## University of Toronto – MAT334H1-F – LEC0101 Complex Variables

## 12 - Laurent series

Jean-Baptiste Campesato

October 26th, 2020

Recall that a function  $f:U\to\mathbb{C}$ , where  $U\subset\mathbb{C}$  is open, is holomorphic/analytic if and only if f can be described as a power series

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

in a neighborhood of every point  $z_0 \in U$ .

We are going to generalize this property in order to study f in the neighborhood of an isolated singularity  $z_0$  (i.e. f is not defined at  $z_0$  but is holomorphic in a punctured neighborhood of  $z_0$ ), for that purpose we are going to work with Laurent series, i.e. allowing negative exponents:

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n$$

Intuitively, the more we need negative exponents in the above expression, the wilder is the singularity.

**Theorem 1** (Laurent's theorem). Let  $z_0 \in \mathbb{C}$  and  $0 \le r < R \le +\infty$ . Set  $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$  and let  $f: U \to \mathbb{C}$  be holomorphic/analytic then

$$\forall z \in U, f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

where 
$$a_n = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w$$
 and  $\gamma: [0,1] \to \mathbb{C}$  is defined by  $\gamma(t) = z_0 + \rho e^{2i\pi t}$  with  $\rho \in (r,R)$ .

We call such a series (a "power series" with exponents in  $\mathbb{Z}$ ) a **Laurent series**.

## Remark 2.

- If  $R = +\infty$  then U is the complement of the closed disk centered at  $z_0$  and of radius r, hence it is a neighborhood of  $\infty$ .
- If r = 0 then U is a punctured open disk centered at  $z_0$  and of radius R.
- If r = 0 and  $R = +\infty$  then  $U = \mathbb{C} \setminus \{z_0\}$ .

Laurent series

**Example 3.** The function  $f: \mathbb{C} \setminus \{0,1\} \to \mathbb{C}$  defined by  $f(z) = \frac{1}{z(1-z)}$  is holomorphic on  $\mathbb{C} \setminus \{0,1\}$  and has two isolated singularities, namely 0 and 1.

• For 
$$0 < |z| < 1$$
,  $f(z) = \frac{1}{z} + \frac{1}{1-z} = z^{-1} + \sum_{n=0}^{+\infty} z^n = \sum_{n=-1}^{+\infty} z^n$ .

• For 
$$0 < |z-1| < 1$$
,  $f(z) = -\frac{1}{z-1} + \frac{1}{z} = -(z-1)^{-1} + \sum_{n=0}^{+\infty} (-1)^n (z-1)^n = \sum_{n=-1}^{+\infty} (-1)^n (z-1)^n$ .

• For 
$$1 < |z|$$
,  $f(z) = -\frac{1}{z^2} \frac{z}{z-1} = -\frac{1}{z^2} \frac{1}{1-\frac{1}{z}} = -\frac{1}{z^2} \sum_{n=0}^{+\infty} z^{-n} = \sum_{n=-\infty}^{-2} (-1)z^n$ 

In order to prove Laurent's theorem, we will need the following lemma:

**Lemma 4.** Let  $z_0 \in \mathbb{C}$  and  $0 \le r < R \le +\infty$ . Set  $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$  and let  $g : U \to \mathbb{C}$  be holomorphic/analytic.

Let  $\rho_1, \rho_2 \in \mathbb{R}$  be such that  $r < \rho_1 < \rho_2 < R$ . Let  $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$  be defined by  $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$ . Then

$$\int_{\gamma_1} g(z) dz = \int_{\gamma_2} g(z) dz$$

Proof.



We consider two simple closed curves as in the drawing (in red and blue), then by Cauchy's integral theorem:

$$0 = 0 + 0 = \int_{red} g(z)dz + \int_{blue} g(z)dz$$
$$= \int_{-\gamma_1} g(z)dz + \int_{\gamma_2} g(z)dz$$
$$= -\int_{\gamma_1} g(z)dz + \int_{\gamma_2} g(z)dz$$

Hence 
$$\int_{\gamma_1} g(z) dz = \int_{\gamma_2} g(z) dz$$
.

*Proof of Laurent's theorem.* Let  $r < \rho_1 < |z| < \rho_2 < R$  and  $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$  be defined by  $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$ .



We consider two simple closed curves as in the drawing (in red and blue). Then by Cauchy's integral formula and theorem

$$\begin{aligned} 0 + 2i\pi f(z) &= \int_{red} \frac{f(w)}{w - z} \mathrm{d}w + \int_{blue} \frac{f(w)}{w - z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{w - z} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w - z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{z_0 - z} \frac{1}{1 - \frac{w - z_0}{z - z_0}} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w - z_0} \frac{1}{1 - \frac{z - z_0}{w - z_0}} \mathrm{d}w \\ &= \int_{\gamma_1} \frac{f(w)}{z_0 - z} \sum_{n \ge 0} \left(\frac{w - z_0}{z_0 - z}\right)^n \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w - z_0} \sum_{n \ge 0} \left(\frac{z - z_0}{w - z_0}\right)^n \mathrm{d}w \\ &= \sum_{n < 0} \left(\int_{\gamma_1} \frac{f(w)}{(w - z_0)^{n+1}} \mathrm{d}w\right) (z - z_0)^n + \sum_{n \ge 0} \left(\int_{\gamma_2} \frac{f(w)}{(w - z_0)^{n+1}} \mathrm{d}w\right) (z - z_0)^n \end{aligned}$$

Note that, for the 4th equality: if  $w \in \gamma_1$  then  $\left| \frac{w - z_0}{z - z_0} \right| < 1$  and if  $w \in \gamma_2$  then  $\left| \frac{z - z_0}{w - z_0} \right| < 1$ .

We need to justify the  $\sum -\int$  permutation of the last equality: that's exactly the same proof as for the power expression of a holomorphic function (see lecture from October 16).

Then we can replace  $\gamma_1$  and  $\gamma_2$  by  $\gamma$  thanks to the previous lemma.

**Proposition 5.** Let  $U \subset \mathbb{C}$  be open and  $z_0 \in U$ . Assume that  $f : U \setminus \{z_0\} \to \mathbb{C}$  is holomorphic/analytic. Let R > 0 be such that  $D_R(z_0) \subset U$ . Then f admits a Laurent series expansion centered at  $z_0$  on  $D_R(z_0) \setminus \{z_0\}$  (apply Laurent's theorem with r = 0)

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

Then

- 1.  $z_0$  is a removable singularity iff  $\forall n < 0$ ,  $a_n = 0$
- 2.  $z_0$  is a pole iff  $\exists m \ge 1$ ,  $a_{-m} \ne 0$  and  $\forall n < -m$ ,  $a_n = 0$  (m is the order of the pole  $z_0$ )
- 3.  $z_0$  is an essential singularity if and only if for infinitely many  $n \in \mathbb{N}$ ,  $a_{-n} \neq 0$ .

Proof.

- 1. f coincides on  $D_R(z_0) \setminus \{z_0\}$  with  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  holomorphic at  $z_0$ . 2. f coincides on  $D_R(z_0) \setminus \{z_0\}$  with  $\frac{\sum_{n=0}^{\infty} a_{n-m}(z-z_0)^n}{(z-z_0)^m}$ .
- 3. if  $z_0$  is not a removable singularity nor a pole then it is an essential singularity.

**Example 6.** For  $z \in \mathbb{C} \setminus \{0\}$ ,  $e^{\frac{1}{z}} = \sum_{n=0}^{+\infty} \frac{\left(z^{-1}\right)^n}{n!} = \sum_{n=-\infty}^{0} \frac{z^n}{(-n)!}$ . Hence  $e^{\frac{1}{z}}$  has an essential singularity at 0.

**Theorem 7.** Let  $U \subset \mathbb{C}$  be an open neighborhood of infinity, i.e. there exists r > 0 such that  $\{z \in \mathbb{C} : |z| > r\} \subset U$ . Let  $f : U \to \mathbb{C}$  be holomorphic/analytic.

Then f admits a Laurent series expansion centered at 0 on  $\{z \in \mathbb{C} : |z| > r\}$  (apply Laurent's theorem with  $R = +\infty$ )

$$f(z) = \sum_{n = -\infty}^{\infty} a_n z^n$$

Then

- 1.  $\infty$  is a removable singularity iff  $\forall n > 0$ ,  $a_n = 0$
- 2.  $\infty$  is a pole iff  $\exists m \ge 1$ ,  $a_m \ne 0$  and  $\forall n > m$ ,  $a_n = 0$  (m is the order of the pole at  $\infty$ )
- 3.  $\infty$  is an essential singularity if and only if for infinitely many  $n \in \mathbb{N}$ ,  $a_n \neq 0$ .

*Proof.* Recall that the inversion  $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ ,  $z \mapsto \frac{1}{z}$ , swaps 0 and  $\infty$ .

**Definition 8.** The principal part of a Laurent series

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n$$

is the part consisting only of the negative exponents

$$\sum_{n=-\infty}^{-1} a_n (z - z_0)^n$$

**Definition 9.** Let  $z_0$  be an isolated singularity of f. Denote the Laurent expansion of f around  $z_0$  by

$$f(z) = \sum_{n = -\infty}^{+\infty} a_n (z - z_0)^n$$

Then the **residue of** f **at**  $z_0$  is the coefficient of  $(z - z_0)^{-1}$ , i.e.  $\text{Res}(f, z_0) := a_{-1}$ .

**Proposition 10.** Assume that f is holomorphic on  $D_r(z_0) \setminus \{z_0\}$  for some r > 0 then

Res
$$(f, z_0) = \frac{1}{2i\pi} \int_{\gamma} f(w) dw$$

where  $\gamma:[0,1]\to\mathbb{C}$  is defined by  $\gamma(t)=z_0+\rho e^{2i\pi t}$  with  $\rho\in(0,r)$ .

**Remark 11.** Note that the above integral doesn't depend on the choice of  $\rho$  by Lemma 4.

**Example 12.** In a punctured neighborhood of 0, we have

$$\frac{e^z - 1}{z^4} = \frac{1}{z^3} + \frac{1}{2z^2} + \frac{1}{6z} + \frac{1}{24} + \frac{z}{120} + \cdots$$

Hence  $\operatorname{Res}\left(\frac{e^z-1}{z^4},0\right) = \frac{1}{6}$ .

**Proposition 13** (How to compute residues).

- If  $z_0$  is a pole of order 1 of f then  $\operatorname{Res}(f, z_0) = \lim_{z \to z_0} (z z_0) f(z)$ .
- If  $z_0$  is a pole of order k of f then  $\text{Res}(f, z_0) = \frac{h^{(k-1)}(z_0)}{(k-1)!}$  where  $h(z) = (z z_0)^k f(z)$ .
- If f is holomorphic at  $z_0$  and g has a zero of order 1 at  $z_0$  then  $\operatorname{Res}\left(\frac{f}{g},z_0\right)=\frac{f(z_0)}{g'(z_0)}$ .
- Assume that  $z_0$  is an isolated zero of f then the order of vanishing of f at  $z_0$  is  $\operatorname{Res}\left(\frac{f'}{f},z_0\right)$ .

## Homework 14.

- Prove the above identities!
- Compute some residues (i.e. practice exercises from the textbook!).

**Definition 15.** Assume that f is holomorphic/analytic in a neighborhood of infinity, i.e. on  $\{z \in \mathbb{C} : |z| > r\}$  for some r. We define the **residue of** f **at**  $\infty$  by

$$\operatorname{Res}(f, \infty) := \operatorname{Res}\left(\frac{-1}{z^2} f\left(\frac{1}{z}\right), 0\right)$$

**Proposition 16.** Assume that f is holomorphic on  $\{z \in \mathbb{C} : |z| > r\}$  for some r > 0 then

$$\operatorname{Res}(f, \infty) = -\frac{1}{2i\pi} \int_{\gamma} f(w) dw$$

where  $\gamma:[0,1]\to\mathbb{C}$  is defined by  $\gamma(t)=z_0+\rho e^{2i\pi t}$  with  $\rho>r.$ 

**Remark 17.** The sign is due to the fact that  $\gamma$  is not positively oriented: it is considered as the boundary of the complement of the disk since that's where is located  $\infty$ .

**Homework 18.** Prove the proposition (you will see where does  $-\frac{1}{z^2}$  come from).