right)$ are on the real axis iff $z_{0}, z_{1}, z_{2}, z_{3}$ are either on a line or on a circle.

7 Automorphisms of the unit disk

Theorem 20. The biholomorphic maps $T: D_{1}(0) \rightarrow D_{1}(0)$ are exactly the linear fractional transformations

$$
T(z)=\lambda \frac{a-z}{1-\bar{a} z}
$$

where $|\lambda|=1$ and $|a|<1$.
Proof.
Step 1: for $h_{a}(z)=\frac{a-z}{1-\bar{a} z}$ with $|a|<1$, we have $h_{a}\left(D_{1}(0)\right)=D_{1}(0), h_{a}(a)=0$ and $h_{a}(0)=a$.
Indeed $\left|h_{a}(z)\right|^{2}=\frac{|a-z|^{2}}{|1-\bar{a} z|^{2}}=\frac{|a|^{2}-2 \Re(\bar{a} z)+|z|^{2}}{1-2 \Re(\bar{a} z)+|a|^{2}|z|^{2}}$ so that

$$
\left|h_{a}(z)\right|^{2}<1 \Leftrightarrow|a|^{2}+|z|^{2}<1+|a|^{2}|z|^{2} \Leftrightarrow\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)>0 \Leftrightarrow|z|<1
$$

Step 2: let $f: D_{1}(0) \rightarrow D_{1}(0)$ be a biholomorphic map.
There exists a unique $a \in D_{1}(0)$ such that $f(a)=0$.
Then $g=f \circ h_{a}: D_{1}(0) \rightarrow D_{1}(0)$ is a biholomorphic map such that $g(0)=0$.
By Schwarz lemma, $\left|g^{\prime}(0)\right| \leq 1$ and similarly $\frac{1}{\left|g^{\prime}(0)\right|}=\left|\left(g^{-1}\right)^{\prime}(0)\right| \leq 1$.
Hence $\left|g^{\prime}(0)\right|=1$ and $g(z)=\lambda z$ where $|\lambda|=1$.

