IsOLATED SINGULARITIES

October $23^{\text {rd }}, 2020$ and October $26^{\text {th }}, 2020$

Isolated singularities

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic.

- Either f is bounded in a neighborhood of z_{0},

$$
\text { i.e. } \exists M \in \mathbb{R}, \exists r>0, \forall z \in D_{r}\left(z_{0}\right) \cap U,|f(z)| \leq M
$$

then we say that z_{0} is a removable singularity of f,

Examples: removable singularities

(1) $f(z)=\frac{z+i}{z^{2}+1}$ on $\mathbb{C} \backslash\{0\}$ with $z_{0}=0$.
(2) $f(z)=\frac{\sin z}{z}$ on $\mathbb{C} \backslash\{0\}$ with $z_{0}=0$.

Isolated singularities

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic.

- or $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$, then we say that z_{0} is a pole of f,

Examples: poles

(1) $f(z)=\frac{1}{z}$ on $\mathbb{C} \backslash\{0\}$ with $z_{0}=0$.
(2) $f(z)=\frac{1}{z^{2}-1}$ on $D_{1}(1)$ with $z_{0}=1$.

Isolated singularities

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic.

- otherwise, if none of the above occurs, we say that z_{0} is an essential singularity of f.

Examples: essential singularities

(1) $f(z)=\cos \frac{1}{z}$ on $\mathbb{C} \backslash\{0\}$ with $z_{0}=0$.
(2) $f(z)=e^{\frac{1}{z}}$ on $\mathbb{C} \backslash\{0\}$ with $z_{0}=0$.

Isolated singularities

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic.

- Either f is bounded in a neighborhood of z_{0},

$$
\text { i.e. } \exists M \in \mathbb{R}, \exists r>0, \forall z \in D_{r}\left(z_{0}\right) \cap U,|f(z)| \leq M
$$

then we say that z_{0} is a removable singularity of f,

- or $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$, then we say that z_{0} is a pole of f,
- otherwise, if none of the above occurs, we say that z_{0} is an essential singularity of f.

Removable singularities

Theorem: Riemann's removable singularity theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a removable singularity of $f \quad$ (i.e. f is bounded in a neighborhood of z_{0})
(2) $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$
(3) f can be holomorphically/analytically extended on U
(i.e. there exists $\tilde{f}: U \rightarrow \mathbb{C}$ holomorphic/analytic such that $\tilde{f}_{\mid U \backslash\left\{z_{0}\right\}}=f$)
(4) f can be continuously extended on U
(i.e. there exists $\tilde{f}: U \rightarrow \mathbb{C}$ continuous such that $\tilde{f}_{\mid U \backslash\left\{z_{0}\right\}}=f$)

Remark

Note that if f admits a continuous extension at z_{0} then it is holomorphic.

Removable singularities

Theorem: Riemann's removable singularity theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a removable singularity of $f \quad$ (i.e. f is bounded in a neighborhood of z_{0})
(2) $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$
(3) f can be holomorphically/analytically extended on U
(i.e. there exists $\tilde{f}: U \rightarrow \mathbb{C}$ holomorphic/analytic such that $\tilde{f}_{\mid U \backslash\left\{z_{0}\right\}}=f$)
(4) f can be continuously extended on U (i.e. there exists $\tilde{f}: U \rightarrow \mathbb{C}$ continuous such that $\tilde{f}_{\mid U \backslash\left\{z_{0}\right\}}=f$)

Proof. $1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 4 \Longrightarrow$. The only non-trivial part is $2 \Longrightarrow 3$.
Define $g: U \rightarrow \mathbb{C}$ by $g\left(z_{0}\right)=0$ and $g(z)=\left(z-z_{0}\right)^{2} f(z)$ otherwise. Then $\lim _{z \rightarrow z_{0}} \frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}=0$.
Hence g is holomorphic on U. Since $g\left(z_{0}\right)=g^{\prime}\left(z_{0}\right)=0$ we have $g(z)=\sum_{n=2}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}=\left(z-z_{0}\right)^{2} \sum_{n=2}^{+\infty} a_{n}\left(z-z_{0}\right)^{n-2}$ where $z \in D_{r}\left(z_{0}\right) \cap U$ for some $r>0$, so that $\tilde{f}(z)=\sum_{n=2}^{+\infty} a_{n}\left(z-z_{0}\right)^{n-2}$ is a suitable holomorphic extension of f on $D_{r}\left(z_{0}\right) \cap U$.

Removable singularities

Theorem: Riemann's removable singularity theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a removable singularity of f (i.e. f is bounded in a neighborhood of z_{0})
(2) $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$
(3) f can be holomorphically/analytically extended on U
(i.e. there exists $\tilde{f}: U \rightarrow \mathbb{C}$ holomorphic/analytic such that $\tilde{f}_{\mid U \backslash\left\{z_{0}\right\}}=f$)
(4) f can be continuously extended on U
(i.e. there exists $\tilde{f}: U \rightarrow \mathbb{C}$ continuous such that $\tilde{f}_{\mid U \backslash\left\{z_{0}\right\}}=f$)

Examples

- $f(z)=\frac{z^{2}+1}{z+i}$ on $\mathbb{C} \backslash\{-i\}$ may be holomorphically extended to \mathbb{C} by $\tilde{f}(z)=z-i$.
- $f(z)=\frac{\sin z}{z}$ on $\mathbb{C} \backslash\{0\}$ may be continuous extended at 0 by setting $\tilde{f}(0)=1$.

Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
(2) There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
(3) z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
(2) There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
(3) z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Proof: (1) $\underset{1}{ } 3$
Then $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$ and z_{0} is a removable singularity of $1 / f$, so that we can extend it to a holomorphic function $h: U \rightarrow \mathbb{C}$ defined by $h(z)=\left\{\begin{array}{cl}\frac{1}{f(z)} & \text { if } z \neq z_{0} \\ 0 & \text { otherwise }\end{array}\right.$
Denote by $n:=m_{h}\left(z_{0}\right) \in \mathbb{N}_{>0}$ the order of vanishing of h at z_{0}, then $h(z)=\left(z-z_{0}\right)^{n} \tilde{h}(z)$ where $\tilde{h}: U \rightarrow \mathbb{C}$ is holomorphic and $\tilde{h}\left(z_{0}\right) \neq 0$. Then $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=\lim _{z \rightarrow z_{0}} \frac{z-z_{0}}{\tilde{h}(z)}=0$.

Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
(2. There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
(3) z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Proof: $3 \Longrightarrow 2$
Pick the smallest n such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.
Define $g: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ by $g(z)=\left(z-z_{0}\right)^{n} f(z)$. Then $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) g(z)=0$ and z_{0} is a removable singularity of g, so that g may be extended to a holomorphic function $g: U \rightarrow \mathbb{C}$.
Besides $g\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} g(z)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n} f(z) \neq 0$ by definition of n.

Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
(2) There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
(3) z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Proof: ${ }^{2} \Longrightarrow 1$
Obvious.

Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
(2) There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
(3) z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Definition: order of a pole

The integer $n \in \mathbb{N}_{>0}$ in 2 is uniquely defined and we say that f admits a pole of order n at z_{0}.

Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
(2) There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
(3) z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Definition: order of a pole

The integer $n \in \mathbb{N}_{>0}$ in 2 is uniquely defined and we say that f admits a pole of order n at z_{0}. We saw in the previous proof that the order of the pole z_{0} is also:

- The order of vanishing of $1 / f$ at z_{0}.
- The smallest n such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Poles

Theorem

Let $U \subset \mathbb{C}$ be open and $z_{0} \in U$. Assume that $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic/analytic. Then TFAE:
(1) z_{0} is a pole of f, i.e. $\lim _{z \rightarrow z_{0}}|f(z)|=+\infty$.
(2) There exist $n \in \mathbb{N}_{>0}$ and $g: U \rightarrow \mathbb{C}$ analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ on $U \backslash\left\{z_{0}\right\}$.
(3) z_{0} is not a removable singularity of f and there exists $n \in \mathbb{N}_{>0}$ such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n+1} f(z)=0$.

Examples

- 1 is a pole of order 1 of $f(z)=\frac{1}{z^{2}-1}=\frac{1}{z+1}$
- 0 is a pole of order 3 of $f(z)=\frac{1}{z^{3}}$

Essential singularities

Not part of MAT334:

Great Picard's Theorem

Let $U \subset \mathbb{C}$ be open, $z_{0} \in U$ and $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be holomorphic/analytic. If z_{0} is an essential singularity of f then, on any punctured neighborhood of z_{0}, f takes all possible complex values, with at most a single exception, infinitely many times.

Essential singularities

Not part of MAT334:

Great Picard's Theorem

Let $U \subset \mathbb{C}$ be open, $z_{0} \in U$ and $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be holomorphic/analytic. If z_{0} is an essential singularity of f then, on any punctured neighborhood of z_{0}, f takes all possible complex values, with at most a single exception, infinitely many times.

Example

$f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ defined by $f(z)=e^{\frac{1}{z}}$ has an essential singularity at 0 .
It takes the value $w \in \mathbb{C} \backslash\{0\}$ at $z=\frac{1}{\log (w)+2 i \pi n}, n \in \mathbb{Z}$.

Spoiler: a first introduction to Laurent series

Assume that z_{0} is a pole of order $n \in \mathbb{N}_{>0}$ of f.
Then there exists $g: U \rightarrow \mathbb{C}$ holomorphic/analytic such that $g\left(z_{0}\right) \neq 0$ and $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{n}}$ in a neighborhood of z_{0}.
Since g is analytic at z_{0}, it may be expressed as a power series in a small neighborhood of z_{0} :

$$
g(z)=\sum_{k=0}^{+\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

and since $g\left(z_{0}\right) \neq 0$ we know that $a_{0} \neq 0$.
Therefore, in a punctured neighborhood of z_{0}, we may express f as

$$
\begin{aligned}
f(z) & =\sum_{k \geq-n}^{+\infty} a_{k+n}\left(z-z_{0}\right)^{k} \\
& =a_{0}\left(z-z_{0}\right)^{-n}+a_{1}\left(z-z_{0}\right)^{-n+1}+\cdots+a_{n}+a_{n+1}\left(z-z_{0}\right)+a_{n+2}\left(z-z_{0}\right)^{2}+\cdots
\end{aligned}
$$

Note that the above expression has some negative exponents: it is a first example of Laurent series, notion that we will study next week.

Isolated singularities - 1

In the above proofs, we used in an essential manner that the function f was holomorphic in a punctured neighborhood of z_{0}, i.e. that there exists $r>0$ such that f is holomorphic on

$$
D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}=\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<r\right\}
$$

Therefore, when we will work with functions having several singularities, we will need to assume that they are isolated.

Formally, let $U \subset \mathbb{C}$ be open, $S \subset U$ be the singular locus and $f: U \backslash S \rightarrow \mathbb{C}$ be holomorphic. We need that if $z_{0} \in S$ then f is holomorphic on $D_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ for a small $r>0$. Otherwise stated, that there exists a small disk centered at z_{0} which doesn't contain another singular point.
To summarize, S needs to satisfy $\forall z_{0} \in S, \exists r>0, D_{r}\left(z_{0}\right) \cap S=\left\{z_{0}\right\}$.
If you take MAT327, it simply means that S is discrete in U.
We will only handle isolated singularities, we won't study wilder singular loci.

Isolated singularities - 2

Example

The function $f: \mathbb{C} \backslash\{ \pm 1\} \rightarrow \mathbb{C}$ defined by $f(z)=\frac{1}{z^{2}-1}$ is holomorphic and has 2 isolated singularities at -1 and +1 .

Non-Example

Let $f: \mathbb{C} \backslash\left(\left\{\frac{1}{\pi n}: n \in \mathbb{Z}\right\} \cup\{0\}\right) \rightarrow \mathbb{C}$ be defined by $f(z)=\cot \frac{1}{z}$.
Then 0 is not an isolated singularity of f :

Singularity at $\infty-1$

Let $U \subset \mathbb{C}$ be an open neighborhood of infinity, i.e. there exists $r>0$ such that $\{z \in \mathbb{C}:|z|>r\} \subset U$. Let $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic.
Then ∞ is an isolated singularity of f (i.e. f is defined in a neighborhood of ∞ but not at ∞).
(1) Either f is bounded in a neighborhood of ∞,

$$
\text { i.e. } \exists M \in \mathbb{R}, \exists r>0, \forall z \in U,|z|>r \Longrightarrow|f(z)| \leq M \text {, }
$$

then we say that ∞ is a removable singularity of f,
(2) or $\lim _{z \rightarrow \infty}|f(z)|=+\infty$, then we say that ∞ is a pole of f,
(3) otherwise, if none of the above occurs, we say that ∞ is an essential singularity of f.

Singularity at $\infty-1$

Let $U \subset \mathbb{C}$ be an open neighborhood of infinity, i.e. there exists $r>0$ such that $\{z \in \mathbb{C}:|z|>r\} \subset U$. Let $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic.
Then ∞ is an isolated singularity of f (i.e. f is defined in a neighborhood of ∞ but not at ∞).
(1) Either f is bounded in a neighborhood of ∞,

$$
\text { i.e. } \exists M \in \mathbb{R}, \exists r>0, \forall z \in U,|z|>r \Longrightarrow|f(z)| \leq M \text {, }
$$

then we say that ∞ is a removable singularity of f,
(2) or $\lim _{z \rightarrow \infty}|f(z)|=+\infty$, then we say that ∞ is a pole of f,
(3) otherwise, if none of the above occurs, we say that ∞ is an essential singularity of f.

Recall that the inversion $\widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}, z \mapsto \frac{1}{z}$, swaps 0 and ∞.
Hence, if we set $g(z)=f\left(\frac{1}{z}\right)$ then the type of singularity of f at ∞ coincides with the type of singularity of g at 0 .

Singularity at $\infty-2$

Non-Example

Let $f: \mathbb{C} \backslash\{\pi n: n \in \mathbb{Z}\} \rightarrow \mathbb{C}$ be defined by $f(z)=\cot z$.
Then ∞ is not an isolated singularity of f :

