University of Toronto - MAT334H1-F - LEC0101
 Complex Variables

12 - Laurent series

Jean-Baptiste Campesato

October $26^{\text {th }}, 2020$

Recall that a function $f: U \rightarrow \mathbb{C}$, where $U \subset \mathbb{C}$ is open, is holomorphic/analytic if and only if f can be described as a power series

$$
f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

in a neighborhood of every point $z_{0} \in U$.
We are going to generalize this property in order to study f in the neighborhood of an isolated singularity z_{0} (i.e. f is not defined at z_{0} but is holomorphic in a punctured neighborhood of z_{0}), for that purpose we are going to work with Laurent series, i.e. allowing negative exponents:

$$
f(z)=\sum_{n=-\infty}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Intuitively, the more we need negative exponents in the above expression, the wilder is the singularity.
Theorem 1 (Laurent's theorem). Let $z_{0} \in \mathbb{C}$ and $0 \leq r<R \leq+\infty$. Set $U=\left\{z \in \mathbb{C}: r<\left|z-z_{0}\right|<R\right\}$ and let $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic then

$$
\forall z \in U, f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where $a_{n}=\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w$ and $\gamma:[0,1] \rightarrow \mathbb{C}$ is defined by $\gamma(t)=z_{0}+\rho e^{2 i \pi t}$ with $\rho \in(r, R)$.
We call such a series (a "power series" with exponents in \mathbb{Z}) a Laurent series.

Remark 2.

- If $R=+\infty$ then U is the complement of the closed disk centered at z_{0} and of radius r, hence it is a neighborhood of ∞.
- If $r=0$ then U is a punctured open disk centered at z_{0} and of radius R.
- If $r=0$ and $R=+\infty$ then $U=\mathbb{C} \backslash\left\{z_{0}\right\}$.

Example 3. The function $f: \mathbb{C} \backslash\{0,1\} \rightarrow \mathbb{C}$ defined by $f(z)=\frac{1}{z(1-z)}$ is holomorphic on $\mathbb{C} \backslash\{0,1\}$ and has two isolated singularities, namely 0 and 1 .

- For $0<|z|<1, f(z)=\frac{1}{z}+\frac{1}{1-z}=z^{-1}+\sum_{n=0}^{+\infty} z^{n}=\sum_{n=-1}^{+\infty} z^{n}$.
- For $0<|z-1|<1, f(z)=-\frac{1}{z-1}+\frac{1}{z}=-(z-1)^{-1}+\sum_{n=0}^{+\infty}(-1)^{n}(z-1)^{n}=\sum_{n=-1}^{+\infty}(-1)^{n}(z-1)^{n}$.
- For $1<|z|, f(z)=-\frac{1}{z^{2}} \frac{z}{z-1}=-\frac{1}{z^{2}} \frac{1}{1-\frac{1}{z}}=-\frac{1}{z^{2}} \sum_{n=0}^{+\infty} z^{-n}=\sum_{n=-\infty}^{-2}(-1) z^{n}$

In order to prove Laurent's theorem, we will need the following lemma:
Lemma 4. Let $z_{0} \in \mathbb{C}$ and $0 \leq r<R \leq+\infty$. Set $U=\left\{z \in \mathbb{C}: r<\left|z-z_{0}\right|<R\right\}$ and let $g: U \rightarrow \mathbb{C}$ be holomorphic/analytic.
Let $\rho_{1}, \rho_{2} \in \mathbb{R}$ be such that $r<\rho_{1}<\rho_{2}<R$. Let $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \mathbb{C}$ be defined by $\gamma_{k}(t)=z_{0}+\rho_{k} e^{2 i \pi t}$. Then

$$
\int_{\gamma_{1}} g(z) \mathrm{d} z=\int_{\gamma_{2}} g(z) \mathrm{d} z
$$

Proof.

We consider two simple closed curves as in the drawing (in red and blue), then by Cauchy's integral theorem:

$$
\begin{aligned}
0=0+0 & =\int_{\text {red }} g(z) \mathrm{d} z+\int_{\text {blue }} g(z) \mathrm{d} z \\
& =\int_{-\gamma_{1}} g(z) \mathrm{d} z+\int_{\gamma_{2}} g(z) \mathrm{d} z \\
& =-\int_{\gamma_{1}} g(z) \mathrm{d} z+\int_{\gamma_{2}} g(z) \mathrm{d} z
\end{aligned}
$$

Hence $\int_{\gamma_{1}} g(z) \mathrm{d} z=\int_{\gamma_{2}} g(z) \mathrm{d} z$.

Proof of Laurent's theorem. Let $r<\rho_{1}<|z|<\rho_{2}<R$ and $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \mathbb{C}$ be defined by $\gamma_{k}(t)=z_{0}+\rho_{k} e^{2 i \pi t}$.

We consider two simple closed curves as in the drawing (in red and blue). Then by Cauchy's integral formula and theorem

$$
\begin{aligned}
0+2 i \pi f(z) & =\int_{\text {red }} \frac{f(w)}{w-z} \mathrm{~d} w+\int_{\text {blue }} \frac{f(w)}{w-z} \mathrm{~d} w \\
& =-\int_{\gamma_{1}} \frac{f(w)}{w-z} \mathrm{~d} w+\int_{\gamma_{2}} \frac{f(w)}{w-z} \mathrm{~d} w \\
& =-\int_{\gamma_{1}} \frac{f(w)}{z_{0}-z} \frac{1}{1-\frac{w-z_{0}}{z-z_{0}}} \mathrm{~d} w+\int_{\gamma_{2}} \frac{f(w)}{w-z_{0}} \frac{1}{1-\frac{z-z_{0}}{w-z_{0}}} \mathrm{~d} w \\
& =\int_{\gamma_{1}} \frac{f(w)}{z_{0}-z} \sum_{n \geq 0}\left(\frac{w-z_{0}}{z_{0}-z}\right)^{n} \mathrm{~d} w+\int_{\gamma_{2}} \frac{f(w)}{w-z_{0}} \sum_{n \geq 0}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \mathrm{~d} w \\
& =\sum_{n<0}\left(\int_{\gamma_{1}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w\right)\left(z-z_{0}\right)^{n}+\sum_{n \geq 0}\left(\int_{\gamma_{2}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w\right)\left(z-z_{0}\right)^{n}
\end{aligned}
$$

Note that, for the 4th equality: if $w \in \gamma_{1}$ then $\left|\frac{w-z_{0}}{z-z_{0}}\right|<1$ and if $w \in \gamma_{2}$ then $\left|\frac{z-z_{0}}{w-z_{0}}\right|<1$.
We need to justify the $\Sigma-\int$ permutation of the last equality: that's exactly the same proof as for the power expression of a holomorphic function (see lecture from October 16).

Then we can replace γ_{1} and γ_{2} by γ thanks to the previous lemma.
Proposition 5. Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic.
Let $R>0$ be such that $D_{R}\left(z_{0}\right) \subset U$. Then f admits a Laurent series expansion centered at z_{0} on $D_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ (apply Laurent's theorem with $r=0$)

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Then

1. z_{0} is a removable singularity iff $\forall n<0, a_{n}=0$
2. z_{0} is a pole iff $\exists m \geq 1, a_{-m} \neq 0$ and $\forall n<-m, a_{n}=0$ (m is the order of the pole z_{0})
3. z_{0} is an essential singularity if and only if for infinitely many $n \in \mathbb{N}, a_{-n} \neq 0$.

Proof.

1. f coincides on $D_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ with $\sum_{\sum_{n=0}^{\infty}}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ holomorphic at z_{0}.
2. f coincides on $D_{R}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ with $\frac{\sum_{n=0}^{\infty} a_{n-m}\left(z-z_{0}\right)^{n}}{\left(z-z_{0}\right)^{m}}$.
3. if z_{0} is not a removable singularity nor a pole then it is an essential singularity.

Example 6. For $z \in \mathbb{C} \backslash\{0\}, e^{\frac{1}{z}}=\sum_{n=0}^{+\infty} \frac{\left(z^{-1}\right)^{n}}{n!}=\sum_{n=-\infty}^{0} \frac{z^{n}}{(-n)!}$. Hence $e^{\frac{1}{z}}$ has an essential singularity at 0.
Theorem 7. Let $U \subset \mathbb{C}$ be an open neighborhood of infinity, i.e. there exists $r>0$ such that $\{z \in \mathbb{C}:|z|>r\} \subset U$. Let $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic.
Then f admits a Laurent series expansion centered at 0 on $\{z \in \mathbb{C}:|z|>r\}$ (apply Laurent's theorem with $R=+\infty$)

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

Then

1. ∞ is a removable singularity iff $\forall n>0, a_{n}=0$
2. ∞ is a pole iff $\exists m \geq 1, a_{m} \neq 0$ and $\forall n>m, a_{n}=0 \quad$ (m is the order of the pole at ∞)
3. ∞ is an essential singularity if and only if for infinitely many $n \in \mathbb{N}, a_{n} \neq 0$.

Proof. Recall that the inversion $\widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}, z \mapsto \frac{1}{z}$, swaps 0 and ∞.
Definition 8. The principal part of a Laurent series

$$
f(z)=\sum_{n=-\infty}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

is the part consisting only of the negative exponents

$$
\sum_{n=-\infty}^{-1} a_{n}\left(z-z_{0}\right)^{n}
$$

Definition 9. Let z_{0} be an isolated singularity of f. Denote the Laurent expansion of f around z_{0} by

$$
f(z)=\sum_{n=-\infty}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Then the residue of f at z_{0} is the coefficient of $\left(z-z_{0}\right)^{-1}$, i.e. $\operatorname{Res}\left(f, z_{0}\right):=a_{-1}$.
Proposition 10. Assume that f is holomorphic on $D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ for some $r>0$ then

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{2 i \pi} \int_{\gamma} f(w) \mathrm{d} w
$$

where $\gamma:[0,1] \rightarrow \mathbb{C}$ is defined by $\gamma(t)=z_{0}+\rho e^{2 i \pi t}$ with $\rho \in(0, r)$.
Remark 11. Note that the above integral doesn't depend on the choice of ρ by Lemma 4.
Example 12. In a punctured neighborhood of 0, we have

$$
\frac{e^{z}-1}{z^{4}}=\frac{1}{z^{3}}+\frac{1}{2 z^{2}}+\frac{1}{6 z}+\frac{1}{24}+\frac{z}{120}+\cdots
$$

Hence $\operatorname{Res}\left(\frac{e^{z}-1}{z^{4}}, 0\right)=\frac{1}{6}$.

Proposition 13 (How to compute residues).

- If z_{0} is a pole of order 1 of f then $\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)$.
- If z_{0} is a pole of order k of f then $\operatorname{Res}\left(f, z_{0}\right)=\frac{h^{(k-1)}\left(z_{0}\right)}{(k-1)!}$ where $h(z)=\left(z-z_{0}\right)^{k} f(z)$.
- If f is holomorphic at z_{0} and g has a zero of order 1 at z_{0} then $\operatorname{Res}\left(\frac{f}{g}, z_{0}\right)=\frac{f\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}$.
- Assume that z_{0} is an isolated zero of f then the order of vanishing of f at z_{0} is $\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$.

Homework 14.

- Prove the above identities!
- Compute some residues (i.e. practice exercises from the textbook!).

Definition 15. Assume that f is holomorphic/analytic in a neighborhood of infinity, i.e. on $\{z \in \mathbb{C}:|z|>r\}$ for some r. We define the residue of f at ∞ by

$$
\operatorname{Res}(f, \infty):=\operatorname{Res}\left(\frac{-1}{z^{2}} f\left(\frac{1}{z}\right), 0\right)
$$

Proposition 16. Assume that f is holomorphic on $\{z \in \mathbb{C}:|z|>r\}$ for some $r>0$ then

$$
\operatorname{Res}(f, \infty)=-\frac{1}{2 i \pi} \int_{\gamma} f(w) \mathrm{d} w
$$

where $\gamma:[0,1] \rightarrow \mathbb{C}$ is defined by $\gamma(t)=z_{0}+\rho e^{2 i \pi t}$ with $\rho>r$.
Remark 17. The sign is due to the fact that γ is not positively oriented: it is considered as the boundary of the complement of the disk since that's where is located ∞.
Homework 18. Prove the proposition (you will see where does $-\frac{1}{z^{2}}$ come from).

