Zeroes of analytic functions - 1

November $4^{\text {th }}, 2020$ and November $6^{\text {th }}, 2020$

Reviews from Oct 16 - Zeroes

Definition: order of a zero

Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic. Let $z_{0} \in U$ be such that $f\left(z_{0}\right)=0$. We define the order of vanishing of f at z_{0} by $m_{f}\left(z_{0}\right):=\min \left\{n \in \mathbb{N}: f^{(n)}\left(z_{0}\right) \neq 0\right\}$. Note that $m_{f}\left(z_{0}\right)>0$ since $f\left(z_{0}\right)=0$.

Proposition

Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic. Let $z_{0} \in U$ be such that $f\left(z_{0}\right)=0$. Denote the power series expansion of f at z_{0} by $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$. Then $m_{f}\left(z_{0}\right)=\min \left\{n \in \mathbb{N}: a_{n} \neq 0\right\}$.

Proposition

Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic. Then z_{0} is a zero of order n of f if and only if there exists $g: U \rightarrow \mathbb{C}$ holomorphic such that $f(z)=\left(z-z_{0}\right)^{n} g(z)$ and $g\left(z_{0}\right) \neq 0$.

Reviews from Oct 16 - Analytic continuation

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_{0} \in U$ such that $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}\left(z_{0}\right)=0$ then $f \equiv 0$ on U.

Corollary

Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic functions. If f and g coincide in the neighborhood of a point,

$$
\text { i.e. } \exists z_{0} \in U, \exists r>0, \forall z \in D_{r}\left(z_{0}\right) \cap U, f(z)=g(z) \text {, }
$$

then they coincide on U,

$$
\text { i.e. } \forall z \in U, f(z)=g(z) \text {. }
$$

Isolated zeroes - 1

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{1}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
${ }^{1}$ Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

Isolated zeroes - 1

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{1}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
Proof. Assume that z_{0} is a non-isolated zero of f.

[^0]
Isolated zeroes - 1

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{1}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
Proof. Assume that z_{0} is a non-isolated zero of f.
We know that f admits a power series expansion $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ in a neighborhood of z_{0}.

[^1]
Isolated zeroes - 1

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{1}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
Proof. Assume that z_{0} is a non-isolated zero of f.
We know that f admits a power series expansion $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ in a neighborhood of z_{0}.
Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_{n} \neq 0$ then $f(z)=\left(z-z_{0}\right)^{n} g(z)$ where g is holomorphic and $g\left(z_{0}\right) \neq 0$.

[^2]
Isolated zeroes - 1

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{1}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
Proof. Assume that z_{0} is a non-isolated zero of f.
We know that f admits a power series expansion $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ in a neighborhood of z_{0}.
Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_{n} \neq 0$ then $f(z)=\left(z-z_{0}\right)^{n} g(z)$ where g is holomorphic and $g\left(z_{0}\right) \neq 0$. For every $n \in \mathbb{N}_{>0}, \exists w_{n} \in\left(D_{\frac{1}{n}}\left(z_{0}\right) \cap U\right) \backslash\left\{z_{0}\right\}, f\left(w_{n}\right)=0$.

[^3]
Isolated zeroes - 1

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{1}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
Proof. Assume that z_{0} is a non-isolated zero of f.
We know that f admits a power series expansion $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ in a neighborhood of z_{0}.
Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_{n} \neq 0$ then $f(z)=\left(z-z_{0}\right)^{n} g(z)$ where g is holomorphic and $g\left(z_{0}\right) \neq 0$.
For every $n \in \mathbb{N}_{>0}, \exists w_{n} \in\left(D_{\frac{1}{n}}\left(z_{0}\right) \cap U\right) \backslash\left\{z_{0}\right\}, f\left(w_{n}\right)=0$. But then $g\left(w_{n}\right)=0$ since $w_{n} \neq z_{0}$

[^4]
Isolated zeroes - 1

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{1}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
Proof. Assume that z_{0} is a non-isolated zero of f.
We know that f admits a power series expansion $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ in a neighborhood of z_{0}.
Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_{n} \neq 0$ then $f(z)=\left(z-z_{0}\right)^{n} g(z)$ where g is holomorphic and $g\left(z_{0}\right) \neq 0$.
For every $n \in \mathbb{N}_{>0}, \exists w_{n} \in\left(D_{\frac{1}{n}}\left(z_{0}\right) \cap U\right) \backslash\left\{z_{0}\right\}, f\left(w_{n}\right)=0$. But then $g\left(w_{n}\right)=0$ since $w_{n} \neq z_{0}$
Then, since $w_{n} \xrightarrow[n \rightarrow+\infty]{ } z_{0}$, by continuity $g\left(z_{0}\right)=\lim _{n \rightarrow+\infty} g\left(w_{n}\right)=0$.

[^5]
Isolated zeroes - 1

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
Then either $f \equiv 0$ or the zeroes of f are isolated ${ }^{1}$:
if $f\left(z_{0}\right)=0$ then there exists $r>0$ such that $D_{r}\left(z_{0}\right) \subset U$ and $\forall z \in D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}, f(z) \neq 0$.
Proof. Assume that z_{0} is a non-isolated zero of f.
We know that f admits a power series expansion $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ in a neighborhood of z_{0}.
Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_{n} \neq 0$ then $f(z)=\left(z-z_{0}\right)^{n} g(z)$ where g is holomorphic and $g\left(z_{0}\right) \neq 0$.
For every $n \in \mathbb{N}_{>0}, \exists w_{n} \in\left(D_{\frac{1}{n}}\left(z_{0}\right) \cap U\right) \backslash\left\{z_{0}\right\}, f\left(w_{n}\right)=0$. But then $g\left(w_{n}\right)=0$ since $w_{n} \neq z_{0}$
Then, since $w_{n} \xrightarrow[n \rightarrow+\infty]{ } z_{0}$, by continuity $g\left(z_{0}\right)=\lim _{n \rightarrow+\infty} g\left(w_{n}\right)=0$. Which leads to a contradiction.
Hence $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}\left(z_{0}\right)=n!a_{n}=0$ and $f \equiv 0$ on U by the theorem on Slide 3.
${ }^{1}$ Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

Isolated zeroes - 2

Corollary

Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic functions.
If $f-g$ admits a non-isolated zero

$$
\text { i.e. } \exists z_{0} \in U, \forall r>0, \exists z \in\left(U \cap D_{r}\left(z_{0}\right)\right) \backslash\left\{z_{0}\right\}, f(z)-g(z)=f\left(z_{0}\right)-g\left(z_{0}\right)=0
$$

then f and g coincide on U,

$$
\text { i.e. } \forall z \in U, f(z)=g(z)
$$

Isolated zeroes - 3

Corollary

Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic functions.
Let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a sequence of terms in U which is convergent to \tilde{z} in U and such that $\forall n \in \mathbb{N}, f\left(z_{n}\right)=0$.
Then $f \equiv 0$ on U.

Remark

The fact that the limit $\tilde{z} \in U$ is very important.
Indeed, let $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ be defined by $f(z)=\sin \left(\frac{\pi}{z}\right)$.
Then $f\left(\frac{1}{n}\right)=0$ but $f \not \equiv 0$ on $\mathbb{C} \backslash\{0\}$.
Hence, it is possible for the zeroes of f to accumulate at a point of the boundary of the domain (including ∞, see for instance $z_{n}=\pi n$ for $f=\sin$).

Isolated zeroes - 4

Homework

Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic on U. Prove that if $f g \equiv 0$ on U then either $f \equiv 0$ or $g \equiv 0$.

Homework

Let $U=D_{1}(0)$. Find all the holomorphic functions $f: U \rightarrow \mathbb{C}$ satisfying respectively:
(1) $f\left(\frac{1}{n}\right)=\frac{1}{n^{2}}$
(2) $f\left(\frac{1}{2 n}\right)=f\left(\frac{1}{2 n+1}\right)=\frac{1}{n}$

[^0]: ${ }^{1}$ Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

[^1]: ${ }^{1}$ Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

[^2]: ${ }^{1}$ Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

[^3]: ${ }^{1}$ Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

[^4]: ${ }^{1}$ Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

[^5]: ${ }^{1}$ Otherwise stated, if you attend MAT327, either f is constant equal to 0 or $\{z \in U: f(z)=0\}$ is discrete.

