MAT334H1-F – LEC0101 Complex Variables

The Riemann mapping theorem

December 2nd, 2020 and December 4th, 2020

The Riemann mapping theorem

Let $U \subsetneq \mathbb{C}$ be a simply connected open subset which is not \mathbb{C} . Then there exists a biholomorphism $f : U \to D_1(0)$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).

We say that U and $D_1(0)$ are **conformally equivalent**.

The Riemann mapping theorem

Let $U \subsetneq \mathbb{C}$ be a simply connected open subset which is not \mathbb{C} . Then there exists a biholomorphism $f : U \to D_1(0)$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).

We say that U and $D_1(0)$ are **conformally equivalent**.

Remark

Note that if $f : U \to V$ is bijective and holomorphic then f^{-1} is holomorphic too. Indeed, we proved that if f is injective and holomorphic then f' never vanishes (Nov 30). Then we can conclude using the inverse function theorem. Note that this result is false for \mathbb{R} -differentiability:

Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$ then f'(0) = 0 and $f^{-1}(x) = \sqrt[3]{x}$ is not differentiable at 0.

The Riemann mapping theorem

Let $U \subsetneq \mathbb{C}$ be a simply connected open subset which is not \mathbb{C} . Then there exists a biholomorphism $f : U \to D_1(0)$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).

We say that U and $D_1(0)$ are **conformally equivalent**.

Remark

Note that if $f : U \to V$ is bijective and holomorphic then f^{-1} is holomorphic too. Indeed, we proved that if f is injective and holomorphic then f' never vanishes (Nov 30). Then we can conclude using the inverse function theorem. Note that this result is false for \mathbb{R} -differentiability:

Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$ then f'(0) = 0 and $f^{-1}(x) = \sqrt[3]{x}$ is not differentiable at 0.

Remark

The theorem is false if $U = \mathbb{C}$. Indeed, by Liouville's theorem, if $f : \mathbb{C} \to D_1(0)$ is holomorphic then it is constant (as a bounded entire function), so it can't be bijective.

This theorem states that up to biholomorphic transformations, the unit disk is a model for open simply connected sets which are not \mathbb{C} .

Otherwise stated, up to a biholomorphic transformation, there are only two open simply connected sets: $D_1(0)$ and \mathbb{C} . Formally:

Corollary

Let $U, V \subsetneq \mathbb{C}$ be two simply connected open subsets, none of which is \mathbb{C} . Then there exists a biholomorphism $f : U \to V$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).

This theorem states that up to biholomorphic transformations, the unit disk is a model for open simply connected sets which are not \mathbb{C} .

Otherwise stated, up to a biholomorphic transformation, there are only two open simply connected sets: $D_1(0)$ and \mathbb{C} . Formally:

Corollary

Let $U, V \subsetneq \mathbb{C}$ be two simply connected open subsets, none of which is \mathbb{C} . Then there exists a biholomorphism $f : U \to V$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).

Proof. By the Riemann mapping theorem, there exists biholomorphisms $\varphi : U \to D_1(0)$ and $\psi : V \to D_1(0)$. Then we can simply take $f = \psi^{-1} \circ \varphi$.

Corollary

Let $U \subset \mathbb{C}$ be an open subset. Then U is simply connected if and only if it is homeomorphic to $D_1(0)$.

Corollary

Let $U \subset \mathbb{C}$ be an open subset. Then U is simply connected if and only if it is homeomorphic to $D_1(0)$.

Proof.

 \Rightarrow Assume that $U \subsetneq \mathbb{C}$ is simply connected then there exists a biholomorphism $f : U \rightarrow D_1(0)$. Particularly f is a homeomorphism.

Note that \mathbb{C} is also homeomorphic to $D_1(0)$.

 \Leftarrow Assume that there exists a homeomorphism $f: V \rightarrow U$ where $V = D_1(0)$.

Since V is simply connected, we get that U is too since simple connectedness is preserved by homeomorphisms.

Corollary

Let $U \subset \mathbb{C}$ be an open subset. Then U is simply connected if and only if it is homeomorphic to $D_1(0)$.

Proof.

 \Rightarrow Assume that $U \subsetneq \mathbb{C}$ is simply connected then there exists a biholomorphism $f : U \rightarrow D_1(0)$. Particularly f is a homeomorphism.

Note that \mathbb{C} is also homeomorphic to $D_1(0)$.

 \Leftarrow Assume that there exists a homeomorphism $f: V \rightarrow U$ where $V = D_1(0)$.

Since V is simply connected, we get that U is too since simple connectedness is preserved by homeomorphisms.

Remark

Careful: the continuous image of a simply connected set may not be simply connected. For instance $exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}$.

Example 1: the Poincaré half-plane

We define the Poincaré half-plane by $\mathbb{H} = \{z \in \mathbb{C} : \Im(z) > 0\}.$

The mapping φ : $\mathbb{H} \to D_1(0)$ defined by $\varphi(z) = \frac{z-i}{z+i}$ is biholomorphic.

First check that φ is well-defined: $\forall z \in \mathbb{H}, z \neq -i$ and $\varphi(z) \in D_1(0)$. Then note that φ is the restriction of a Möbius transformation $\hat{\varphi} : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$. It is not too difficult to check that $\hat{\varphi}(\mathbb{R} \cup \{\infty\}) = S^1 (:= \{z \in \mathbb{C} : |z| = 1\}).$ The complement of $\mathbb{R} \cup \{\infty\}$ in $\widehat{\mathbb{C}}$ has two connected components which are \mathbb{H} and $-\mathbb{H}$. And $\widehat{\mathbb{C}} \setminus S^1$ has two connected components: $D_1(0)$ and $\{z \in \mathbb{C} : |z| > 1\} \cup \{\infty\}$. Since $\varphi(i) = 0 \in D_1(0)$, we deduce that $\varphi(\mathbb{H}) = D_1(0)$. n

Note that φ maps right angles to right angles!

Example 2: a horizontal band

We set

$$\mathcal{B} \coloneqq \{ z \in \mathbb{C} : 0 < \mathfrak{T}(z) < a \}, a > 0$$

We know that ψ : $\mathcal{B} \to \mathbb{H}$ defined by $\psi(z) = e^{\frac{\pi}{a}z}$ is biholomorphic.

Hence $f = \varphi \circ \psi$: $\mathcal{B} \to D_1(0)$ is biholomorphic, where φ was defined in the previous slide, i.e.

Example 3

In practice the biholomorphism φ between U and $D_1(0)$ may be difficult to express explicitely. For instance, the following set is simply connected

$$U = \left((0,1) \times (0,1) \right) \setminus \left(\bigcup_{n \ge 2} \left\{ \frac{1}{n} \right\} \times \left(0, \frac{1}{2} \right) \right)$$

but the behavior of φ around the boundary of $D_1(0)$ is going to be quite complicated!

Example 3

In practice the biholomorphism φ between U and $D_1(0)$ may be difficult to express explicitely. For instance, the following set is simply connected

$$U = \left((0,1) \times (0,1) \right) \setminus \left(\bigcup_{n \ge 2} \left\{ \frac{1}{n} \right\} \times \left(0, \frac{1}{2} \right) \right)$$

but the behavior of φ around the boundary of $D_1(0)$ is going to be quite complicated!

Even worse, we can take U to be the interior of the Koch snowflake.