University of Toronto – MAT334H1-F – LEC0101 Complex Variables

11 - Isolated singularities

Jean-Baptiste Campesato

October 23rd, 2020

Definitions 1. Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic.

• Either f is bounded in a neighborhood of z_0 ,

i.e.
$$\exists M \in \mathbb{R}, \exists r > 0, \forall z \in D_r(z_0) \cap U, |f(z)| \le M$$
,

then we say that z_0 is a **removable singularity** of f,

- or $\lim_{z \to z_0} |f(z)| = +\infty$, then we say that z_0 is a **pole** of *f*,
- otherwise, if none of the above occurs, we say that z_0 is an **essential singularity** of f.

Examples 2 (Removable singularities).

- $f(z) = \frac{z+i}{z^2+1}$ on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.
- $f(z) = \frac{\sin z}{z}$ on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.

Examples 3 (Poles).

- $f(z) = \frac{1}{z}$ on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.
- $f(z) = \frac{1}{z^2 1}$ on $D_1(1)$ with $z_0 = 1$.

Examples 4 (Essential singularities).

- $f(z) = \cos \frac{1}{z}$ on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.
- $f(z) = e^{\frac{1}{z}}$ on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.

Theorem 5 (Theorem: Riemann's removable singularity theorem). Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

- 1. z_0 is a removable singularity of f (i.e. f is bounded in a neighborhood of z_0)
- 2. $\lim_{z \to z_0} (z z_0) f(z) = 0$
- 3. *f* can be holomorphically/analytically extended on U (i.e. there exists $\tilde{f} : U \to \mathbb{C}$ holomorphic/analytic such that $\tilde{f}_{|U \setminus \{z_0\}} = f$)
- 4. *f* can be continuously extended on U (i.e. there exists $\tilde{f} : U \to \mathbb{C}$ continuous such that $\tilde{f}_{|U \setminus \{z_0\}} = f$)

Proof. (1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (4) \Longrightarrow (1). The only non-trivial part is (2) \Longrightarrow (3). Define $g : U \to \mathbb{C}$ by $g(z_0) = 0$ and $g(z) = (z - z_0)^2 f(z)$ otherwise. Then

$$\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} (z - z_0) f(z) = 0$$

Hence *g* is holomorphic on *U*. Since $g(z_0) = g'(z_0) = 0$ we may write

$$g(z) = \sum_{n=2}^{+\infty} a_n (z - z_0)^n = (z - z_0)^2 \sum_{n=2}^{+\infty} a_n (z - z_0)^{n-2}$$

where $z \in D_r(z_0) \cap U$ for some r > 0.

Hence $\tilde{f}(z) = \sum_{n=2}^{+\infty} a_n (z - z_0)^{n-2}$ is a suitable holomorphic extension of f on $D_r(z_0) \cap U$.

Remark 6. Note that if f admits a continuous extension at z_0 then it is holomorphic.

Examples 7.

- $f(z) = \frac{z^2+1}{z+i}$ on $\mathbb{C} \setminus \{-i\}$ may be holomorphically extended to \mathbb{C} by $\tilde{f}(z) = z i$.
- $f(z) = \frac{\sin z}{z}$ on $\mathbb{C} \setminus \{0\}$ may be continuous extended at 0 by setting $\tilde{f}(0) = 1$.

Theorem 8. Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then the followings are equivalent:

- 1. z_0 is a pole of f, i.e. $\lim_{z \to z_0} |f(z)| = +\infty$.
- 2. There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z z_0)^n}$ on $U \setminus \{z_0\}$.

3. z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

Proof. • (1) \implies (3): Then $\lim_{z \to z_0} \frac{1}{f(z)} = 0$ and z_0 is a removable singularity of 1/f, so that we can extend it to a holomorphic

function $h: U \to \mathbb{C}$ defined by $h(z) = \begin{cases} \frac{1}{f(z)} & \text{if } z \neq z_0 \\ 0 & \text{otherwise} \end{cases}$ (See Remark 6).

Denote by $n := m_h(z_0) \in \mathbb{N}_{>0}$ the order of vanishing of h at z_0 (since $h(z_0) = 0$), then $h(z) = (z - z_0)^n \tilde{h}(z)$ where $\tilde{h} : U \to \mathbb{C}$ is holomorphic and $\tilde{h}(z_0) \neq 0$. Then $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = \lim_{z \to z_0} \frac{z - z_0}{\tilde{h}(z)} = 0$.

• $(3) \Longrightarrow (2)$:

Pick the smallest *n* such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$. Define $g : U \setminus \{z_0\} \to \mathbb{C}$ by $g(z) = (z - z_0)^n f(z)$. Then $\lim_{z \to z_0} (z - z_0)g(z) = 0$ and z_0 is a removable singularity of *g*, so that *g* may be extended to a holomorphic function $g : U \to \mathbb{C}$ by Theorem 5. Besides $g(z_0) = \lim_{z \to z_0} g(z) = \lim_{z \to z_0} (z - z_0)^n f(z) \neq 0$ by definition of *n*.

• $(2) \Longrightarrow (1)$ Obvious. **Definition 9.** The integer $n \in \mathbb{N}_{>0}$ in (2) is uniquely defined and we say that f admits a **pole of order** n **at** z_0 .

We saw in the previous proof that the order of the pole z_0 is also:

- The order of vanishing of 1/f at z_0 .
- The smallest *n* such that $\lim_{z \to z_0} (z z_0)^{n+1} f(z) = 0$.

Examples 10.

- 1 is a pole of order 1 of $f(z) = \frac{1}{z^2 1} = \frac{1}{z 1}$
- 0 is a pole of order 3 of $f(z) = \frac{1}{z^3}$

Theorem 11 (Great Picard's Theorem - Not part of MAT334).

Let $U \subset \mathbb{C}$ be open, $z_0 \in U$ and $f : U \setminus \{z_0\} \to \mathbb{C}$ be holomorphic/analytic. If z_0 is an essential singularity of f then, on any punctured neighborhood of z_0 , f takes all possible complex values, with at most a single exception, infinitely many times.

Example 12. $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ defined by $f(z) = e^{\frac{1}{z}}$ has an essential singularity at 0. It takes the value $w \in \mathbb{C} \setminus \{0\}$ at $z = \frac{1}{\log(w) + 2i\pi n}$, $n \in \mathbb{Z}$.

Remark 13. In the above proofs, we used in an essential manner that the function f was holomorphic in a punctured neighborhood of z_0 , i.e. that there exists r > 0 such that f is holomorphic on

$$D_r(z_0) \setminus \{z_0\} = \{ z \in \mathbb{C} : 0 < |z - z_0| < r \}$$

Therefore, when we will work with functions having several singularities, we will need to assume that they are **isolated**.

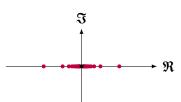
Formally, let $U \subset \mathbb{C}$ be open, $S \subset U$ be the *singular locus* and $f : U \setminus S \to \mathbb{C}$ be holomorphic. We need that if $z_0 \in S$ then f is holomorphic on $D_r(z_0) \setminus \{z_0\}$ for a small r > 0. Otherwise stated, that there exists a small disk centered at z_0 which doesn't contain another singular point. To summarize, S needs to satisfy $\forall z_0 \in S$, $\exists r > 0$, $D_r(z_0) \cap S = \{z_0\}$.

If you take MAT327, it simply means that S is discrete in U.

We will only study isolated singularities, we won't study wilder singular loci.

Examples 14.

- The function $f : \mathbb{C} \setminus \{\pm 1\} \to \mathbb{C}$ defined by $f(z) = \frac{1}{z^2 1}$ is holomorphic and has 2 isolated singularities at -1 and +1.
- Let $f : \mathbb{C} \setminus \left(\left\{ \frac{1}{\pi n}, n \in \mathbb{Z} \right\} \cup \{0\} \right) \to \mathbb{C}$ be defined by $f(z) = \cot \frac{1}{z}$. Then 0 is not an isolated singularity of f:



Definitions 15. Let $U \subset \mathbb{C}$ be an open neighborhood of infinity, i.e. there exists r > 0 such that $\{z \in \mathbb{C} : |z| > r\} \subset U$. Let $f : U \to \mathbb{C}$ be holomorphic/analytic.

Then ∞ is an isolated singularity of *f* (i.e. *f* is defined in a neighborhood of ∞ but not at ∞).

1. Either *f* is bounded in a neighborhood of ∞ ,

i.e. $\exists M \in \mathbb{R}, \exists r > 0, \forall z \in U, |z| > r \implies |f(z)| \le M$,

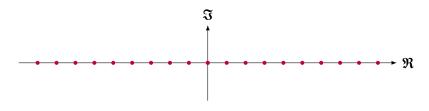
then we say that ∞ is a **removable singularity** of *f*,

- 2. or $\lim_{z \to \infty} |f(z)| = +\infty$, then we say that ∞ is a **pole** of *f*,
- 3. otherwise, if none of the above occurs, we say that ∞ is an **essential singularity** of *f*.

Remark 16. Recall that the inversion $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$, $z \mapsto \frac{1}{z}$, swaps 0 and ∞ .

Hence, if we set $g(z) = f\left(\frac{1}{z}\right)$ then the type of singularity of f at ∞ coincides with the type of singularity of g at 0.

Example 17. Let $f : \mathbb{C} \setminus \{\pi n : n \in \mathbb{Z}\} \to \mathbb{C}$ be defined by $f(z) = \cot z$. Then ∞ is not an isolated singularity of f:



Spoiler: a first introduction to Laurent series

Assume that z_0 is a pole of order $n \in \mathbb{N}_{>0}$ of f.

Then there exists $g : U \to \mathbb{C}$ holomorphic/analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z - z_0)^n}$ in a neighborhood of z_0 .

Since g is analytic at z_0 , it may be expressed as a power series in a small neighborhood of z_0 :

$$g(z) = \sum_{k=0}^{+\infty} a_k (z - z_0)^k$$

and since $g(z_0) \neq 0$ we know that $a_0 \neq 0$.

Therefore, in a punctured neighborhood of z_0 , we may express f as

$$f(z) = \sum_{k \ge -n}^{+\infty} a_{k+n} (z - z_0)^k$$

= $a_0 (z - z_0)^{-n} + a_1 (z - z_0)^{-n+1} + \dots + a_n + a_{n+1} (z - z_0) + a_{n+2} (z - z_0)^2 + \dots$

Note that the above expression has some negative exponents: it is a first example of *Laurent series*, notion that we will study next week.