Cauchy's Residue theorem

October $30^{\text {th }}, 2020$ and November 2 ${ }^{\text {nd }}, 2020$

Cauchy's residue theorem - 1

Theorem: the residue theorem

Let $U \subset \mathbb{C}$ be open. Let $S \subset U$ be finite. Assume that $f: U \backslash S \rightarrow \mathbb{C}$ is holomorphic/analytic.
Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a positively oriented piecewise smooth simple closed curve on $U \backslash S^{a}$ whose inside ${ }^{b}$ is entirely included in U. Then ${ }^{c}$

$$
\int_{\gamma} f(z) \mathrm{d} z=2 i \pi \sum_{z \in \operatorname{Inside}(\gamma)} \operatorname{Res}(f, z)
$$

[^0]
Cauchy's residue theorem - 1

Theorem: the residue theorem

Let $U \subset \mathbb{C}$ be open. Let $S \subset U$ be finite. Assume that $f: U \backslash S \rightarrow \mathbb{C}$ is holomorphic/analytic.
Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a positively oriented piecewise smooth simple closed curve on $U \backslash S^{a}$ whose inside ${ }^{b}$ is entirely included in U. Then ${ }^{c}$

$$
\int_{\gamma} f(z) \mathrm{d} z=2 i \pi \sum_{z \in \operatorname{Inside}(\gamma)} \operatorname{Res}(f, z)
$$

${ }^{\text {a i.e. }} \gamma$ doesn't pass through any point of S.
${ }^{b}$ See Jordan's curve theorem, September 28.
${ }^{c}$ The following sum is finite since $\operatorname{Res}(f, z) \neq 0$ only for $z \in S$.

Corollary

Let $U \subset \mathbb{C}$ be open and simply-connected. Let $S \subset U$ be finite.
Assume that $f: U \backslash S \rightarrow \mathbb{C}$ is holomorphic/analytic.
Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a positively oriented piecewise smooth simple closed curve on $U \backslash S$. Then

$$
\int_{\gamma} f(z) \mathrm{d} z=2 i \pi \sum_{z \in \operatorname{Inside}(\gamma)} \operatorname{Res}(f, z)
$$

Cauchy's residue theorem - 2

Proof.

Cauchy's residue theorem - 2

Proof.

We may find pairwise disjoints disks $\overline{D_{r_{k}}\left(z_{k}\right)} \subset U$ where $\left\{z_{1}, \ldots, z_{n}\right\}$ are the points of S enclosed in γ.

Cauchy's residue theorem - 2

Proof.

We may find pairwise disjoints disks $\overline{D_{r_{k}}\left(z_{k}\right)} \subset U$ where $\left\{z_{1}, \ldots, z_{n}\right\}$ are the points of S enclosed in γ. We apply Green's theorem to $T=\overline{\operatorname{Inside}(\gamma)} \backslash\left(\bigcup_{i=1}^{n} D_{r_{k}}\left(z_{k}\right)\right)$

Cauchy's residue theorem - 2

Proof.

We may find pairwise disjoints disks $\overline{D_{r_{k}}\left(z_{k}\right)} \subset U$ where $\left\{z_{1}, \ldots, z_{n}\right\}$ are the points of S enclosed in γ. We apply Green's theorem to $T=\overline{\operatorname{Inside}(\gamma)} \backslash\left(\bigcup_{i=1}^{n} D_{r_{k}}\left(z_{k}\right)\right)$, then

$$
\int_{Y} f(z) \mathrm{d} z-\sum_{k=1}^{n} \int_{Y_{k}} f(z) \mathrm{d} z=i \iint_{T}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)
$$

where $\gamma_{k}:[0,1] \rightarrow \mathbb{C}$ is defined by $\gamma_{k}(t)=z_{k}+r_{k} e^{2 i \pi t}$.

Cauchy's residue theorem - 2

Proof.

We may find pairwise disjoints disks $\overline{D_{r_{k}}\left(z_{k}\right)} \subset U$ where $\left\{z_{1}, \ldots, z_{n}\right\}$ are the points of S enclosed in γ. We apply Green's theorem to $T=\overline{\operatorname{Inside}(\gamma)} \backslash\left(\bigcup_{i=1}^{n} D_{r_{k}}\left(z_{k}\right)\right)$, then

$$
\int_{r} f(z) \mathrm{d} z-\sum_{k=1}^{n} \int_{Y_{k}} f(z) \mathrm{d} z=i \iint_{T}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)=0
$$

where $\gamma_{k}:[0,1] \rightarrow \mathbb{C}$ is defined by $\gamma_{k}(t)=z_{k}+r_{k} e^{2 i \pi t}$.
The last equality is due to the Cauchy-Riemann equations.

Cauchy's residue theorem - 2

Proof.

We may find pairwise disjoints disks $\overline{D_{r_{k}}\left(z_{k}\right)} \subset U$ where $\left\{z_{1}, \ldots, z_{n}\right\}$ are the points of S enclosed in γ. We apply Green's theorem to $T=\overline{\operatorname{Inside}(\gamma)} \backslash\left(\bigcup_{i=1}^{n} D_{r_{k}}\left(z_{k}\right)\right)$, then

$$
\int_{Y} f(z) \mathrm{d} z-\sum_{k=1}^{n} \int_{Y_{k}} f(z) \mathrm{d} z=i \iint_{T}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)=0
$$

where $\gamma_{k}:[0,1] \rightarrow \mathbb{C}$ is defined by $\gamma_{k}(t)=z_{k}+r_{k} e^{2 i \pi t}$.
The last equality is due to the Cauchy-Riemann equations.
Then $\int_{Y} f(z) \mathrm{d} z=\sum_{k=1}^{n} \int_{Y_{k}} f(z) \mathrm{d} z=2 i \pi \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right)$

Cauchy's residue theorem - 3

Corollary

Let $S \subset \mathbb{C}$ be finite. Assume that $f: \mathbb{C} \backslash S \rightarrow \mathbb{C}$ is holomorphic/analytic. Then

$$
\operatorname{Res}(f, \infty)+\sum_{z \in S} \operatorname{Res}(f, z)=0
$$

Cauchy's residue theorem - 3

Corollary

Let $S \subset \mathbb{C}$ be finite. Assume that $f: \mathbb{C} \backslash S \rightarrow \mathbb{C}$ is holomorphic/analytic. Then

$$
\operatorname{Res}(f, \infty)+\sum_{z \in S} \operatorname{Res}(f, z)=0
$$

Proof. Take $r>0$ such that $S \subset D_{r}(0)$ and define $\gamma:[0,1] \rightarrow \mathbb{C}$ by $\gamma(t)=r e^{2 i \pi t}$. Then

$$
\begin{aligned}
\sum_{z \in S} \operatorname{Res}(f, z) & =\frac{1}{2 i \pi} \int_{Y} f(z) \mathrm{d} z \quad \text { by Cauchy's residue theorem } \\
& =-\operatorname{Res}(f, \infty)
\end{aligned}
$$

Cauchy's residue theorem - 3

Corollary

Let $S \subset \mathbb{C}$ be finite. Assume that $f: \mathbb{C} \backslash S \rightarrow \mathbb{C}$ is holomorphic/analytic. Then

$$
\operatorname{Res}(f, \infty)+\sum_{z \in S} \operatorname{Res}(f, z)=0
$$

Proof. Take $r>0$ such that $S \subset D_{r}(0)$ and define $\gamma:[0,1] \rightarrow \mathbb{C}$ by $\gamma(t)=r e^{2 i \pi t}$. Then

$$
\begin{aligned}
\sum_{z \in S} \operatorname{Res}(f, z) & =\frac{1}{2 i \pi} \int_{Y} f(z) \mathrm{d} z \quad \text { by Cauchy's residue theorem } \\
& =-\operatorname{Res}(f, \infty)
\end{aligned}
$$

We may rewrite the above conclusion as $\sum_{z \in \widehat{\mathbb{C}}} \operatorname{Res}(f, z)=0$.

Example: $\int_{-\infty}^{+\infty} \frac{P(x)}{O(x)} \mathrm{d} x$ (rational function) - 1

Assume that P and Q are two polynomials. Set $f(z)=\frac{P(z)}{Q(z)}$.
We know that $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \mathrm{d} x$ is convergent if and only if $\operatorname{deg} Q \geq \operatorname{deg} P+2$, let's assume the latter.
Then $\lim _{|z| \rightarrow \infty} z f(z)=0$.
Assume that Q has no real root.

Define $\gamma_{R}:[0,1] \rightarrow \mathbb{C}$ by $\gamma_{R}(t)=R e^{i \pi t}$.

For $R>0$ big enough, all the poles of f whose imaginary part is positive are included within the upper-half disk centered at 0 and of radius R.
Then $\int_{-R}^{R} f(z) \mathrm{d} z+\int_{Y_{R}} f(z) \mathrm{d} z=2 i \pi \sum_{z \text { s.t. } \widetilde{\Im}(z)>0} \operatorname{Res}(f, z)$.
But $\left|\int_{\gamma_{R}} f\right| \leq \pi R \sup _{\gamma_{R}}|f| \xrightarrow[R \rightarrow+\infty]{ } 0$ since $\lim _{|z| \rightarrow \infty} z f(z)=0$.
Hence $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \mathrm{d} x=2 i \pi \sum_{z \text { s.t. } \Im_{(}(z)>0} \operatorname{Res}\left(\frac{P}{Q}, z\right)$.

Example: $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \mathrm{d} x$ (rational function) -2

Example

Compute $\int_{-\infty}^{+\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$ où $0<a<b$.
The poles of $f(z)=\frac{1}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)}$ are $-i a, i a,-i b$ and $i b$ which are simple. Hence

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} & =2 i \pi \operatorname{Res}(f, i a)+2 i \pi \operatorname{Res}(f, i b) \\
& =\frac{2 i \pi}{2 i\left(b^{2}-a^{2}\right) a}+\frac{2 i \pi}{2 i\left(a^{2}-b^{2}\right) b} \\
& =\frac{\pi}{a b(a+b)}
\end{aligned}
$$

Example: $\int_{0}^{2 \pi} R(\cos t, \sin t) \mathrm{d} t$

Set $z=e^{i t}$ then $\cos (t)=\frac{1}{2}\left(z+\frac{1}{z}\right), \sin (t)=\frac{1}{2 i}\left(z-\frac{1}{z}\right)$, and $\frac{\mathrm{d} z}{i z}=\mathrm{d} t$.
Set $f(z)=\frac{1}{i z} R\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2 i}\left(z-\frac{1}{z}\right)\right)$. Then $\int_{0}^{2 \pi} R(\cos t, \sin t) \mathrm{d} t=\int_{S^{1}} f(z) \mathrm{d} z=2 i \pi \sum_{z \in D_{1}(0)} \operatorname{Res}(f, z)$.

Example

Compute $\int_{0}^{2 \pi} \frac{a}{a^{2}+\sin ^{2} t} \mathrm{~d} t$ where $a>0$.
Set $f(z)=\frac{1}{i z} \frac{a}{a^{2}-\frac{1}{4}\left(z-\frac{1}{z}\right)^{2}}=-\frac{4 i a z}{\left(z^{2}+2 a z-1\right)\left(z^{2}-2 a z-1\right)}$.
Note that the singularity at 0 of the LHS is removable since we may extend f through 0 using the RHS, so that $\operatorname{Res}(f, 0)=0$.
Then, the only poles of f within the unit disk are $z_{1}=-a+\sqrt{a^{2}+1}$ and $z_{2}=a-\sqrt{a^{2}+1}$ which are simple. Hence

$$
\int_{0}^{2 \pi} \frac{a}{a^{2}+\sin ^{2} t} \mathrm{~d} t=2 i \pi \operatorname{Res}\left(f, z_{1}\right)+2 i \pi \operatorname{Res}\left(f, z_{2}\right)=\frac{2 \pi}{\sqrt{a^{2}+1}}
$$

Jordan's lemma

The following trick called, Jordan's lemma, can be very useful. Let $\gamma_{R}:[0, \pi] \rightarrow \mathbb{C}$ be defined by $\gamma_{R}(t)=R e^{i t}$.

$$
\begin{aligned}
\left|\int_{\gamma_{R}} g(z) e^{i z} \mathrm{~d} z\right| & =\left|\int_{0}^{\pi} g\left(R e^{i t}\right) e^{i R(\cos t+i \sin t)} i R e^{i t} \mathrm{~d} t\right| \\
& \leq \int_{0}^{\pi}\left|g\left(R e^{i t}\right) e^{i R(\cos t+i \sin t)} i R e^{i t}\right| \mathrm{d} t \\
& \leq R \sup _{\gamma_{R}}|g| \int_{0}^{\pi} e^{-R \sin t} \mathrm{~d} t \\
& =2 R \sup _{\gamma_{R}}|g| \int_{0}^{\pi / 2} e^{-R \sin t} \mathrm{~d} t
\end{aligned}
$$

$$
\leq 2 R \sup _{\gamma_{R}}|g| \int_{0}^{\pi / 2} e^{-2 R t / \pi} \mathrm{d} t \quad \text { by Jordan's inequality: } \forall x \in\left[0, \frac{\pi}{2}\right], \frac{2}{\pi} x \leq \sin (x) \leq x
$$

$$
\leq \pi \sup |g|\left(1-e^{-R}\right)
$$

$$
\gamma_{R}
$$

$$
\leq \pi \sup _{\gamma_{D}}|g|
$$

Example: $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{i a x} \mathrm{~d} x-1$

We want to compute $I(a):=\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{i a x} \mathrm{~d} x$ where P, Q are real polynomials and $a \in \mathbb{R}$. Assume that Q has no real root.
Note that $I(-a)=\overline{I(a)}$, so we may restrict our attention to $a>0$.
The integral is convergent if and only if $\operatorname{deg} Q \geq \operatorname{deg} P+1$ (integration by parts), so we assume the latter.

Define $\gamma_{R}:[0,1] \rightarrow \mathbb{C}$ by $\gamma_{R}(t)=R e^{i \pi t}$.

For $R>0$ big enough, all the poles of $f(z)=\frac{P(z)}{Q(z)} e^{i a z}$ whose imaginary part is positive are included within the upper-half disk centered at 0 and of radius R.
Then $\int_{-R}^{R} f(z) \mathrm{d} z+\int_{\gamma_{R}} f(z) \mathrm{d} z=2 i \pi \sum_{z \text { s.t. }}^{\sum_{(}(z)>0} \operatorname{Res}(f, z)$
But, by Jordan's lemma,

$$
\left|\int_{\gamma_{R}} \frac{P(z)}{Q(z)} e^{i z} \mathrm{~d} z\right| \leq \pi \sup _{\gamma_{R}}|P / Q| \xrightarrow[R \rightarrow+\infty]{ } 0
$$

Hence, by taking $R \rightarrow+\infty$ in (*), we get

$$
\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{i a x} \mathrm{~d} x=2 i \pi \sum_{z \text { s.t. }} \sum_{(z)>0} \operatorname{Res}\left(\frac{P(z)}{Q(z)} e^{i a z}, z\right)
$$

Example: $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{i a x} \mathrm{~d} x-2$

Example

Compute $\int_{-\infty}^{+\infty} \frac{\cos (x)}{x^{2}+\alpha^{2}} \mathrm{~d} x$ where $\alpha>0$.
Note that $\int_{-\infty}^{+\infty} \frac{\cos (x)}{x^{2}+\alpha^{2}} \mathrm{~d} x=\Re\left(\int_{-\infty}^{+\infty} \frac{e^{i x}}{x^{2}+\alpha^{2}} \mathrm{~d} x\right)$.
The poles of $f(z)=\frac{e^{i z}}{z^{2}+\alpha^{2}}$ are $i \alpha$ and $-i \alpha$ which are simple.
By the previous slide, $\int_{-\infty}^{+\infty} \frac{e^{i z}}{z^{2}+\alpha^{2}} \mathrm{~d} z=2 i \pi \operatorname{Res}(f, i \alpha)=2 i \pi \frac{e^{-\alpha}}{2 i \alpha}=\pi \frac{e^{-\alpha}}{\alpha}$.
Hence $\int_{-\infty}^{+\infty} \frac{\cos (x)}{x^{2}+\alpha^{2}} \mathrm{~d} x=\pi \frac{e^{-\alpha}}{\alpha}$.

Example: $\int_{0}^{+\infty} \frac{x^{p}}{1+x^{n}} \mathrm{~d} x, n, p \in \mathbb{N}$

We know that the integral $\int_{0}^{+\infty} \frac{x^{p}}{1+x^{n}} \mathrm{~d} x$ is convergent if and only if $n \geq p+2$. Set $f(z)=\frac{z^{p}}{1+z^{n}}$ and $a=e^{i \frac{\pi}{n}}$. We consider the following sector of the circle centered at 0 and of radius R, such that the only pole of f enclosed in its inside is a.

By the residue theorem, $2 i \pi \operatorname{Res}(f, a)=\int_{[0, R]} f+\int_{\gamma} f+\int_{\left[a^{2} R, 0\right]} f$.

- $\operatorname{Res}(f, a)=\frac{a^{p}}{n a^{n-1}}=-\frac{a^{p+1}}{n}$.
- $\int_{\left[a^{2} R, 0\right]} f(z) \mathrm{d} z=-a^{2} \int_{0}^{R} \frac{a^{2 p} t^{p}}{1+a^{2 n} t^{n}} \mathrm{~d} t=-a^{2(p+1)} \int_{0}^{R} \frac{t^{p}}{1+t^{n}} \mathrm{~d} t$
- $\left|\int_{\gamma} f(z) \mathrm{d} z\right| \leq \frac{2 \pi}{n} R \sup _{\gamma}|f| \xrightarrow[R \rightarrow+\infty]{ } 0$ since $\lim _{z \rightarrow \infty} z f(z)=0$.

Let $\gamma:\left[0, \frac{2 \pi}{n}\right] \rightarrow \mathbb{C}$ be defined by $\gamma(t)=R e^{i t}$.
Hence, by taking the limit as $R \rightarrow+\infty$, we get $-2 i \pi \frac{a^{p+1}}{n}=\int_{0}^{+\infty} \frac{x^{p}}{1+x^{n}} \mathrm{~d} x-a^{2(p+1)} \int_{0}^{+\infty} \frac{x^{p}}{1+x^{n}} \mathrm{~d} x$.
Finally $\int_{0}^{+\infty} \frac{x^{p}}{1+x^{n}} \mathrm{~d} x=\frac{2 i \pi}{n} \frac{a^{p+1}}{a^{2(p+1)}-1}=\frac{\pi}{n} \frac{2 i}{a^{p+1}-a^{-(p+1)}}=\frac{\pi}{n \sin \frac{(p+1) \pi}{n}}$.

Example: $\int_{0}^{+\infty} \frac{\sin t}{t} \mathrm{~d} t$

By Cauchy's integral theorem
$\int_{\gamma_{R}} \frac{e^{i z}}{z} \mathrm{~d} z-\int_{\gamma_{r}} \frac{e^{i z}}{z} \mathrm{~d} z+\int_{-R}^{-r} \frac{e^{i t}}{t} \mathrm{~d} t+\int_{r}^{R} \frac{e^{i t}}{t} \mathrm{~d} t=0$.

- By Jordan's lemma: $\left|\int_{\gamma_{R}} \frac{e^{i z}}{z} \mathrm{~d} z\right| \leq \pi \sup _{\gamma_{R}}|1 / z| \xrightarrow[R \rightarrow+\infty]{\longrightarrow} 0$
- Since 0 is a simple pole of $f(z)=\frac{e^{i z} z}{z}$, we have that $f(z)=\operatorname{Res}(f, 0) z^{-1}+g(z)$ where g is holomorphic.
Then $\int_{Y_{r}} f(z) \mathrm{d} z=\int_{Y_{r}} \operatorname{Res}(f, 0) z^{-1} \mathrm{~d} z+\int_{Y_{r}} g(z) \mathrm{d} z$ but $\int_{\gamma_{r}} \operatorname{Res}(f, 0) z^{-1} \mathrm{~d} z=\operatorname{Res}(f, 0) i \pi$ and $\left|\int_{Y_{r}} g(z) \mathrm{d} z\right| \leq \pi r \sup _{r_{r}}|g| \underset{r \rightarrow 0}{\longrightarrow} 0$.
Hence $\int_{Y_{r}} f(z) \mathrm{d} z \underset{r \rightarrow 0}{\longrightarrow} \operatorname{Res}(f, 0) i \pi=i \pi$.
$\int_{r}^{R} \frac{\sin t}{t} \mathrm{~d} t=\frac{1}{2 i} \int_{r}^{R} \frac{e^{i t}-e^{-i t}}{t} \mathrm{~d} t=\frac{1}{2 i} \int_{r}^{R} \frac{e^{i t}}{t} \mathrm{~d} t-\frac{1}{2 i} \int_{r}^{R} \frac{e^{-i t}}{t} \mathrm{~d} t=\frac{1}{2 i} \int_{r}^{R} \frac{e^{i t}}{t} \mathrm{~d} t+\frac{1}{2 i} \int_{-R}^{-r} \frac{e^{i t}}{t} \mathrm{~d} t=\frac{1}{2 i}\left(\int_{Y_{r}} \frac{e^{i z}}{z} \mathrm{~d} z-\int_{Y_{R}} \frac{e^{i z}}{z} \mathrm{~d} z\right)$
Hence, taking $r \rightarrow 0$ and $R \rightarrow+\infty$ we get that $\int_{0}^{+\infty} \frac{\sin t}{t} \mathrm{~d} t=\frac{\pi}{2}$

Example: $\int_{0}^{+\infty} \frac{(\log t)^{2}}{1+t^{2}} \mathrm{~d} t$

We set $f(z)=\frac{(\log z)^{2}}{1+z^{2}}$ but for that we need to fix a branch of the logarithm. Let's fix log: $\mathbb{C} \backslash\{i y: y \leq 0\} \rightarrow \mathbb{C}$ defined by $\log z=\log |z|+i \operatorname{Arg}(z)$ where $\operatorname{Arg}(z) \in\left(-\frac{\pi}{2}, 3 \frac{\pi}{2}\right)$.

By Cauchy's residue theorem
$\int_{\gamma_{R}} f(z) \mathrm{d} z-\int_{\gamma_{r}} f(z) \mathrm{d} z+\int_{-R}^{-r} f(z) \mathrm{d} z+\int_{r}^{R} f(z) \mathrm{d} z=2 i \pi \operatorname{Res}(f, i)=-\frac{\pi^{3}}{4}$.

- Since $|\log z| \leq|\ln r|+\pi$ on $\gamma_{r}, \int_{\gamma_{r}} f(z) \mathrm{d} z \leq \pi r \frac{(|\ln r|+\pi)^{2}}{1+r^{2}} \xrightarrow[r \rightarrow+\infty \text { or } 0]{ } 0$.
- Since $z=t e^{i \pi}$ on $[-R,-r]$, we have
$\int_{-R}^{-r} f(z) \mathrm{d} z=\int_{r}^{R} \frac{(\ln t+i \pi)^{2}}{1+t^{2}} \mathrm{~d} t=\int_{r}^{R} \frac{(\ln t)^{2}}{1+t^{2}} \mathrm{~d} t+2 i \pi \int_{r}^{R} \frac{\ln t}{1+t^{2}} \mathrm{~d} t-\int_{r}^{R} \frac{\pi^{2}}{1+t^{2}} \mathrm{~d} t$
Define $\gamma_{R}:[0,1] \rightarrow \mathbb{C}$ by $\gamma_{R}(t)=R e^{i \pi t}$ and $\gamma_{r}:[0,1] \rightarrow \mathbb{C}$ by $\gamma_{r}(t)=r e^{i \pi t}$.

By taking the limits $r \rightarrow 0$ and $R \rightarrow+\infty$ we get $\int_{0}^{+\infty} \frac{(\ln t)^{2}}{1+t^{2}} \mathrm{~d} t+2 i \pi \int_{0}^{+\infty} \frac{\ln t}{1+t^{2}} \mathrm{~d} t-\frac{\pi^{3}}{2}+\int_{0}^{+\infty} \frac{(\ln t)^{2}}{1+t^{2}} \mathrm{~d} t=-\frac{\pi^{3}}{4}$
By taking the real part, we get $\int_{0}^{+\infty} \frac{(\ln t)^{2}}{1+t^{2}} \mathrm{~d} t=\frac{\pi^{3}}{8}$.

[^0]: ${ }^{\text {i.e. }} \gamma$ doesn't pass through any point of S.
 ${ }^{b}$ See Jordan's curve theorem, September 28.
 ${ }^{c}$ The following sum is finite since $\operatorname{Res}(f, z) \neq 0$ only for $z \in S$.

