University of Toronto - MAT334H1-F - LEC0101
 Complex Variables

14-Zeroes of analytic functions

Jean-Baptiste Campesato

November $4^{\text {th }}, 2020$

Reviews from Oct 16 - Zeroes

Definition 1.

Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic. Let $z_{0} \in U$ be such that $f\left(z_{0}\right)=0$.
We define the order of vanishing of f at z_{0} by $m_{f}\left(z_{0}\right):=\min \left\{n \in \mathbb{N}: f^{(n)}\left(z_{0}\right) \neq 0\right\}$.
Note that $m_{f}\left(z_{0}\right)>0$ since $f\left(z_{0}\right)=0$.
Proposition 2. Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic. Let $z_{0} \in U$ be such that $f\left(z_{0}\right)=0$.
Denote the power series expansion of f at z_{0} by $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$.
Then $m_{f}\left(z_{0}\right)=\min \left\{n \in \mathbb{N}: a_{n} \neq 0\right\}$.
Proposition 3. Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic. Then z_{0} is a zero of order n of f if and only if there exists $g: U \rightarrow \mathbb{C}$ holomorphic such that $f(z)=\left(z-z_{0}\right)^{n} g(z)$ and $g\left(z_{0}\right) \neq 0$.

Reviews from Oct 16 - Analytic continuation

Theorem 4. Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
If there exists $z_{0} \in U$ such that $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}\left(z_{0}\right)=0$ then $f \equiv 0$ on U.
Corollary 5. Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic functions. If f and g coincide in the neighborhood of a point,

$$
\text { i.e. } \exists z_{0} \in U, \exists r>0, \forall z \in D_{r}\left(z_{0}\right) \cap U, f(z)=g(z) \text {, }
$$

then they coincide on U,

$$
\text { i.e. } \forall z \in U, f(z)=g(z) \text {. }
$$

Isolated zeroes

It is actually possible to strengthen the previous results.
Theorem 6. Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{\star}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
Proof. Assume that z_{0} is a non-isolated zero of f.
We know that f admits a power series expansion $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ in a neighborhood of z_{0}.
Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_{n} \neq 0$ then $f(z)=\left(z-z_{0}\right)^{n} g(z)$ where g is holomorphic and $g\left(z_{0}\right) \neq 0$.
For every $n \in \mathbb{N}_{>0}, \exists w_{n} \in\left(D_{\frac{1}{n}}\left(z_{0}\right) \cap U\right) \backslash\left\{z_{0}\right\}, f\left(w_{n}\right)=0$. But then $g\left(w_{n}\right)=0$ since $w_{n} \neq z_{0}$
Then, since $w_{n} \xrightarrow[n \rightarrow+\infty]{ } z_{0}$, by continuity $g\left(z_{0}\right)=\lim _{n \rightarrow+\infty} g\left(w_{n}\right)=0$. Which leads to a contradiction.
Hence $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}\left(z_{0}\right)=n!a_{n}=0$ and $f \equiv 0$ on U by Theorem 4.
Corollary 7. Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic functions.
If $f-g$ admits a non-isolated zero

$$
\text { i.e. } \exists z_{0} \in U, \forall r>0, \exists z \in\left(U \cap D_{r}\left(z_{0}\right)\right) \backslash\left\{z_{0}\right\}, f(z)-g(z)=f\left(z_{0}\right)-g\left(z_{0}\right)=0
$$

then f and g coincide on U,

$$
\text { i.e. } \forall z \in U, f(z)=g(z) \text {. }
$$

Corollary 8. Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic functions.
Let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a sequence of terms in U which is convergent to \tilde{z} in U and such that $\forall n \in \mathbb{N}, f\left(z_{n}\right)=0$.
Then $f \equiv 0$ on U.
Remark 9. The fact that the limit $\tilde{z} \in U$ is very important.
Indeed, let $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ be defined by $f(z)=\sin \left(\frac{\pi}{z}\right)$.
Then $f\left(\frac{1}{n}\right)=0$ but $f \not \equiv 0$ on $\mathbb{C} \backslash\{0\}$.
Hence, it is possible for the zeroes of f to accumulate at a point of the boundary of the domain (including ∞, see for instance $z_{n}=\pi n$ for $f=\sin$).

Homework 10. Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic on U.
Prove that if $f g \equiv 0$ on U then either $f \equiv 0$ or $g \equiv 0$.
Homework 11. Let $U=D_{1}(0)$. Find all the holomorphic functions $f: U \rightarrow \mathbb{C}$ satisfying respectively:

1. $f\left(\frac{1}{n}\right)=\frac{1}{n^{2}}$
2. $f\left(\frac{1}{2 n}\right)=f\left(\frac{1}{2 n+1}\right)=\frac{1}{n}$
[^0]
Reviews from Oct 23 - Poles

Theorem 12. Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1. z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
2. There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
3. z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Definition 13. The integer $n>0$ in (2) is uniquely defined and we say that f admits a pole of order n at z_{0}.
Proposition 14. The order of the pole z_{0} is also:

- The order of vanishing of $1 / f$ at z_{0}.
- The smallest n such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

The argument principle

Lemma 15 (Logarithmic residue).

- If z_{0} is an isolated zero of f then $\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$ is the order of z_{0}.
- If z_{0} is an isolated pole of f then $-\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$ is the order of z_{0}.

Proof.

- Assume that $f(z)=\left(z-z_{0}\right)^{m} g(z)$ in a neighborhood of z_{0} where g is analytic and $g\left(z_{0}\right) \neq 0$. Then $\frac{f^{\prime}(z)}{f(z)}=m\left(z-z_{0}\right)^{-1}+\frac{g^{\prime}(z)}{g(z)}$.
We conclude using that $\frac{g^{\prime}}{g}$ is holomorphic in a neighborhood of z_{0}.
- z_{0} is a pole of order m of f if and only if it is a zero of order m of $\frac{1}{f}$. We conclude using that

$$
\operatorname{Res}\left(\frac{(1 / f)^{\prime}}{(1 / f)}, z_{0}\right)=-\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)
$$

The previous lemma holds at ∞ :

Lemma 16.

- If ∞ is an isolated zero of f then $\operatorname{Res}\left(\frac{f^{\prime}}{f}, \infty\right)$ is the order of ∞.
- If ∞ is an isolated pole of f then $-\operatorname{Res}\left(\frac{f^{\prime}}{f}, \infty\right)$ is the order of ∞.

Proof. ∞ is an isolated zero (resp. pole) of order m of f if and only if 0 is an isolated zero (resp. pole) of order m of $g(z)=f(1 / z)$.
Then $m=\operatorname{Res}\left(\frac{g^{\prime}}{g}, 0\right)=\operatorname{Res}\left(\frac{-1}{z^{2}} \frac{f^{\prime}(1 / z)}{f(1 / z)}, 0\right)=\operatorname{Res}\left(\frac{f^{\prime}}{f}, \infty\right)$.

Theorem 17 (The argument principle).
Let $U \subset \mathbb{C}$ be open. Let $S \subset U$ be finite. Let $f: U \backslash S \rightarrow \mathbb{C}$ be holomorphic/analytic.
Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be piecewise smooth positively oriented simple closed curve on U which doesn't pass through a zero or a pole of f and such that its inside is entirely included in U.
Then

$$
\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=Z_{f, \gamma}-P_{f, \gamma}
$$

where

- $Z_{f, \gamma}$ is the number of zeroes of f enclosed in γ counted with their multiplicites/orders,
- $P_{f, \gamma}$ is the number of poles of f enclosed in γ counted with their multiplicites/orders.

Proof. We apply Cauchy's residue theorem to $\frac{f^{\prime}}{f}$ and then we use the above lemma:
$\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\sum_{z \in \operatorname{Inside}(\gamma)} \operatorname{Res}\left(\frac{f^{\prime}}{f}, z\right)=\sum_{z \text { zero of } f} \operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)+\sum_{z \text { pole of } f} \operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)=Z_{f, \gamma}-P_{f, \gamma}$
Remark 18. The value $\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z$ involved in the previous slide is equal to the number of counterclockwise turns made by $f(z)$ as z goes through γ.

Indeed, if we set $\tilde{\gamma}(t)=f \circ \gamma$ then $\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\int_{\tilde{\gamma}} \frac{1}{w} \mathrm{~d} w$.
Assume for instance that $\tilde{\gamma}:[0,1] \rightarrow \mathbb{C}$ is defined by $\tilde{\gamma}(t)=z_{0}+r e^{2 i \pi n t}$ where $n \in \mathbb{Z}$.
Then $\frac{1}{2 i \pi} \int_{\tilde{\gamma}} \frac{1}{w} \mathrm{~d} w=n$ which is the number of counterclockwise turns made by $\tilde{\gamma}$ around z_{0}.
Then the conclusion of the previous statement can be rewritten as

$$
\frac{\text { changes of } \arg (f(z)) \text { as } z \text { goes through } \gamma}{2 \pi}=Z_{f, \gamma}-P_{f, \gamma}
$$

That's why it is called the argument principle.

Rouché's theorem

Theorem 19 (Rouché's theorem - version 1).
Let $U \subset \mathbb{C}$ be open, $f, g: U \rightarrow \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U.
Assume that

$$
\forall t \in[a, b],|g(\gamma(t))|<|f(\gamma(t))|
$$

Then f and $f+g$ have the same number of zeroes inside γ, counted with multiplicities.
Proof. For $t \in[0,1]$, set $\varphi_{t}(z)=f(z)+(1-t) g(z)$ and $h(t)=\frac{1}{2 i \pi} \int_{\gamma} \frac{\varphi_{t}^{\prime}(z)}{\varphi_{t}(z)} \mathrm{d} z$.
The function h is continuous since φ_{t} doesn't vanish on γ, indeed for $z \in \gamma$

$$
\left|\varphi_{t}(z)\right| \geq|f(z)|+(1-t)|g(z)| \geq|f(z)|-|g(z)|>0
$$

Hence h is a continuous function taking values in \mathbb{Z} (by the principle argument), so it is constant.
Hence $h(0)=h(1)$, i.e. $Z_{f+g, \gamma}-P_{f+g, \gamma}=Z_{f, \gamma}-P_{f, \gamma}$ by the principle argument.
But these functions have no poles in the inside of γ, hence $Z_{f+g, \gamma}=Z_{f, \gamma}$.

Theorem 20 (Rouchés theorem - version 2).
Let $U \subset \mathbb{C}$ be open, $f, g: U \rightarrow \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U.
Assume that

$$
\forall z \in \gamma,|f(z)-g(z)|<|f(z)|
$$

Then f and g have the same number of zeroes inside γ, counted with multiplicities.
Proof. That's an immediate consequence of the previous version since z_{0} is a zero of order n of g iff it is a zero of order n of $-g$.

Theorem 21 (Rouché's theorem - version 3).
Let $U \subset \mathbb{C}$ be open, $f, g: U \rightarrow \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U.
Assume that

$$
\forall z \in \gamma,|f(z)+g(z)|<|f(z)|
$$

Then f and g have the same number of zeroes inside γ, counted with multiplicities.
Proof. Since z_{0} is a zero of order n of g iff it is a zero of order n of $-g$.

We already proved the Fundamental Theorem of Algebra (or d'Alembert-Gauss theorem) using Liouville's theorem (Oct 21): a non-constant complex polynomial admits at least one root.
Here is another proof using Rouché's theorem.
Theorem 22. A complex polynomial of degree n has exactly n complex roots (counted with multiplicity).
Proof. Assume that $P(z)=a_{n} z^{n}+Q(z)$ where Q is a polynomial of degree $<n$ and $a_{n} \neq 0$.
If we take $R>0$ big enough then $|Q(z)|<\left|a_{n} z^{n}\right|$ on $\gamma:[0,1] \rightarrow \mathbb{C}$ defined by $\gamma(t)=\operatorname{Re} e^{2 i \pi t}$.
By Rouché's theorem, $P(z)=a_{n} z^{n}+Q(z)$ and $a_{n} z^{n}$ have the same number of zeroes counted with multiplicity.

[^0]: * Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

