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Informal presentation

Recall that a function 𝑓 ∶ 𝑈 → ℂ (𝑈 ⊂ ℂ open) is holomorphic/analytic if and only if 𝑓 can be
described as a power series

𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛

in a neighborhood of every point 𝑧0 ∈ 𝑈 .
We are going to generalize this property in order to study 𝑓 in the neighborhood of an isolated
singularity 𝑧0 (i.e. 𝑓 is not defined at 𝑧0 but is holomorphic in a punctured neighborhood of 𝑧0),
for that purpose we are going to work with Laurent series allowing negative exponents:

𝑓(𝑧) =
+∞

∑𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛

Intuitively, the more we need negative exponents in the above expression, the wilder is the
singularity.
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Laurent’s theorem

Theorem: Laurent’s theorem
Let 𝑧0 ∈ ℂ and 0 ≤ 𝑟 < 𝑅 ≤ +∞. Set 𝑈 = {𝑧 ∈ ℂ ∶ 𝑟 < |𝑧 − 𝑧0| < 𝑅} and let 𝑓 ∶ 𝑈 → ℂ be
holomorphic/analytic then

∀𝑧 ∈ 𝑈, 𝑓(𝑧) =
∞

∑𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛

where 𝑎𝑛 = 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1 d𝑤 and 𝛾 ∶ [0, 1] → ℂ is defined by 𝛾(𝑡) = 𝑧0 + 𝜌𝑒2𝑖𝜋𝑡 with 𝜌 ∈ (𝑟, 𝑅).

We call such a series (a ”power series” with exponents in ℤ) a Laurent series.

• If 𝑅 = +∞ then 𝑈 is the complement of the closed disk centered at 𝑧0 and of radius 𝑟, hence
it is a neighborhood of ∞.

• If 𝑟 = 0 then 𝑈 is a punctured open disk centered at 𝑧0 and of radius 𝑅.
• If 𝑟 = 0 and 𝑅 = +∞ then 𝑈 = ℂ ⧵ {𝑧0}.
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Example:

The function 𝑓 ∶ ℂ ⧵ {0, 1} → ℂ defined by 𝑓(𝑧) = 1
𝑧(1−𝑧) is holomorphic on ℂ ⧵ {0, 1} and has two

isolated singularities, namely 0 and 1.

• For 0 < |𝑧| < 1, 𝑓(𝑧) = 1
𝑧 + 1

1 − 𝑧 = 𝑧−1 +
+∞

∑
𝑛=0

𝑧𝑛 =
+∞

∑
𝑛=−1

𝑧𝑛.

• For 0 < |𝑧 − 1| < 1, 𝑓(𝑧) = − 1
𝑧 − 1 + 1

𝑧 = −(𝑧 − 1)−1 +
+∞

∑
𝑛=0

(−1)𝑛(𝑧 − 1)𝑛 =
+∞

∑
𝑛=−1

(−1)𝑛(𝑧 − 1)𝑛.

• For 1 < |𝑧|, 𝑓(𝑧) = − 1
𝑧2

𝑧
𝑧 − 1 = − 1

𝑧2
1

1 − 1
𝑧

= − 1
𝑧2

+∞

∑
𝑛=0

𝑧−𝑛 =
−2

∑𝑛=−∞
(−1)𝑧𝑛
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Proof of Laurent’s theorem – 1
Lemma
Let 𝑧0 ∈ ℂ and 0 ≤ 𝑟 < 𝑅 ≤ +∞. Set 𝑈 = {𝑧 ∈ ℂ ∶ 𝑟 < |𝑧 − 𝑧0| < 𝑅} and let 𝑔 ∶ 𝑈 → ℂ be
holomorphic/analytic.
Let 𝜌1, 𝜌2 ∈ ℝ be s.t. 𝑟 < 𝜌1 < 𝜌2 < 𝑅. Let 𝛾1, 𝛾2 ∶ [0, 1] → ℂ be defined by 𝛾𝑘(𝑡) = 𝑧0 + 𝜌𝑘𝑒2𝑖𝜋𝑡.
Then ∫𝛾1

𝑔(𝑧)d𝑧 = ∫𝛾2
𝑔(𝑧)d𝑧.

Proof.

𝑧0 𝛾2𝛾1
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We consider two simple closed curves as in the drawing (in red and blue)
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Proof of Laurent’s theorem – 2
Proof of Laurent’s theorem.

𝑧0 𝛾2𝛾1

𝑧

Let 𝑟 < 𝜌1 < |𝑧| < 𝜌2 < 𝑅 and 𝛾1, 𝛾2 ∶ [0, 1] → ℂ defined by
𝛾𝑘(𝑡) = 𝑧0 + 𝜌𝑘𝑒2𝑖𝜋𝑡.
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𝑓(𝑤)
𝑤 − 𝑧 d𝑤

= − ∫𝛾1
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1
1 − 𝑤−𝑧0

𝑧−𝑧0

d𝑤 + ∫𝛾2

𝑓(𝑤)
𝑤 − 𝑧0

1
1 − 𝑧−𝑧0

𝑤−𝑧0

d𝑤
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We need to justify the ∑ − ∫ permutation of the last equality: that’s exactly the same proof as for the power expression of a holomorphic
function (see lecture from October 16).

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Oct 26, 2020 and Oct 28, 2020 6 / 14



Laurent series and isolated singularities – 1
Proposition
Let 𝑈 ⊂ ℂ be open and 𝑧0 ∈ 𝑈 . Assume that 𝑓 ∶ 𝑈 ⧵ {𝑧0} → ℂ is holomorphic/analytic.
Let 𝑅 > 0 be such that 𝐷𝑅(𝑧0) ⊂ 𝑈 . Then 𝑓 admits a Laurent series expansion centered at 𝑧0 on
𝐷𝑅(𝑧0) ⧵ {𝑧0} (apply Laurent’s theorem with 𝑟 = 0)

𝑓(𝑧) =
∞

∑𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛

Then
1 𝑧0 is a removable singularity iff ∀𝑛 < 0, 𝑎𝑛 = 0
2 𝑧0 is a pole iff ∃𝑚 ≥ 1, 𝑎−𝑚 ≠ 0 and ∀𝑛 < −𝑚, 𝑎𝑛 = 0 (𝑚 is the order of the pole 𝑧0)
3 𝑧0 is an essential singularity if and only if for infinitely many 𝑛 ∈ ℕ, 𝑎−𝑛 ≠ 0.

Proof.
1 𝑓 coincides on 𝐷𝑅(𝑧0) ⧵ {𝑧0} with ∑∞

𝑛=0 𝑎𝑛(𝑧 − 𝑧0)𝑛 holomorphic at 𝑧0.
2 𝑓 coincides on 𝐷𝑅(𝑧0) ⧵ {𝑧0} with ∑∞

𝑛=0 𝑎𝑛−𝑚(𝑧−𝑧0)𝑛

(𝑧−𝑧0)𝑚 .
3 if 𝑧0 is not a removable singularity nor a pole then it is an essential singularity. ■
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Laurent series and isolated singularities – 2

Example

For 𝑧 ∈ ℂ ⧵ {0}, 𝑒
1
𝑧 =

+∞

∑
𝑛=0

(𝑧−1)
𝑛

𝑛! =
0

∑𝑛=−∞

𝑧𝑛

(−𝑛)! .

Hence 𝑒
1
𝑧 has an essential singularity at 0.
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Singularity at ∞

Theorem
Let 𝑈 ⊂ ℂ be an open neighborhood of infinity, i.e. there exists 𝑟 > 0 such that
{𝑧 ∈ ℂ ∶ |𝑧| > 𝑟} ⊂ 𝑈 . Let 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Then 𝑓 admits a Laurent series expansion centered at 0 on {𝑧 ∈ ℂ ∶ |𝑧| > 𝑟} (apply Laurent’s
theorem with 𝑅 = +∞)

𝑓(𝑧) =
∞

∑𝑛=−∞
𝑎𝑛𝑧𝑛

Then
1 ∞ is a removable singularity iff ∀𝑛 > 0, 𝑎𝑛 = 0
2 ∞ is a pole iff ∃𝑚 ≥ 1, 𝑎𝑚 ≠ 0 and ∀𝑛 > 𝑚, 𝑎𝑛 = 0 (𝑚 is the order of the pole at ∞)
3 ∞ is an essential singularity if and only if for infinitely many 𝑛 ∈ ℕ, 𝑎𝑛 ≠ 0.

Proof. Recall that the inversion ℂ̂ → ℂ̂, 𝑧 ↦ 1
𝑧 , swaps 0 and ∞. ■
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Principal part

Definition
The principal part of a Laurent series

𝑓(𝑧) =
+∞

∑𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛

is the part consisting only of the negative exponents

−1

∑𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛
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Residues – 1
Definition: residue
Let 𝑧0 be an isolated singularity of 𝑓 . Denote the Laurent expansion of 𝑓 around 𝑧0 by

𝑓(𝑧) =
+∞

∑𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛

Then the residue of 𝑓 at 𝑧0 is the coefficient of (𝑧 − 𝑧0)−1, i.e. Res(𝑓 , 𝑧0) ≔ 𝑎−1.

Proposition
Assume that 𝑓 is holomorphic on 𝐷𝑟(𝑧0) ⧵ {𝑧0} for some 𝑟 > 0 then

Res(𝑓 , 𝑧0) = 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)d𝑤

where 𝛾 ∶ [0, 1] → ℂ is defined by 𝛾(𝑡) = 𝑧0 + 𝜌𝑒2𝑖𝜋𝑡 with 𝜌 ∈ (0, 𝑟).

Note that the above integral doesn’t depend on the choice of 𝜌 by the above lemma.
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Residues – 2

Example
In a punctured neighborhood of 0, we have

𝑒𝑧 − 1
𝑧4 = 1

𝑧3 + 1
2𝑧2 + 1

6𝑧 + 1
24 + 𝑧

120 + ⋯

Hence Res (
𝑒𝑧−1

𝑧4 , 0) = 1
6 .
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Residues – 3

Proposition: how to compute residues
• If 𝑧0 is a pole of order 1 of 𝑓 then Res(𝑓 , 𝑧0) = lim

𝑧→𝑧0
(𝑧 − 𝑧0)𝑓 (𝑧).

• If 𝑧0 is a pole of order 𝑘 of 𝑓 then Res(𝑓 , 𝑧0) = ℎ(𝑘−1)(𝑧0)
(𝑘 − 1)! where ℎ(𝑧) = (𝑧 − 𝑧0)𝑘𝑓(𝑧).

• If 𝑓 is holomorphic at 𝑧0 and 𝑔 has a zero of order 1 at 𝑧0 then Res (
𝑓
𝑔 , 𝑧0) = 𝑓(𝑧0)

𝑔′(𝑧0) .

• Assume that 𝑧0 is an isolated zero of 𝑓 then the order of vanishing of 𝑓 at 𝑧0 is Res (
𝑓 ′

𝑓 , 𝑧0).

Homework
• Prove the above identities!
• Compute some residues (i.e. practice exercises from the textbook!).
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Residue at ∞
Definition: residue at ∞
Assume that 𝑓 is holomorphic/analytic in a neighborhood of infinity, i.e. on {𝑧 ∈ ℂ ∶ |𝑧| > 𝑟} for
some 𝑟. We define the residue of 𝑓 at ∞ by

Res(𝑓 , ∞) ≔ Res (
−1
𝑧2 𝑓 (

1
𝑧) , 0)

Proposition
Assume that 𝑓 is holomorphic on {𝑧 ∈ ℂ ∶ |𝑧| > 𝑟} for some 𝑟 > 0 then

Res(𝑓 , ∞) = − 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)d𝑤

where 𝛾 ∶ [0, 1] → ℂ is defined by 𝛾(𝑡) = 𝑧0 + 𝜌𝑒2𝑖𝜋𝑡 with 𝜌 > 𝑟.

The sign is due to the fact that 𝛾 is not positively oriented: it is considered as the boundary of the complement of the disk
since that’s where is located ∞.
Homework: prove the proposition (you will see where does − 1

𝑧2 come from).
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