MAT334H1-F – LEC0101 Complex Variables

ISOLATED SINGULARITIES

October 23rd, 2020 and October 26th, 2020

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic.

• Either f is bounded in a neighborhood of z_0 ,

```
i.e. \exists M \in \mathbb{R}, \exists r > 0, \forall z \in D_r(z_0) \cap U, |f(z)| \le M,
```

then we say that z_0 is a **removable singularity** of f,

Examples: removable singularities

1
$$f(z) = \frac{z+i}{z^2+1}$$
 on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.
2 $f(z) = \frac{\sin z}{z}$ on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic.

• or
$$\lim_{z \to z_0} |f(z)| = +\infty$$
, then we say that z_0 is a **pole** of f ,

Examples: poles

1
$$f(z) = \frac{1}{z}$$
 on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.
2 $f(z) = \frac{1}{z^2 - 1}$ on $D_1(1)$ with $z_0 = 1$.

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic.

• otherwise, if none of the above occurs, we say that z_0 is an **essential singularity** of f.

Examples: essential singularities

1
$$f(z) = \cos \frac{1}{z}$$
 on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.
2 $f(z) = e^{\frac{1}{z}}$ on $\mathbb{C} \setminus \{0\}$ with $z_0 = 0$.

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic.

• Either f is bounded in a neighborhood of z_0 ,

i.e. $\exists M \in \mathbb{R}, \exists r > 0, \forall z \in D_r(z_0) \cap U, |f(z)| \le M$,

then we say that z_0 is a **removable singularity** of f,

- or $\lim_{z \to z_0} |f(z)| = +\infty$, then we say that z_0 is a **pole** of f,
- otherwise, if none of the above occurs, we say that z_0 is an **essential singularity** of f.

Removable singularities

Theorem: Riemann's removable singularity theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

- **1** z_0 is a removable singularity of f (*i.e.* f is bounded in a neighborhood of z_0)
- 2 $\lim_{z \to z_0} (z z_0) f(z) = 0$
- **3** *f* can be holomorphically/analytically extended on U (*i.e. there exists* $\tilde{f} : U \to \mathbb{C}$ holomorphic/analytic such that $\tilde{f}_{|U \setminus \{z_0\}} = f$)
- *f* can be continuously extended on *U* (*i.e. there exists f* : *U* → C continuous such that *f*_{|U\{z_0}} = *f*)

Remark

Note that if f admits a continuous extension at z_0 then it is holomorphic.

Removable singularities

Theorem: Riemann's removable singularity theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

- **1** z_0 is a removable singularity of f (*i.e.* f is bounded in a neighborhood of z_0)
- 2 $\lim_{z \to z_0} (z z_0) f(z) = 0$
- **3** *f* can be holomorphically/analytically extended on U (*i.e. there exists* $\tilde{f} : U \to \mathbb{C}$ holomorphic/analytic such that $\tilde{f}_{|U \setminus \{z_0\}} = f$)
- *f* can be continuously extended on *U* (*i.e. there exists f* : U → C continuous such that *f*_{|U\{z_0}} = *f*)

Proof. $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$. The only non-trivial part is $2 \Rightarrow 3$. Define $g: U \to \mathbb{C}$ by $g(z_0) = 0$ and $g(z) = (z - z_0)^2 f(z)$ otherwise. Then $\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = 0$. Hence g is holomorphic on U. Since $g(z_0) = g'(z_0) = 0$ we have $g(z) = \sum_{n=2}^{+\infty} a_n(z - z_0)^n = (z - z_0)^2 \sum_{n=2}^{+\infty} a_n(z - z_0)^{n-2}$ where

 $z \in D_r(z_0) \cap U$ for some r > 0, so that $\tilde{f}(z) = \sum_{n=2}^{+\infty} a_n (z - z_0)^{n-2}$ is a suitable holomorphic extension of f on $D_r(z_0) \cap U$.

Removable singularities

Theorem: Riemann's removable singularity theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

- **1** z_0 is a removable singularity of f (*i.e.* f is bounded in a neighborhood of z_0)
- 2 $\lim_{z \to z_0} (z z_0) f(z) = 0$
- **3** *f* can be holomorphically/analytically extended on U (*i.e. there exists* $\tilde{f} : U \to \mathbb{C}$ holomorphic/analytic such that $\tilde{f}_{|U \setminus \{z_0\}} = f$)
- *f* can be continuously extended on *U* (*i.e. there exists f* : *U* → C continuous such that *f*_{|U\{z_0}} = *f*)

Examples

- $f(z) = \frac{z^2+1}{z+i}$ on $\mathbb{C} \setminus \{-i\}$ may be holomorphically extended to \mathbb{C} by $\tilde{f}(z) = z i$.
- $f(z) = \frac{\sin z}{z}$ on $\mathbb{C} \setminus \{0\}$ may be continuous extended at 0 by setting $\tilde{f}(0) = 1$.

Theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1
$$z_0$$
 is a pole of f , i.e. $\lim_{z \to z_0} |f(z)| = +\infty$

2 There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z - z_0)^n}$ on $U \setminus \{z_0\}$.

3 z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

Theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1
$$z_0$$
 is a pole of f , i.e. $\lim_{z \to z_0} |f(z)| = +\infty$

2 There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z-z_0)^n}$ on $U \setminus \{z_0\}$.

3 z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

 $\begin{array}{l} Proof: \ensuremath{\underline{0}} & \Longrightarrow & \ensuremath{\underline{0}} \\ \hline \text{Then} \lim_{z \to z_0} \frac{1}{f(z)} = 0 \text{ and } z_0 \text{ is a removable singularity of } 1/f, \text{ so that we can extend it to a holomorphic} \\ \hline \text{function } h: U \to \mathbb{C} \text{ defined by } h(z) = \begin{cases} \frac{1}{f(z)} & \text{if } z \neq z_0 \\ 0 & \text{otherwise} \end{cases}. \\ \hline \text{Denote by } n \coloneqq m_h(z_0) \in \mathbb{N}_{>0} \text{ the order of vanishing of } h \text{ at } z_0, \text{ then } h(z) = (z - z_0)^n \tilde{h}(z) \text{ where } \tilde{h} : U \to \mathbb{C} \text{ is holomorphic and } \tilde{h}(z_0) \neq 0. \text{ Then } \lim_{z \to z_0} (z - z_0)^{n+1} f(z) = \lim_{z \to z_0} \frac{z - z_0}{\tilde{h}(z)} = 0. \end{cases}$

Theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1
$$z_0$$
 is a pole of f , i.e. $\lim_{z \to z_0} |f(z)| = +\infty$

2 There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z-z_0)^n}$ on $U \setminus \{z_0\}$.

3 z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

Proof: $3 \implies 2$

Pick the smallest *n* such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$. Define $g : U \setminus \{z_0\} \to \mathbb{C}$ by $g(z) = (z - z_0)^n f(z)$. Then $\lim_{z \to z_0} (z - z_0)g(z) = 0$ and z_0 is a removable singularity of *g*, so that *g* may be extended to a holomorphic function $g : U \to \mathbb{C}$. Besides $g(z_0) = \lim_{z \to z_0} g(z) = \lim_{z \to z_0} (z - z_0)^n f(z) \neq 0$ by definition of *n*.

Theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1
$$z_0$$
 is a pole of f , i.e. $\lim_{z \to z_0} |f(z)| = +\infty$

2 There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z - z_0)^n}$ on $U \setminus \{z_0\}$.

3 z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

Proof: $2 \implies 1$ Obvious.

Theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1
$$z_0$$
 is a pole of f , i.e. $\lim_{z \to z_0} |f(z)| = +\infty$

2 There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z - z_0)^n}$ on $U \setminus \{z_0\}$.

3 z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

Definition: order of a pole

The integer $n \in \mathbb{N}_{>0}$ in 2 is uniquely defined and we say that f admits a **pole of order** n at z_0 .

Theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1
$$z_0$$
 is a pole of f , i.e. $\lim_{z \to z_0} |f(z)| = +\infty$

2 There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z - z_0)^n}$ on $U \setminus \{z_0\}$.

3 z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

Definition: order of a pole

The integer $n \in \mathbb{N}_{>0}$ in 2 is uniquely defined and we say that f admits a **pole of order** n at z_0 . We saw in the previous proof that the order of the pole z_0 is also:

- The order of vanishing of 1/f at z_0 .
- The smallest *n* such that $\lim_{z \to z_0} (z z_0)^{n+1} f(z) = 0$.

Theorem

Let $U \subset \mathbb{C}$ be open and $z_0 \in U$. Assume that $f : U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic/analytic. Then TFAE:

1
$$z_0$$
 is a pole of f , i.e. $\lim_{z \to z_0} |f(z)| = +\infty$

2 There exist $n \in \mathbb{N}_{>0}$ and $g : U \to \mathbb{C}$ analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z - z_0)^n}$ on $U \setminus \{z_0\}$.

3 z_0 is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim_{z \to z_0} (z - z_0)^{n+1} f(z) = 0$.

Examples

• 1 is a pole of order 1 of
$$f(z) = \frac{1}{z^2 - 1} = \frac{1}{z+1}$$

• 0 is a pole of order 3 of $f(z) = \frac{1}{z^3}$

Not part of MAT334:

Great Picard's Theorem

Let $U \subset \mathbb{C}$ be open, $z_0 \in U$ and $f : U \setminus \{z_0\} \to \mathbb{C}$ be holomorphic/analytic. If z_0 is an essential singularity of f then, on any punctured neighborhood of z_0 , f takes all possible complex values, with at most a single exception, infinitely many times. Not part of MAT334:

Great Picard's Theorem

Let $U \subset \mathbb{C}$ be open, $z_0 \in U$ and $f : U \setminus \{z_0\} \to \mathbb{C}$ be holomorphic/analytic. If z_0 is an essential singularity of f then, on any punctured neighborhood of z_0 , f takes all possible complex values, with at most a single exception, infinitely many times.

Example

 $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ defined by $f(z) = e^{\frac{1}{z}}$ has an essential singularity at 0. It takes the value $w \in \mathbb{C} \setminus \{0\}$ at $z = \frac{1}{\log(w) + 2i\pi n}$, $n \in \mathbb{Z}$.

Spoiler: a first introduction to Laurent series

Assume that z_0 is a pole of order $n \in \mathbb{N}_{>0}$ of f.

Then there exists $g: U \to \mathbb{C}$ holomorphic/analytic such that $g(z_0) \neq 0$ and $f(z) = \frac{g(z)}{(z - z_0)^n}$ in a neighborhood of z_0 .

Since g is analytic at z_0 , it may be expressed as a power series in a small neighborhood of z_0 :

$$g(z) = \sum_{k=0}^{+\infty} a_k (z - z_0)^k$$

and since $g(z_0) \neq 0$ we know that $a_0 \neq 0$.

Therefore, in a punctured neighborhood of z_0 , we may express f as

$$f(z) = \sum_{k \ge -n}^{+\infty} a_{k+n} (z - z_0)^k$$

= $a_0 (z - z_0)^{-n} + a_1 (z - z_0)^{-n+1} + \dots + a_n + a_{n+1} (z - z_0) + a_{n+2} (z - z_0)^2 + \dots$

Note that the above expression has some negative exponents: it is a first example of *Laurent* series, notion that we will study next week.

In the above proofs, we used in an essential manner that the function f was holomorphic in a punctured neighborhood of z_0 , i.e. that there exists r > 0 such that f is holomorphic on

$$D_r(z_0) \setminus \{z_0\} = \left\{ z \in \mathbb{C} : 0 < |z - z_0| < r \right\}$$

Therefore, when we will work with functions having several singularities, we will need to assume that they are **isolated**.

Formally, let $U \subset \mathbb{C}$ be open, $S \subset U$ be the *singular locus* and $f : U \setminus S \to \mathbb{C}$ be holomorphic. We need that if $z_0 \in S$ then f is holomorphic on $D_r(z_0) \setminus \{z_0\}$ for a small r > 0. Otherwise stated, that there exists a small disk centered at z_0 which doesn't contain another singular point.

To summarize, *S* needs to satisfy $\forall z_0 \in S, \exists r > 0, D_r(z_0) \cap S = \{z_0\}.$

If you take MAT327, it simply means that S is discrete in U.

We will only handle isolated singularities, we won't study wilder singular loci.

Example

The function $f : \mathbb{C} \setminus \{\pm 1\} \to \mathbb{C}$ defined by $f(z) = \frac{1}{z^2 - 1}$ is holomorphic and has 2 isolated singularities at -1 and +1.

Non-Example

Let
$$f : \mathbb{C} \setminus \left(\left\{ \frac{1}{\pi n} : n \in \mathbb{Z} \right\} \cup \{0\} \right) \to \mathbb{C}$$
 be defined by $f(z) = \cot \frac{1}{z}$.
Then 0 is not an isolated singularity of f :

Singularity at $\infty - 1$

Let $U \subset \mathbb{C}$ be an open neighborhood of infinity, i.e. there exists r > 0 such that $\{z \in \mathbb{C} : |z| > r\} \subset U$. Let $f : U \to \mathbb{C}$ be holomorphic/analytic.

Then ∞ is an isolated singularity of f (i.e. f is defined in a neighborhood of ∞ but not at ∞).

1 Either *f* is bounded in a neighborhood of ∞ ,

i.e.
$$\exists M \in \mathbb{R}, \exists r > 0, \forall z \in U, |z| > r \implies |f(z)| \le M$$
,

then we say that ∞ is a **removable singularity** of *f*,

- 2 or $\lim_{z\to\infty} |f(z)| = +\infty$, then we say that ∞ is a **pole** of f,
- **3** otherwise, if none of the above occurs, we say that ∞ is an **essential singularity** of f.

Singularity at $\infty - 1$

Let $U \subset \mathbb{C}$ be an open neighborhood of infinity, i.e. there exists r > 0 such that $\{z \in \mathbb{C} : |z| > r\} \subset U$. Let $f : U \to \mathbb{C}$ be holomorphic/analytic.

Then ∞ is an isolated singularity of f (i.e. f is defined in a neighborhood of ∞ but not at ∞).

1 Either *f* is bounded in a neighborhood of ∞ ,

i.e. $\exists M \in \mathbb{R}, \exists r > 0, \forall z \in U, |z| > r \implies |f(z)| \le M$,

then we say that ∞ is a **removable singularity** of *f*,

2 or $\lim_{z\to\infty} |f(z)| = +\infty$, then we say that ∞ is a **pole** of f,

3 otherwise, if none of the above occurs, we say that ∞ is an **essential singularity** of *f*.

Recall that the inversion $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$, $z \mapsto \frac{1}{z}$, swaps 0 and ∞ . Hence, if we set $g(z) = f\left(\frac{1}{z}\right)$ then the type of singularity of f at ∞ coincides with the type of singularity of g at 0.

Non-Example

Let $f : \mathbb{C} \setminus \{\pi n : n \in \mathbb{Z}\} \to \mathbb{C}$ be defined by $f(z) = \cot z$. Then ∞ is not an isolated singularity of f:

