The Riemann mapping theorem

December $2^{\text {nd }}, 2020$ and December $4^{\text {th }}, 2020$

The Riemann mapping theorem - 1

The Riemann mapping theorem

Let $U \subsetneq \mathbb{C}$ be a simply connected open subset which is not \mathbb{C}.
Then there exists a biholomorphism $f: U \rightarrow D_{1}(0)$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).
We say that U and $D_{1}(0)$ are conformally equivalent.

The Riemann mapping theorem - 1

The Riemann mapping theorem

Let $U \subsetneq \mathbb{C}$ be a simply connected open subset which is not \mathbb{C}.
Then there exists a biholomorphism $f: U \rightarrow D_{1}(0)$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).
We say that U and $D_{1}(0)$ are conformally equivalent.

Remark

Note that if $f: U \rightarrow V$ is bijective and holomorphic then f^{-1} is holomorphic too. Indeed, we proved that if f is injective and holomorphic then f^{\prime} never vanishes (Nov 30). Then we can conclude using the inverse function theorem.
Note that this result is false for \mathbb{R}-differentiability:
Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{3}$ then $f^{\prime}(0)=0$ and $f^{-1}(x)=\sqrt[3]{x}$ is not differentiable at 0 .

The Riemann mapping theorem - 1

The Riemann mapping theorem

Let $U \subsetneq \mathbb{C}$ be a simply connected open subset which is not \mathbb{C}.
Then there exists a biholomorphism $f: U \rightarrow D_{1}(0)$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).
We say that U and $D_{1}(0)$ are conformally equivalent.

Remark

Note that if $f: U \rightarrow V$ is bijective and holomorphic then f^{-1} is holomorphic too. Indeed, we proved that if f is injective and holomorphic then f^{\prime} never vanishes (Nov 30). Then we can conclude using the inverse function theorem.
Note that this result is false for \mathbb{R}-differentiability:
Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{3}$ then $f^{\prime}(0)=0$ and $f^{-1}(x)=\sqrt[3]{x}$ is not differentiable at 0 .

Remark

The theorem is false if $U=\mathbb{C}$. Indeed, by Liouville's theorem, if $f: \mathbb{C} \rightarrow D_{1}(0)$ is holomorphic then it is constant (as a bounded entire function), so it can't be bijective.

The Riemann mapping theorem - 2

This theorem states that up to biholomorphic transformations, the unit disk is a model for open simply connected sets which are not \mathbb{C}.
Otherwise stated, up to a biholomorphic transformation, there are only two open simply connected sets: $D_{1}(0)$ and \mathbb{C}. Formally:

Corollary

Let $U, V \subsetneq \mathbb{C}$ be two simply connected open subsets, none of which is \mathbb{C}. Then there exists a biholomorphism $f: U \rightarrow V$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).

The Riemann mapping theorem - 2

This theorem states that up to biholomorphic transformations, the unit disk is a model for open simply connected sets which are not \mathbb{C}.
Otherwise stated, up to a biholomorphic transformation, there are only two open simply connected sets: $D_{1}(0)$ and \mathbb{C}. Formally:

Corollary

Let $U, V \subsetneq \mathbb{C}$ be two simply connected open subsets, none of which is \mathbb{C}. Then there exists a biholomorphism $f: U \rightarrow V$ (i.e. f is holomorphic, bijective and f^{-1} is holomorphic).

Proof. By the Riemann mapping theorem, there exists biholomorphisms $\varphi: U \rightarrow D_{1}(0)$ and $\psi: V \rightarrow D_{1}(0)$. Then we can simply take $f=\psi^{-1} \circ \varphi$.

The Riemann mapping theorem - 3

Corollary

Let $U \subset \mathbb{C}$ be an open subset.
Then U is simply connected if and only if it is homeomorphic to $D_{1}(0)$.

The Riemann mapping theorem - 3

Corollary

Let $U \subset \mathbb{C}$ be an open subset.
Then U is simply connected if and only if it is homeomorphic to $D_{1}(0)$.
Proof.
\Rightarrow Assume that $U \subsetneq \mathbb{C}$ is simply connected then there exists a biholomorphism $f: U \rightarrow D_{1}(0)$.
Particularly f is a homeomorphism.
Note that \mathbb{C} is also homeomorphic to $D_{1}(0)$.
\Leftarrow Assume that there exists a homeomorphism $f: V \rightarrow U$ where $V=D_{1}(0)$.
Since V is simply connected, we get that U is too since simple connectedness is preserved by homeomorphisms.

The Riemann mapping theorem - 3

Corollary

Let $U \subset \mathbb{C}$ be an open subset.
Then U is simply connected if and only if it is homeomorphic to $D_{1}(0)$.
Proof.
\Rightarrow Assume that $U \subsetneq \mathbb{C}$ is simply connected then there exists a biholomorphism $f: U \rightarrow D_{1}(0)$. Particularly f is a homeomorphism.
Note that \mathbb{C} is also homeomorphic to $D_{1}(0)$.
\Leftarrow Assume that there exists a homeomorphism $f: V \rightarrow U$ where $V=D_{1}(0)$.
Since V is simply connected, we get that U is too since simple connectedness is preserved by homeomorphisms.

Remark

Careful: the continuous image of a simply connected set may not be simply connected.
For instance $\exp (\mathbb{C})=\mathbb{C} \backslash\{0\}$.

Example 1: the Poincaré half-plane

We define the Poincaré half-plane by $\mathbb{H}=\{z \in \mathbb{C}: \mathfrak{J}(z)>0\}$.
The mapping $\varphi: \mathbb{H} \rightarrow D_{1}(0)$ defined by $\varphi(z)=\frac{z-i}{z+i}$ is biholomorphic.
First check that φ is well-defined: $\forall z \in \mathbb{H}, z \neq-i$ and $\varphi(z) \in D_{1}(0)$.
Then note that φ is the restriction of a Möbius transformation $\hat{\varphi}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.
It is not too difficult to check that $\hat{\varphi}(\mathbb{R} \cup\{\infty\})=S^{1}(:=\{z \in \mathbb{C}:|z|=1\})$.
The complement of $\mathbb{R} \cup\{\infty\}$ in $\widehat{\mathbb{C}}$ has two connected components which are \mathbb{H} and - \mathbb{H}.
And $\widehat{\mathbb{C}} \backslash S^{1}$ has two connected components: $D_{1}(0)$ and $\{z \in \mathbb{C}:|z|>1\} \cup\{\infty\}$.
Since $\varphi(i)=0 \in D_{1}(0)$, we deduce that $\varphi(H)=D_{1}(0)$.

Note that φ maps right angles to right angles!

Example 2: a horizontal band

We set

$$
\mathcal{B}:=\{z \in \mathbb{C}: 0<\mathfrak{J}(z)<a\}, a>0
$$

We know that $\psi: \mathcal{B} \rightarrow \mathbb{H}$ defined by $\psi(z)=e^{\frac{\pi}{a} z}$ is biholomorphic.
Hence $f=\varphi \circ \psi: \mathcal{B} \rightarrow D_{1}(0)$ is biholomorphic, where φ was defined in the previous slide, i.e.

$$
f(z)=\frac{e^{\frac{\pi}{a} z}-i}{e^{\frac{\pi}{a} z}+i}
$$

Example 3

In practice the biholomorphism φ between U and $D_{1}(0)$ may be difficult to express explicitely. For instance, the following set is simply connected

$$
U=((0,1) \times(0,1)) \backslash\left(\bigcup_{n \geq 2}\left\{\frac{1}{n}\right\} \times\left(0, \frac{1}{2}\right)\right)
$$

but the behavior of φ around the boundary of $D_{1}(0)$ is going to be quite complicated!

Example 3

In practice the biholomorphism φ between U and $D_{1}(0)$ may be difficult to express explicitely. For instance, the following set is simply connected

$$
U=((0,1) \times(0,1)) \backslash\left(\bigcup_{n \geq 2}\left\{\frac{1}{n}\right\} \times\left(0, \frac{1}{2}\right)\right)
$$

but the behavior of φ around the boundary of $D_{1}(0)$ is going to be quite complicated!

Even worse, we can take U to be the interior of the Koch snowflake.

