MAT334H1-F – LEC0101 Complex Variables

LAURENT SERIES AND RESIDUES

October 26th, 2020 and October 28th, 2020

Recall that a function $f : U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) is holomorphic/analytic if and only if f can be described as a power series

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

in a neighborhood of every point $z_0 \in U$.

We are going to generalize this property in order to study f in the neighborhood of an isolated singularity z_0 (i.e. f is not defined at z_0 but is holomorphic in a punctured neighborhood of z_0), for that purpose we are going to work with Laurent series allowing negative exponents:

$$f(z) = \sum_{n = -\infty}^{+\infty} a_n (z - z_0)^n$$

Intuitively, the more we need negative exponents in the above expression, the wilder is the singularity.

Laurent's theorem

Theorem: Laurent's theorem

Let $z_0 \in \mathbb{C}$ and $0 \le r < R \le +\infty$. Set $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ and let $f : U \to \mathbb{C}$ be holomorphic/analytic then

$$\forall z \in U, \ f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

where
$$a_n = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w-z_0)^{n+1}} dw$$
 and $\gamma : [0,1] \to \mathbb{C}$ is defined by $\gamma(t) = z_0 + \rho e^{2i\pi t}$ with $\rho \in (r, R)$.

We call such a series (a *"power series"* with exponents in \mathbb{Z}) a **Laurent series**.

Laurent's theorem

Theorem: Laurent's theorem

Let $z_0 \in \mathbb{C}$ and $0 \le r < R \le +\infty$. Set $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ and let $f : U \to \mathbb{C}$ be holomorphic/analytic then

$$\forall z \in U, \ f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

where
$$a_n = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw$$
 and $\gamma : [0, 1] \to \mathbb{C}$ is defined by $\gamma(t) = z_0 + \rho e^{2i\pi t}$ with $\rho \in (r, R)$.

We call such a series (a *"power series"* with exponents in \mathbb{Z}) a **Laurent series**.

- If $R = +\infty$ then U is the complement of the closed disk centered at z_0 and of radius r, hence it is a neighborhood of ∞ .
- If r = 0 then U is a punctured open disk centered at z_0 and of radius R.
- If r = 0 and $R = +\infty$ then $U = \mathbb{C} \setminus \{z_0\}$.

The function $f : \mathbb{C} \setminus \{0, 1\} \to \mathbb{C}$ defined by $f(z) = \frac{1}{z(1-z)}$ is holomorphic on $\mathbb{C} \setminus \{0, 1\}$ and has two isolated singularities, namely 0 and 1.

• For
$$0 < |z| < 1$$
, $f(z) = \frac{1}{z} + \frac{1}{1-z} = z^{-1} + \sum_{n=0}^{+\infty} z^n = \sum_{n=-1}^{+\infty} z^n$.
• For $0 < |z-1| < 1$, $f(z) = -\frac{1}{z-1} + \frac{1}{z} = -(z-1)^{-1} + \sum_{n=0}^{+\infty} (-1)^n (z-1)^n = \sum_{n=-1}^{+\infty} (-1)^n (z-1)^n + \sum_{n=0}^{+\infty} (-1)^n (z-1)^n = \sum_{n=-1}^{+\infty} (-1)^n (z-1)^n (z-1)^n = \sum_{n=-1}^{+\infty} (-1)^n (z-1)^n (-1)^n (z-1)^n = \sum_{n=-1}^{+\infty} (-1)^n ($

• For
$$1 < |z|, f(z) = -\frac{1}{z^2} \frac{z}{z-1} = -\frac{1}{z^2} \frac{1}{1-\frac{1}{z}} = -\frac{1}{z^2} \sum_{n=0}^{\infty} z^{-n} = \sum_{n=-\infty}^{\infty} (-1) z^n$$

Lemma

Let $z_0 \in \mathbb{C}$ and $0 \le r < R \le +\infty$. Set $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ and let $g : U \to \mathbb{C}$ be holomorphic/analytic. Let $\rho_1, \rho_2 \in \mathbb{R}$ be s.t. $r < \rho_1 < \rho_2 < R$. Let $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ be defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$. Then $\int_{\gamma_1} g(z) dz = \int_{\gamma_2} g(z) dz$.

Lemma

Let $z_0 \in \mathbb{C}$ and $0 \le r < R \le +\infty$. Set $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ and let $g : U \to \mathbb{C}$ be holomorphic/analytic. Let $\rho_1, \rho_2 \in \mathbb{R}$ be s.t. $r < \rho_1 < \rho_2 < R$. Let $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ be defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$. Then $\int_{\gamma_1} g(z) dz = \int_{\gamma_2} g(z) dz$.

Lemma

Let $z_0 \in \mathbb{C}$ and $0 \le r < R \le +\infty$. Set $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ and let $g : U \to \mathbb{C}$ be holomorphic/analytic. Let $\rho_1, \rho_2 \in \mathbb{R}$ be s.t. $r < \rho_1 < \rho_2 < R$. Let $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ be defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$. Then $\int_{\gamma_1} g(z) dz = \int_{\gamma_2} g(z) dz$.

We consider two simple closed curves as in the drawing (in red and blue)

Lemma

Let $z_0 \in \mathbb{C}$ and $0 \le r < R \le +\infty$. Set $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ and let $g : U \to \mathbb{C}$ be holomorphic/analytic. Let $\rho_1, \rho_2 \in \mathbb{R}$ be s.t. $r < \rho_1 < \rho_2 < R$. Let $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ be defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$. Then $\int_{\gamma_1} g(z) dz = \int_{\gamma_2} g(z) dz$.

$$0 = 0 + 0 = \int_{red} g(z) dz + \int_{blue} g(z) dz$$

Lemma

Let $z_0 \in \mathbb{C}$ and $0 \le r < R \le +\infty$. Set $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ and let $g : U \to \mathbb{C}$ be holomorphic/analytic. Let $\rho_1, \rho_2 \in \mathbb{R}$ be s.t. $r < \rho_1 < \rho_2 < R$. Let $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ be defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$. Then $\int_{\gamma_1} g(z) dz = \int_{\gamma_2} g(z) dz$.

$$0 = 0 + 0 = \int_{red} g(z)dz + \int_{blue} g(z)dz$$
$$= \int_{-\gamma_1} g(z)dz + \int_{\gamma_2} g(z)dz$$
$$= -\int_{\gamma_1} g(z)dz + \int_{\gamma_2} g(z)dz$$

Lemma

Let $z_0 \in \mathbb{C}$ and $0 \le r < R \le +\infty$. Set $U = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ and let $g : U \to \mathbb{C}$ be holomorphic/analytic. Let $\rho_1, \rho_2 \in \mathbb{R}$ be s.t. $r < \rho_1 < \rho_2 < R$. Let $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ be defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$. Then $\int_{\gamma_1} g(z) dz = \int_{\gamma_2} g(z) dz$.

$$0 = 0 + 0 = \int_{red} g(z)dz + \int_{blue} g(z)dz$$
$$= \int_{-\gamma_1} g(z)dz + \int_{\gamma_2} g(z)dz$$
$$= -\int_{\gamma_1} g(z)dz + \int_{\gamma_2} g(z)dz$$
Hence
$$\int_{\gamma_1} g(z)dz = \int_{\gamma_2} g(z)dz.$$

Proof of Laurent's theorem.

Proof of Laurent's theorem.

Let
$$r < \rho_1 < |z| < \rho_2 < R$$
 and $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

Proof of Laurent's theorem.

Let $r < \rho_1 < |z| < \rho_2 < R$ and $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

We consider two simple closed curves as in the drawing (in red and blue).

Proof of Laurent's theorem.

Let $r < \rho_1 < |z| < \rho_2 < R$ and $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

$$0 + 2i\pi f(z) = \int_{red} \frac{f(w)}{w - z} \mathrm{d}w + \int_{blue} \frac{f(w)}{w - z} \mathrm{d}w$$

(

Proof of Laurent's theorem.

Let $r < \rho_1 < |z| < \rho_2 < R$ and $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

$$\begin{aligned} b + 2i\pi f(z) &= \int_{red} \frac{f(w)}{w-z} dw + \int_{blue} \frac{f(w)}{w-z} dw \\ &= -\int_{\gamma_1} \frac{f(w)}{w-z} dw + \int_{\gamma_2} \frac{f(w)}{w-z} dw \end{aligned}$$

Proof of Laurent's theorem.

For $w \in \gamma_1$, $\left| \frac{w - z_0}{z - z_0} \right| < 1$. For $w \in \gamma_2$, $\left| \frac{z - z_0}{w - z_0} \right| < 1$. Let $r < \rho_1 < |z| < \rho_2 < R$ and $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

$$\begin{split} 0 + 2i\pi f(z) &= \int_{red} \frac{f(w)}{w-z} \mathrm{d}w + \int_{blue} \frac{f(w)}{w-z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{w-z} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w-z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{z_0-z} \frac{1}{1-\frac{w-z_0}{z-z_0}} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w-z_0} \frac{1}{1-\frac{z-z_0}{w-z_0}} \mathrm{d}w \end{split}$$

Proof of Laurent's theorem.

For
$$w \in \gamma_1$$
, $\left| \frac{w - z_0}{z - z_0} \right| < 1$.
For $w \in \gamma_2$, $\left| \frac{z - z_0}{w - z_0} \right| < 1$.

Let $r < \rho_1 < |z| < \rho_2 < R$ and $\gamma_1, \gamma_2 : [0, 1] \rightarrow \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

$$\begin{split} 0 + 2i\pi f(z) &= \int_{red} \frac{f(w)}{w-z} \mathrm{d}w + \int_{blue} \frac{f(w)}{w-z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{w-z} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w-z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{z_0-z} \frac{1}{1-\frac{w-z_0}{z-z_0}} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w-z_0} \frac{1}{1-\frac{z-z_0}{w-z_0}} \mathrm{d}w \\ &= \int_{\gamma_1} \frac{f(w)}{z_0-z} \sum_{n\geq 0} \left(\frac{w-z_0}{z_0-z}\right)^n \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w-z_0} \sum_{n\geq 0} \left(\frac{z-z_0}{w-z_0}\right)^n \mathrm{d}w \end{split}$$

0 +

Proof of Laurent's theorem.

For
$$w \in \gamma_1$$
, $\left| \frac{w - z_0}{z - z_0} \right| < 1$.
For $w \in \gamma_2$, $\left| \frac{z - z_0}{w - z_0} \right| < 1$.

Let $r < \rho_1 < |z| < \rho_2 < R$ and $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

$$\begin{aligned} 2i\pi f(z) &= \int_{red} \frac{f(w)}{w-z} dw + \int_{blue} \frac{f(w)}{w-z} dw \\ &= -\int_{\gamma_1} \frac{f(w)}{w-z} dw + \int_{\gamma_2} \frac{f(w)}{w-z} dw \\ &= -\int_{\gamma_1} \frac{f(w)}{z_0-z} \frac{1}{1-\frac{w-z_0}{z-z_0}} dw + \int_{\gamma_2} \frac{f(w)}{w-z_0} \frac{1}{1-\frac{z-z_0}{w-z_0}} dw \\ &= \int_{\gamma_1} \frac{f(w)}{z_0-z} \sum_{n\geq 0} \left(\frac{w-z_0}{z_0-z}\right)^n dw + \int_{\gamma_2} \frac{f(w)}{w-z_0} \sum_{n\geq 0} \left(\frac{z-z_0}{w-z_0}\right)^n dw \\ &= \sum_{n<0} \left(\int_{\gamma_1} \frac{f(w)}{(w-z_0)^{n+1}} dw\right) (z-z_0)^n + \sum_{n\geq 0} \left(\int_{\gamma_2} \frac{f(w)}{(w-z_0)^{n+1}} dw\right) (z-z_0)^n \end{aligned}$$

0 +

Proof of Laurent's theorem.

For
$$w \in \gamma_1$$
, $\left| \frac{w - z_0}{z - z_0} \right| < 1$.
For $w \in \gamma_2$, $\left| \frac{z - z_0}{w - z_0} \right| < 1$.

Let $r < \rho_1 < |z| < \rho_2 < R$ and $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

We consider two simple closed curves as in the drawing (in red and blue). Then by Cauchy's integral formula and theorem

$$\begin{aligned} 2i\pi f(z) &= \int_{red} \frac{f(w)}{w-z} \mathrm{d}w + \int_{blue} \frac{f(w)}{w-z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{w-z} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w-z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{z_0-z} \frac{1}{1-\frac{w-z_0}{z-z_0}} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w-z_0} \frac{1}{1-\frac{z-z_0}{w-z_0}} \mathrm{d}w \\ &= \int_{\gamma_1} \frac{f(w)}{z_0-z} \sum_{n\geq 0} \left(\frac{w-z_0}{z_0-z}\right)^n \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w-z_0} \sum_{n\geq 0} \left(\frac{z-z_0}{w-z_0}\right)^n \mathrm{d}w \\ &= \sum_{n<0} \left(\int_{\gamma_1} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w\right) (z-z_0)^n + \sum_{n\geq 0} \left(\int_{\gamma_2} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w\right) (z-z_0)^n \end{aligned}$$

Then we can replace γ_1 and γ_2 by γ thanks to the previous lemma.

Proof of Laurent's theorem.

For $w \in \gamma_1$, $\left| \frac{w - z_0}{z - z_0} \right| < 1$. For $w \in \gamma_2$, $\left| \frac{z - z_0}{w - z_0} \right| < 1$. Let $r < \rho_1 < |z| < \rho_2 < R$ and $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$ defined by $\gamma_k(t) = z_0 + \rho_k e^{2i\pi t}$.

We consider two simple closed curves as in the drawing (in red and blue). Then by Cauchy's integral formula and theorem

$$\begin{split} 0 + 2i\pi f(z) &= \int_{red} \frac{f(w)}{w - z} \mathrm{d}w + \int_{blue} \frac{f(w)}{w - z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{w - z} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w - z} \mathrm{d}w \\ &= -\int_{\gamma_1} \frac{f(w)}{z_0 - z} \frac{1}{1 - \frac{w - z_0}{z - z_0}} \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w - z_0} \frac{1}{1 - \frac{z - z_0}{w - z_0}} \mathrm{d}w \\ &= \int_{\gamma_1} \frac{f(w)}{z_0 - z} \sum_{n \ge 0} \left(\frac{w - z_0}{z_0 - z}\right)^n \mathrm{d}w + \int_{\gamma_2} \frac{f(w)}{w - z_0} \sum_{n \ge 0} \left(\frac{z - z_0}{w - z_0}\right)^n \mathrm{d}w \\ &= \sum_{n < 0} \left(\int_{\gamma_1} \frac{f(w)}{(w - z_0)^{n+1}} \mathrm{d}w\right) (z - z_0)^n + \sum_{n \ge 0} \left(\int_{\gamma_2} \frac{f(w)}{(w - z_0)^{n+1}} \mathrm{d}w\right) (z - z_0)^n \end{split}$$

Then we can replace γ_1 and γ_2 by γ thanks to the previous lemma.

We need to justify the $\sum - \int$ permutation of the last equality: that's exactly the same proof as for the power expression of a holomorphic function (see lecture from October 16).

Laurent series and isolated singularities - 1

Proposition

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Let R > 0 be such that $D_R(z_0) \subset U$. Then f admits a Laurent series expansion centered at z_0 on $D_R(z_0) \setminus \{z_0\}$ (apply Laurent's theorem with r = 0)

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

Then

1
$$z_0$$
 is a removable singularity iff $\forall n < 0, a_n = 0$

2 z_0 is a pole iff $\exists m \ge 1$, $a_{-m} \ne 0$ and $\forall n < -m$, $a_n = 0$ (*m* is the order of the pole z_0)

3 z_0 is an essential singularity if and only if for infinitely many $n \in \mathbb{N}$, $a_{-n} \neq 0$.

Laurent series and isolated singularities - 1

Proposition

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Let R > 0 be such that $D_R(z_0) \subset U$. Then f admits a Laurent series expansion centered at z_0 on $D_R(z_0) \setminus \{z_0\}$ (apply Laurent's theorem with r = 0)

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

Then

1
$$z_0$$
 is a removable singularity iff $\forall n < 0, a_n = 0$

2 z_0 is a pole iff $\exists m \ge 1$, $a_{-m} \ne 0$ and $\forall n < -m$, $a_n = 0$ (*m* is the order of the pole z_0)

3 z_0 is an essential singularity if and only if for infinitely many $n \in \mathbb{N}$, $a_{-n} \neq 0$.

Proof.

1 *f* coincides on
$$D_R(z_0) \setminus \{z_0\}$$
 with $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ holomorphic at z_0 .

2 f coincides on
$$D_R(z_0) \setminus \{z_0\}$$
 with $\frac{\sum_{n=0}^{\infty} a_{n-m}(z-z_0)^n}{(z-z_0)^m}$

(3) if z_0 is not a removable singularity nor a pole then it is an essential singularity.

Example

For
$$z \in \mathbb{C} \setminus \{0\}$$
, $e^{\frac{1}{z}} = \sum_{n=0}^{+\infty} \frac{(z^{-1})^n}{n!} = \sum_{n=-\infty}^{0} \frac{z^n}{(-n)!}$.
Hence $e^{\frac{1}{z}}$ has an essential singularity at 0.

Theorem

Let $U \subset \mathbb{C}$ be an open neighborhood of infinity, i.e. there exists r > 0 such that $\{z \in \mathbb{C} : |z| > r\} \subset U$. Let $f : U \to \mathbb{C}$ be holomorphic/analytic. Then f admits a Laurent series expansion centered at 0 on $\{z \in \mathbb{C} : |z| > r\}$ (apply Laurent's theorem with $R = +\infty$)

$$f(z) = \sum_{n = -\infty} a_n z'$$

Then

- **1** ∞ is a removable singularity iff $\forall n > 0, a_n = 0$
- **2** ∞ is a pole iff $\exists m \ge 1$, $a_m \ne 0$ and $\forall n > m$, $a_n = 0$ (*m* is the order of the pole at ∞)
- **3** ∞ is an essential singularity if and only if for infinitely many $n \in \mathbb{N}$, $a_n \neq 0$.

Theorem

Let $U \subset \mathbb{C}$ be an open neighborhood of infinity, i.e. there exists r > 0 such that $\{z \in \mathbb{C} : |z| > r\} \subset U$. Let $f : U \to \mathbb{C}$ be holomorphic/analytic. Then f admits a Laurent series expansion centered at 0 on $\{z \in \mathbb{C} : |z| > r\}$ (apply Laurent's theorem with $R = +\infty$)

$$f(z) = \sum_{n = -\infty} a_n z^n$$

Then

1 ∞ is a removable singularity iff $\forall n > 0, a_n = 0$

2 ∞ is a pole iff $\exists m \ge 1$, $a_m \ne 0$ and $\forall n > m$, $a_n = 0$ (*m* is the order of the pole at ∞)

3 ∞ is an essential singularity if and only if for infinitely many $n \in \mathbb{N}$, $a_n \neq 0$.

Proof. Recall that the inversion $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$, $z \mapsto \frac{1}{z}$, swaps 0 and ∞ .

Definition

The principal part of a Laurent series

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n$$

is the part consisting only of the negative exponents

$$\sum_{n=-\infty}^{-1} a_n (z-z_0)^n$$

Residues – 1

Definition: residue

Let z_0 be an isolated singularity of f. Denote the Laurent expansion of f around z_0 by

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n$$

Then the **residue of** *f* at z_0 is the coefficient of $(z - z_0)^{-1}$, i.e. $\operatorname{Res}(f, z_0) \coloneqq a_{-1}$.

Residues - 1

Definition: residue

Let z_0 be an isolated singularity of f. Denote the Laurent expansion of f around z_0 by

$$f(z) = \sum_{n = -\infty}^{+\infty} a_n (z - z_0)^n$$

Then the **residue of** *f* at z_0 is the coefficient of $(z - z_0)^{-1}$, i.e. $\text{Res}(f, z_0) \coloneqq a_{-1}$.

Proposition

Assume that *f* is holomorphic on $D_r(z_0) \setminus \{z_0\}$ for some r > 0 then

$$\operatorname{Res}(f, z_0) = \frac{1}{2i\pi} \int_{\gamma} f(w) \mathrm{d}w$$

where γ : $[0,1] \to \mathbb{C}$ is defined by $\gamma(t) = z_0 + \rho e^{2i\pi t}$ with $\rho \in (0,r)$.

Note that the above integral doesn't depend on the choice of ρ by the above lemma.

Example

In a punctured neighborhood of 0, we have

$$\frac{e^z - 1}{z^4} = \frac{1}{z^3} + \frac{1}{2z^2} + \frac{1}{6z} + \frac{1}{24} + \frac{z}{120} + \cdots$$

Hence Res $\left(\frac{e^z - 1}{z^4}, 0\right) = \frac{1}{6}$.

Residues – 3

Proposition: how to compute residues

- If z_0 is a pole of order 1 of f then $\operatorname{Res}(f, z_0) = \lim_{z \to z_0} (z z_0) f(z)$.
- If z_0 is a pole of order k of f then $\operatorname{Res}(f, z_0) = \frac{h^{(k-1)}(z_0)}{(k-1)!}$ where $h(z) = (z z_0)^k f(z)$.

• If *f* is holomorphic at z_0 and *g* has a zero of order 1 at z_0 then $\operatorname{Res}\left(\frac{f}{g}, z_0\right) = \frac{f(z_0)}{g'(z_0)}$.

• Assume that z_0 is an isolated zero of f then the order of vanishing of f at z_0 is $\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$.

Residues – 3

Proposition: how to compute residues

- If z_0 is a pole of order 1 of f then $\operatorname{Res}(f, z_0) = \lim_{z \to z_0} (z z_0) f(z)$.
- If z_0 is a pole of order *k* of *f* then $\operatorname{Res}(f, z_0) = \frac{h^{(k-1)}(z_0)}{(k-1)!}$ where $h(z) = (z z_0)^k f(z)$.
- If *f* is holomorphic at z_0 and *g* has a zero of order 1 at z_0 then $\operatorname{Res}\left(\frac{f}{g}, z_0\right) = \frac{f(z_0)}{g'(z_0)}$.
- Assume that z_0 is an isolated zero of f then the order of vanishing of f at z_0 is $\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$.

Homework

- Prove the above identities!
- Compute some residues (i.e. practice exercises from the textbook!).

Residue at ∞

Definition: residue at ∞

Assume that *f* is holomorphic/analytic in a neighborhood of infinity, i.e. on $\{z \in \mathbb{C} : |z| > r\}$ for some *r*. We define the **residue of** *f* **at** ∞ by

$$\operatorname{Res}(f, \infty) \coloneqq \operatorname{Res}\left(\frac{-1}{z^2}f\left(\frac{1}{z}\right), 0\right)$$

Residue at ∞

Definition: residue at ∞

Assume that *f* is holomorphic/analytic in a neighborhood of infinity, i.e. on $\{z \in \mathbb{C} : |z| > r\}$ for some *r*. We define the **residue of** *f* **at** ∞ by

$$\operatorname{Res}(f, \infty) \coloneqq \operatorname{Res}\left(\frac{-1}{z^2}f\left(\frac{1}{z}\right), 0\right)$$

Proposition

Assume that f is holomorphic on $\{z \in \mathbb{C} : |z| > r\}$ for some r > 0 then

$$\operatorname{Res}(f,\infty) = -\frac{1}{2i\pi} \int_{\gamma} f(w) \mathrm{d}w$$

where $\gamma : [0,1] \to \mathbb{C}$ is defined by $\gamma(t) = z_0 + \rho e^{2i\pi t}$ with $\rho > r$.

The sign is due to the fact that γ is not positively oriented: it is considered as the boundary of the complement of the disk since that's where is located ∞ .

Residue at ∞

Definition: residue at ∞

Assume that *f* is holomorphic/analytic in a neighborhood of infinity, i.e. on $\{z \in \mathbb{C} : |z| > r\}$ for some *r*. We define the **residue of** *f* **at** ∞ by

$$\operatorname{Res}(f, \infty) \coloneqq \operatorname{Res}\left(\frac{-1}{z^2}f\left(\frac{1}{z}\right), 0\right)$$

Proposition

Assume that f is holomorphic on $\{z \in \mathbb{C} : |z| > r\}$ for some r > 0 then

$$\operatorname{Res}(f,\infty) = -\frac{1}{2i\pi} \int_{\gamma} f(w) \mathrm{d}w$$

where $\gamma : [0,1] \to \mathbb{C}$ is defined by $\gamma(t) = z_0 + \rho e^{2i\pi t}$ with $\rho > r$.

The sign is due to the fact that γ is not positively oriented: it is considered as the boundary of the complement of the disk since that's where is located ∞ .

Homework: prove the proposition (you will see where does $-\frac{1}{\tau^2}$ come from).