MAT334H1-F – LEC0101 Complex Variables

THE SCHWARZ-CHRISTOFFEL FORMULA

December 7th, 2020

According to the Riemann mapping theorem, given $U\subsetneq\mathbb{C}$ a simply connected open subset which is not \mathbb{C} , there exists a biholomorphism mapping $f:\mathbb{H}\to U$ where $\mathbb{H}=\{z\in\mathbb{C}:\Im(z)>0\}$. However the statement doesn't give an explicit expression for f (which, in general, can be quite complicated: for instance U can be the interior of the Koch snowflake or the set defined in the last example of the previous chapter, in these cases the behavior of f around the boundary of U should be quite complicated).

In this chapter we are going to focus on the special case where U is the interior of a polygon.

The Schwarz–Christoffel formula is a differential equation satisfied by such a f. Although this equation doesn't admit a closed solution in general, it can be used in some special cases to obtain an explicit f.

Let $U \subset \mathbb{C}$ be open, $f: U \to \mathbb{C}$ be holomorphic/analytic and $\gamma: [a,b] \to \mathbb{C}$ be a smooth curve entirely included in U such that $\forall t \in (a,b), \ \gamma'(t) \neq 0$.

Then

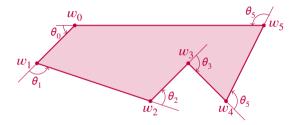
$$arg((f \circ \gamma)'(t)) = arg(\gamma'(t)) + arg(f'(\gamma(t)))$$

If γ runs through the real axis from the left to the right then $\gamma'(t) \in (0, \infty)$ so that

$$arg((f \circ \gamma)'(t)) = arg(f'(\gamma(t)))$$

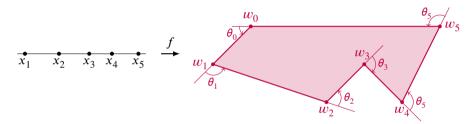
Particularly, if arg(f'(z)) is constant then $f \circ \gamma$ is also a segment line.

Let's fix a simple polygon P with consecutive vertices w_0,\ldots,w_n (i.e. P has n+1 sides) and let $\theta_0,\ldots,\theta_n\in(-\pi,\pi)$ be the external angles at the vertices.



Then $\theta_1 + \theta_2 + \cdots + \theta_n = 2\pi$.

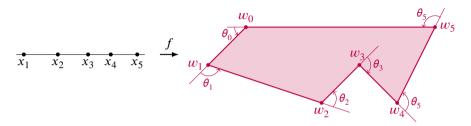
Let's fix a simple polygon P with consecutive vertices w_0,\ldots,w_n (i.e. P has n+1 sides) and let $\theta_0,\ldots,\theta_n\in(-\pi,\pi)$ be the external angles at the vertices.



Then $\theta_1 + \theta_2 + \cdots + \theta_n = 2\pi$.

The idea is to place $x_1 < \dots < x_n \in \mathbb{R}$ such that x_i will be mapped to w_i , i.e. $w_i = f(x_i)$. We set $x_0 = \infty \in \mathbb{R} \cup \{\infty\}$, i.e. $w_0 = \lim_{x \to +\infty} f(x)$.

Obviously, arg(f'(x)) should *jump* each time x passes through a x_i .



Where
$$\theta_i \in (-\pi,\pi)$$
 and $\theta_1 + \theta_2 + \dots + \theta_n = 2\pi$.
We set $\alpha_i = -\frac{\theta_i}{\pi}$ then $\alpha_i \in (-1,1)$ and $\alpha_1 + \alpha_2 + \dots + \alpha_n = -2$.
Let f be a function such that $f(x_i) = w_i$ and $f'(z) = A(z - x_1)^{\alpha_1} \cdots (z - x_n)^{\alpha_n}$. Then
$$x_n < x \implies \arg(f'(x)) = \arg A$$

$$x_{n-1} < x < x_n \implies \arg(f'(x)) = \arg A + \pi\alpha_n$$

$$x_{n-2} < x < x_{n-1} \implies \arg(f'(x)) = \arg A + \pi\alpha_{n-1} + \pi\alpha_n$$

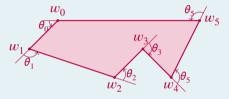
$$\vdots$$

$$x < x_1 \implies \arg(f'(x)) = \arg A + \pi\alpha_1 + \pi\alpha_2 + \dots + \pi\alpha_n$$

The statement

Theorem - Schwarz-Christoffel

Let P be a simple polygon with consecutive vertices w_0,\ldots,w_n (i.e. P has n+1 sides) and let $\theta_0,\ldots,\theta_n\in(-\pi,\pi)$ be the external angles at the vertices.



We set $\alpha_i = -\frac{\theta_i}{\pi}$ so that $\alpha_i \in (-1,1)$ and $\alpha_1 + \alpha_2 + \cdots + \alpha_n = -2$. Then there exists an injective holomorphic function f from the Poincaré half-plane $\mathbb{H} := \{z \in \mathbb{C} : \Im(z) > 0\}$ onto the interior of P satisfying

$$f'(z) = A(z - x_1)^{\alpha_1} \cdots (z - x_n)^{\alpha_n}$$

where $x_1 < x_2 < \dots < x_n$ are some real numbers and $A \in \mathbb{C} \setminus \{0\}$.