MAT334H1-F – LEC0101 Complex Variables

ZEROES OF ANALYTIC FUNCTIONS - 2

November 16th, 2020

Reviews from Oct 23 – Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1
$$z_0$$
 is a pole of f , i.e. $\lim_{z \to z_0} |f(z)| = +\infty$.

2 There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z - z_0)^n}$ on $U \setminus \{z_0\}$.

3 z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

Definition: order of a pole

The integer $n \in \mathbb{N}_{>0}$ in 2 is uniquely defined and we say that f admits a **pole of order** n at z_0 .

Proposition

The order of the pole z_0 is also:

- The order of vanishing of 1/f at z_0 .
- The smallest *n* such that $\lim_{z \to z_0} (z z_0)^{n+1} f(z) = 0$.

Logarithmic residue

Lemma

- If z_0 is an isolated zero of f then $\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$ is the order of z_0 .
- If z_0 is an isolated pole of f then $-\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$ is the order of z_0 .

Logarithmic residue

Lemma

- If z_0 is an isolated zero of f then $\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$ is the order of z_0 .
- If z_0 is an isolated pole of f then $-\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$ is the order of z_0 .

Proof.

• Assume that $f(z) = (z - z_0)^m g(z)$ in a neighborhood of z_0 where g is analytic and $g(z_0) \neq 0$. Then $\frac{f'(z)}{f(z)} = m(z - z_0)^{-1} + \frac{g'(z)}{g(z)}$. We conclude using that $\frac{g'}{g}$ is holomorphic in a neighborhood of z_0 .

Logarithmic residue

Lemma

- If z_0 is an isolated zero of f then $\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$ is the order of z_0 .
- If z_0 is an isolated pole of f then $-\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$ is the order of z_0 .

Proof.

- Assume that $f(z) = (z z_0)^m g(z)$ in a neighborhood of z_0 where g is analytic and $g(z_0) \neq 0$. Then $\frac{f'(z)}{f(z)} = m(z - z_0)^{-1} + \frac{g'(z)}{g(z)}$. We conclude using that $\frac{g'}{g}$ is holomorphic in a neighborhood of z_0 .
- z_0 is a pole of order m of f if and only if it is a zero of order m of $\frac{1}{f}$. We conclude using that

$$\operatorname{Res}\left(\frac{(1/f)'}{(1/f)}, z_0\right) = -\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$$

Theorem: the argument principle

Let $U \subset \mathbb{C}$ be open. Let $S \subset U$ be finite. Let $f : U \setminus S \to \mathbb{C}$ be holomorphic/analytic. Let $\gamma : [a, b] \to \mathbb{C}$ be piecewise smooth positively oriented simple closed curve on U which doesn't pass through a zero or a pole of f and such that its inside is entirely included in U. Then

$$\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} \mathrm{d}z = Z_{f,\gamma} - P_{f,\gamma}$$

where

- $Z_{f,\gamma}$ is the number of zeroes of f enclosed in γ counted with their multiplicites/orders,
- $P_{f,\gamma}$ is the number of poles of f enclosed in γ counted with their multiplicites/orders.

Theorem: the argument principle

Let $U \subset \mathbb{C}$ be open. Let $S \subset U$ be finite. Let $f : U \setminus S \to \mathbb{C}$ be holomorphic/analytic. Let $\gamma : [a, b] \to \mathbb{C}$ be piecewise smooth positively oriented simple closed curve on U which doesn't pass through a zero or a pole of f and such that its inside is entirely included in U. Then

$$\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} \mathrm{d}z = Z_{f,\gamma} - P_{f,\gamma}$$

where

- $Z_{f,\gamma}$ is the number of zeroes of f enclosed in γ counted with their multiplicites/orders,
- $P_{f,\gamma}$ is the number of poles of f enclosed in γ counted with their multiplicites/orders.

Proof. We apply Cauchy's residue theorem to $\frac{f'}{f}$ and then we use the above lemma:

$$\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{z \in \text{Inside}(\gamma)} \text{Res}\left(\frac{f'}{f}, z\right) = \sum_{z \text{ zero of } f} \text{Res}\left(\frac{f'}{f}, z_0\right) + \sum_{z \text{ pole of } f} \text{Res}\left(\frac{f'}{f}, z_0\right) = Z_{f,\gamma} - P_{f,\gamma} \quad \blacksquare$$

The argument principle – Interpretation

The value $\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz$ involved in the previous slide is equal to the number of counterclockwise turns made by f(z) as z goes through γ .

Indeed, if we set
$$\tilde{\gamma}(t) = f \circ \gamma$$
 then $\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\tilde{\gamma}} \frac{1}{w} dw$.

Assume for instance that $\tilde{\gamma} : [0,1] \to \mathbb{C}$ is defined by $\tilde{\gamma}(t) = z_0 + re^{2i\pi nt}$ where $n \in \mathbb{Z}$. Then $\frac{1}{2i\pi} \int_{\tilde{\gamma}} \frac{1}{w} dw = n$ which is the number of counterclockwise turns made by $\tilde{\gamma}$ around z_0 .

Then the conclusion of the previous statement can be rewritten as

$$\frac{\text{changes of } \arg(f(z)) \text{ as } z \text{ goes through } \gamma}{2\pi} = Z_{f,\gamma} - P_{f,\gamma}$$

That's why it is called *the argument principle*.

The previous lemma holds at ∞ :

Lemma

- If ∞ is an isolated zero of f then $\operatorname{Res}\left(\frac{f'}{f},\infty\right)$ is the order of ∞ .
- If ∞ is an isolated pole of f then $-\operatorname{Res}\left(\frac{f'}{f},\infty\right)$ is the order of ∞ .

Proof. ∞ is an isolated zero (resp. pole) of order *m* of *f* if and only if 0 is an isolated zero (resp. pole) of order *m* of g(z) = f(1/z). Then $m = \operatorname{Res}\left(\frac{g'}{g}, 0\right) = \operatorname{Res}\left(\frac{-1}{z^2} \frac{f'(1/z)}{f(1/z)}, 0\right) = \operatorname{Res}\left(\frac{f'}{f}, \infty\right)$.

Rouché's theorem – version 1

Let $U \subset \mathbb{C}$ be open, $f, g : U \to \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma : [a, b] \to \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U. Assume that

 $\forall t \in [a, b], \, \left|g(\gamma(t))\right| < \left|f(\gamma(t))\right|$

Then f and f + g have the same number of zeroes inside γ , counted with multiplicities.

Proof. For
$$t \in [0, 1]$$
, set $\varphi_t(z) = f(z) + (1 - t)g(z)$ and $h(t) = \frac{1}{2i\pi} \int_{\gamma} \frac{\varphi'_t(z)}{\varphi_t(z)} dz$.

The function h is continuous since φ_t doesn't vanish on γ , indeed for $z \in \gamma$

$$|\varphi_t(z)| \ge |f(z)| + (1-t)|g(z)| \ge |f(z)| - |g(z)| > 0$$

Hence *h* is a continuous function taking values in \mathbb{Z} (by the principle argument), so it is constant. Hence h(0) = h(1), i.e. $Z_{f+g,\gamma} - P_{f+g,\gamma} = Z_{f,\gamma} - P_{f,\gamma}$ by the principle argument. But these functions have no poles in the inside of γ , hence $Z_{f+g,\gamma} = Z_{f,\gamma}$.

Rouché's theorem – 2

Rouché's theorem – version 2

Let $U \subset \mathbb{C}$ be open, $f, g : U \to \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma : [a, b] \to \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U. Assume that

$$\forall z \in \gamma, |f(z) - g(z)| < |f(z)|$$

Then f and g have the same number of zeroes inside γ , counted with multiplicities.

Proof. That's an immediate consequence of the previous version since z_0 is a zero of order *n* of *g* iff it is a zero of order *n* of -g.

Rouché's theorem – version 3

Let $U \subset \mathbb{C}$ be open, $f, g : U \to \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma : [a, b] \to \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U. Assume that

 $\forall z \in \gamma, |f(z) + g(z)| < |f(z)|$

Then *f* and *g* have the same number of zeroes inside γ , counted with multiplicities.

Proof. Since z_0 is a zero of order *n* of *g* iff it is a zero of order *n* of -g.

We already proved the FTA (or d'Alembert–Gauss theorem) using Liouville's theorem (Oct 21): a non-constant complex polynomial admits at least one root. Here is another proof using Rouché's theorem.

Theorem

A complex polynomial of degree *n* has exactly *n* complex roots (counted with multiplicity).

Proof. Assume that $P(z) = a_n z^n + Q(z)$ where Q is a polynomial of degree < n and $a_n \neq 0$. If we take R > 0 big enough then $|Q(z)| < |a_n z^n|$ on $\gamma : [0, 1] \to \mathbb{C}$ defined by $\gamma(t) = Re^{2i\pi t}$. By Rouché's theorem, $P(z) = a_n z^n + Q(z)$ and $a_n z^n$ have the same number of zeroes counted with multiplicity.