Zeroes of analytic functions - 2

November 16 ${ }^{\text {th }}, 2020$

Reviews from Oct 23 - Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
(2) There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
(3) z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Definition: order of a pole

The integer $n \in \mathbb{N}_{>0}$ in 2 is uniquely defined and we say that f admits a pole of order n at z_{0}.

Proposition

The order of the pole z_{0} is also:

- The order of vanishing of $1 / f$ at z_{0}.
- The smallest n such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Logarithmic residue

Lemma

- If z_{0} is an isolated zero of f then $\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$ is the order of z_{0}.
- If z_{0} is an isolated pole of f then $-\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$ is the order of z_{0}.

Logarithmic residue

Lemma

- If z_{0} is an isolated zero of f then $\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$ is the order of z_{0}.
- If z_{0} is an isolated pole of f then $-\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$ is the order of z_{0}.

Proof.

- Assume that $f(z)=\left(z-z_{0}\right)^{m} g(z)$ in a neighborhood of z_{0} where g is analytic and $g\left(z_{0}\right) \neq 0$.

Then $\frac{f^{\prime}(z)}{f(z)}=m\left(z-z_{0}\right)^{-1}+\frac{g^{\prime}(z)}{g(z)}$.
We conclude using that $\frac{g^{\prime}}{g}$ is holomorphic in a neighborhood of z_{0}.

Logarithmic residue

Lemma

- If z_{0} is an isolated zero of f then $\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$ is the order of z_{0}.
- If z_{0} is an isolated pole of f then $-\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)$ is the order of z_{0}.

Proof.

- Assume that $f(z)=\left(z-z_{0}\right)^{m} g(z)$ in a neighborhood of z_{0} where g is analytic and $g\left(z_{0}\right) \neq 0$.

Then $\frac{f^{\prime}(z)}{f(z)}=m\left(z-z_{0}\right)^{-1}+\frac{g^{\prime}(z)}{g(z)}$.
We conclude using that $\frac{g^{\prime}}{g}$ is holomorphic in a neighborhood of z_{0}.

- z_{0} is a pole of order m of f if and only if it is a zero of order m of $\frac{1}{f}$. We conclude using that

$$
\operatorname{Res}\left(\frac{(1 / f)^{\prime}}{(1 / f)}, z_{0}\right)=-\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)
$$

The argument principle - Statement

Theorem: the argument principle

Let $U \subset \mathbb{C}$ be open. Let $S \subset U$ be finite. Let $f: U \backslash S \rightarrow \mathbb{C}$ be holomorphic/analytic.
Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be piecewise smooth positively oriented simple closed curve on U which doesn't pass through a zero or a pole of f and such that its inside is entirely included in U. Then

$$
\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=Z_{f, \gamma}-P_{f, \gamma}
$$

where

- $Z_{f, \gamma}$ is the number of zeroes of f enclosed in γ counted with their multiplicites/orders,
- $P_{f, r}$ is the number of poles of f enclosed in γ counted with their multiplicites/orders.

The argument principle - Statement

Theorem: the argument principle

Let $U \subset \mathbb{C}$ be open. Let $S \subset U$ be finite. Let $f: U \backslash S \rightarrow \mathbb{C}$ be holomorphic/analytic.
Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be piecewise smooth positively oriented simple closed curve on U which doesn't pass through a zero or a pole of f and such that its inside is entirely included in U. Then

$$
\frac{1}{2 i \pi} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=Z_{f, \gamma}-P_{f, \gamma}
$$

where

- $Z_{f, \gamma}$ is the number of zeroes of f enclosed in γ counted with their multiplicites/orders,
- $P_{f, r}$ is the number of poles of f enclosed in γ counted with their multiplicites/orders.

Proof. We apply Cauchy's residue theorem to $\frac{f^{\prime}}{f}$ and then we use the above lemma:

$$
\frac{1}{2 i \pi} \int_{r} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\sum_{z \in \operatorname{Inside}(r)} \operatorname{Res}\left(\frac{f^{\prime}}{f}, z\right)=\sum_{z \text { zero of } f} \operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)+\sum_{z \text { pole of } f} \operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)=Z_{f, r}-P_{f, r}
$$

The argument principle - Interpretation

The value $\frac{1}{2 i \pi} \int_{Y} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z$ involved in the previous slide is equal to the number of counterclockwise turns made by $f(z)$ as z goes through γ.

Indeed, if we set $\tilde{\gamma}(t)=f \circ \gamma$ then $\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\int_{\tilde{\gamma}} \frac{1}{w} \mathrm{~d} w$.
Assume for instance that $\tilde{\gamma}:[0,1] \rightarrow \mathbb{C}$ is defined by $\tilde{\gamma}(t)=z_{0}+r e^{2 i \pi n t}$ where $n \in \mathbb{Z}$.
Then $\frac{1}{2 i \pi} \int_{\tilde{\gamma}} \frac{1}{w} \mathrm{~d} w=n$ which is the number of counterclockwise turns made by $\tilde{\gamma}$ around z_{0}.

Then the conclusion of the previous statement can be rewritten as

$$
\frac{\text { changes of } \arg (f(z)) \text { as } z \text { goes through } \gamma}{2 \pi}=Z_{f, \gamma}-P_{f, \gamma}
$$

That's why it is called the argument principle.

Generalization at infinity

The previous lemma holds at ∞ :

Lemma

- If ∞ is an isolated zero of f then $\operatorname{Res}\left(\frac{f^{\prime}}{f}, \infty\right)$ is the order of ∞.
- If ∞ is an isolated pole of f then $-\operatorname{Res}\left(\frac{f^{\prime}}{f}, \infty\right)$ is the order of ∞.

Proof. ∞ is an isolated zero (resp. pole) of order m of f if and only if 0 is an isolated zero (resp. pole) of order m of $g(z)=f(1 / z)$.
Then $m=\operatorname{Res}\left(\frac{g^{\prime}}{g}, 0\right)=\operatorname{Res}\left(\frac{-1}{z^{2}} \frac{f^{\prime}(1 / z)}{f(1 / z)}, 0\right)=\operatorname{Res}\left(\frac{f^{\prime}}{f}, \infty\right)$.

Rouché's theorem - 1

Rouchés theorem - version 1

Let $U \subset \mathbb{C}$ be open, $f, g: U \rightarrow \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U.
Assume that

$$
\forall t \in[a, b],|g(\gamma(t))|<|f(\gamma(t))|
$$

Then f and $f+g$ have the same number of zeroes inside γ, counted with multiplicities.
Proof. For $t \in[0,1]$, set $\varphi_{t}(z)=f(z)+(1-t) g(z)$ and $h(t)=\frac{1}{2 i \pi} \int_{\gamma} \frac{\varphi_{t}^{\prime}(z)}{\varphi_{t}(z)} \mathrm{d} z$.
The function h is continuous since φ_{t} doesn't vanish on γ, indeed for $z \in \gamma$

$$
\left|\varphi_{t}(z)\right| \geq|f(z)|+(1-t)|g(z)| \geq|f(z)|-|g(z)|>0
$$

Hence h is a continuous function taking values in \mathbb{Z} (by the principle argument), so it is constant. Hence $h(0)=h(1)$, i.e. $Z_{f+g, \gamma}-P_{f+g, \gamma}=Z_{f, \gamma}-P_{f, \gamma}$ by the principle argument.
But these functions have no poles in the inside of γ, hence $Z_{f+g, \gamma}=Z_{f, \gamma}$.

Rouché's theorem - 2

Rouchés theorem - version 2

Let $U \subset \mathbb{C}$ be open, $f, g: U \rightarrow \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U.
Assume that

$$
\forall z \in \gamma,|f(z)-g(z)|<|f(z)|
$$

Then f and g have the same number of zeroes inside γ, counted with multiplicities.
Proof. That's an immediate consequence of the previous version since z_{0} is a zero of order n of g iff it is a zero of order n of $-g$.

Rouché's theorem - version 3

Let $U \subset \mathbb{C}$ be open, $f, g: U \rightarrow \mathbb{C}$ be two holomorphic/analytic functions on U, and $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth simple closed curve on U whose inside is also included in U.
Assume that

$$
\forall z \in \gamma,|f(z)+g(z)|<|f(z)|
$$

Then f and g have the same number of zeroes inside γ, counted with multiplicities.
Proof. Since z_{0} is a zero of order n of g iff it is a zero of order n of $-g$.

The fundamental theorem of algebra - bis repetita placent

We already proved the FTA (or d'Alembert-Gauss theorem) using Liouville's theorem (Oct 21): a non-constant complex polynomial admits at least one root.
Here is another proof using Rouché's theorem.

Theorem

A complex polynomial of degree n has exactly n complex roots (counted with multiplicity).
Proof. Assume that $P(z)=a_{n} z^{n}+Q(z)$ where Q is a polynomial of degree $<n$ and $a_{n} \neq 0$. If we take $R>0$ big enough then $|Q(z)|<\left|a_{n} z^{n}\right|$ on $\gamma:[0,1] \rightarrow \mathbb{C}$ defined by $\gamma(t)=R e^{2 i \pi t}$. By Rouchés theorem, $P(z)=a_{n} z^{n}+Q(z)$ and $a_{n} z^{n}$ have the same number of zeroes counted with multiplicity.

