MAT334H1-F – LEC0101 Complex Variables

ZEROES OF ANALYTIC FUNCTIONS - 1

November 4th, 2020 and November 6th, 2020

Definition: order of a zero

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$. We define the **order of vanishing of** f **at** z_0 by $m_f(z_0) \coloneqq \min \{n \in \mathbb{N} : f^{(n)}(z_0) \neq 0\}$. Note that $m_f(z_0) > 0$ since $f(z_0) = 0$.

Proposition

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$. Denote the power series expansion of f at z_0 by $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$. Then $m_f(z_0) = \min \{n \in \mathbb{N} : a_n \neq 0\}$.

Proposition

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Then z_0 is a zero of order *n* of *f* if and only if there exists $g : U \to \mathbb{C}$ holomorphic such that $f(z) = (z - z_0)^n g(z)$ and $g(z_0) \neq 0$.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{\geq 0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Corollary

Let $U \subset \mathbb{C}$ be a **domain** and $f, g : U \to \mathbb{C}$ be holomorphic/analytic functions. If f and g coincide in the neighborhood of a point,

i.e.
$$\exists z_0 \in U, \ \exists r > 0, \ \forall z \in D_r(z_0) \cap U, \ f(z) = g(z),$$

then they coincide on U,

i.e. $\forall z \in U, f(z) = g(z).$

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. Then either $f \equiv 0$ or the zeroes of f are isolated¹: if $f(z_0) = 0$ then there exists r > 0 such that $D_r(z_0) \subset U$ and $\forall z \in D_r(z_0) \setminus \{z_0\}, f(z) \neq 0$.

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. Then either $f \equiv 0$ or the zeroes of f are isolated¹: if $f(z_0) = 0$ then there exists r > 0 such that $D_r(z_0) \subset U$ and $\forall z \in D_r(z_0) \setminus \{z_0\}, f(z) \neq 0$.

Proof. Assume that z_0 is a non-isolated zero of f.

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. Then either $f \equiv 0$ or the zeroes of f are isolated¹: if $f(z_0) = 0$ then there exists r > 0 such that $D_r(z_0) \subset U$ and $\forall z \in D_r(z_0) \setminus \{z_0\}, f(z) \neq 0$.

Proof. Assume that z_0 is a non-isolated zero of f.

We know that *f* admits a power series expansion $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ in a neighborhood of z_0 .

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. Then either $f \equiv 0$ or the zeroes of f are isolated¹: if $f(z_0) = 0$ then there exists r > 0 such that $D_r(z_0) \subset U$ and $\forall z \in D_r(z_0) \setminus \{z_0\}, f(z) \neq 0$.

Proof. Assume that z_0 is a non-isolated zero of f.

We know that *f* admits a power series expansion $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ in a neighborhood of z_0 . Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_n \neq 0$ then $f(z) = (z - z_0)^n g(z)$ where *g* is holomorphic and $g(z_0) \neq 0$.

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. Then either $f \equiv 0$ or the zeroes of f are isolated¹: if $f(z_0) = 0$ then there exists r > 0 such that $D_r(z_0) \subset U$ and $\forall z \in D_r(z_0) \setminus \{z_0\}, f(z) \neq 0$.

Proof. Assume that z_0 is a non-isolated zero of f.

We know that f admits a power series expansion $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ in a neighborhood of z_0 . Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_n \neq 0$ then $f(z) = (z - z_0)^n g(z)$ where g is holomorphic and $g(z_0) \neq 0$. For every $n \in \mathbb{N}_{>0}$, $\exists w_n \in \left(D_{\frac{1}{n}}(z_0) \cap U\right) \setminus \{z_0\}, f(w_n) = 0$.

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. Then either $f \equiv 0$ or the zeroes of f are isolated¹: if $f(z_0) = 0$ then there exists r > 0 such that $D_r(z_0) \subset U$ and $\forall z \in D_r(z_0) \setminus \{z_0\}, f(z) \neq 0$.

Proof. Assume that z_0 is a non-isolated zero of f.

We know that f admits a power series expansion $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ in a neighborhood of z_0 . Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_n \neq 0$ then $f(z) = (z - z_0)^n g(z)$ where g is holomorphic and $g(z_0) \neq 0$. For every $n \in \mathbb{N}_{>0}$, $\exists w_n \in \left(D_{\frac{1}{n}}(z_0) \cap U\right) \setminus \{z_0\}, f(w_n) = 0$. But then $g(w_n) = 0$ since $w_n \neq z_0$

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. Then either $f \equiv 0$ or the zeroes of f are isolated¹: if $f(z_0) = 0$ then there exists r > 0 such that $D_r(z_0) \subset U$ and $\forall z \in D_r(z_0) \setminus \{z_0\}, f(z) \neq 0$.

Proof. Assume that z_0 is a non-isolated zero of f.

We know that f admits a power series expansion $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ in a neighborhood of z_0 . Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_n \neq 0$ then $f(z) = (z - z_0)^n g(z)$ where g is holomorphic and $g(z_0) \neq 0$. For every $n \in \mathbb{N}_{>0}$, $\exists w_n \in \left(D_{\frac{1}{n}}(z_0) \cap U \right) \setminus \{z_0\}$, $f(w_n) = 0$. But then $g(w_n) = 0$ since $w_n \neq z_0$ Then, since $w_n \xrightarrow[n \to +\infty]{} z_0$, by continuity $g(z_0) = \lim_{n \to +\infty} g(w_n) = 0$.

It is actually possible to strengthen the previous results.

Theorem

Let $U \subset \mathbb{C}$ be a domain and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. Then either $f \equiv 0$ or the zeroes of f are isolated¹: if $f(z_0) = 0$ then there exists r > 0 such that $D_r(z_0) \subset U$ and $\forall z \in D_r(z_0) \setminus \{z_0\}, f(z) \neq 0$.

Proof. Assume that z_0 is a non-isolated zero of f.

We know that f admits a power series expansion $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ in a neighborhood of z_0 . Assume by contradiction that there exists a smallest $n \in \mathbb{N}_{\geq 0}$ such that $a_n \neq 0$ then $f(z) = (z - z_0)^n g(z)$ where g is holomorphic and $g(z_0) \neq 0$. For every $n \in \mathbb{N}_{>0}$, $\exists w_n \in \left(D_{\frac{1}{n}}(z_0) \cap U\right) \setminus \{z_0\}$, $f(w_n) = 0$. But then $g(w_n) = 0$ since $w_n \neq z_0$ Then, since $w_n \xrightarrow[n \to +\infty]{} z_0$, by continuity $g(z_0) = \lim_{n \to +\infty} g(w_n) = 0$. Which leads to a contradiction. Hence $\forall n \in \mathbb{N}_{\geq 0}$, $f^{(n)}(z_0) = n!a_n = 0$ and $f \equiv 0$ on U by the theorem on Slide 3.

Corollary

Let $U \subset \mathbb{C}$ be a domain and $f, g : U \to \mathbb{C}$ be holomorphic/analytic functions. If f - g admits a non-isolated zero

i.e.
$$\exists z_0 \in U, \forall r > 0, \exists z \in (U \cap D_r(z_0)) \setminus \{z_0\}, f(z) - g(z) = f(z_0) - g(z_0) = 0$$

then f and g coincide on U,

i.e. $\forall z \in U, f(z) = g(z).$

Corollary

Let $U \subset \mathbb{C}$ be a domain and $f, g : U \to \mathbb{C}$ be holomorphic/analytic functions. Let $(z_n)_{n \in \mathbb{N}}$ be a sequence of terms in U which is convergent to \tilde{z} in U and such that $\forall n \in \mathbb{N}, f(z_n) = 0$. Then $f \equiv 0$ on U.

Remark

The fact that the limit $\tilde{z} \in U$ is very important.

Indeed, let
$$f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$$
 be defined by $f(z) = \sin\left(\frac{\pi}{z}\right)$.

Then $f\left(\frac{1}{n}\right) = 0$ but $f \not\equiv 0$ on $\mathbb{C} \setminus \{0\}$.

Hence, it is possible for the zeroes of f to accumulate at a point of the boundary of the domain (including ∞ , see for instance $z_n = \pi n$ for $f = \sin$).

/ \

Homework

Let $U \subset \mathbb{C}$ be a domain and $f, g : U \to \mathbb{C}$ be holomorphic/analytic on U. Prove that if $fg \equiv 0$ on U then either $f \equiv 0$ or $g \equiv 0$.

Homework

Let $U = D_1(0)$. Find all the holomorphic functions $f : U \to \mathbb{C}$ satisfying respectively: $f(\frac{1}{2}) = \frac{1}{2}$

$$f\left(\frac{1}{2n}\right) = f\left(\frac{1}{2n+1}\right) = \frac{1}{n}$$