MAT334H1-F – LEC0101 Complex Variables

CONSEQUENCES OF THE CAUCHY'S INTEGRAL FORMULA

October 16th, 2020 to October 21st, 2020

Theorem

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic/ \mathbb{C} -differentiable. Then f can be **locally** expressed as a power series in a neighborhood of any point of U.

More precisely, if $\overline{D_r}(z_0) \subset U$ then

$$\forall z \in D_r(z_0), \ f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

where

$$a_n = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} \mathrm{d}w$$

and $\gamma : [0,1] \to \mathbb{C}$ is defined by $\gamma(t) = z_0 + re^{2i\pi t}$ and the radius of convergence of this power series is greater than or equal to *r*.

¹I will stop complaining about the term *analytic*... Now we know that holomorphic and analytic are synonyms.

Proof. By Cauchy's integral formula

$$f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z} dw$$

= $\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z_0} \frac{1}{1 - \frac{z - z_0}{w - z_0}} dw$
= $\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z_0} \sum_{n=0}^{+\infty} \left(\frac{z - z_0}{w - z_0}\right)^n dw$ since $|z - z_0| < |w - z_0| = r$
= $\sum_{n=0}^{+\infty} \left(\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw\right) (z - z_0)^n$

Proof. By Cauchy's integral formula

$$\begin{split} f(z) &= \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z} \mathrm{d}w \\ &= \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z_0} \frac{1}{1 - \frac{z - z_0}{w - z_0}} \mathrm{d}w \\ &= \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z_0} \sum_{n=0}^{+\infty} \left(\frac{z - z_0}{w - z_0}\right)^n \mathrm{d}w \qquad \text{since } |z - z_0| < |w - z_0| = r \\ &= \sum_{n=0}^{+\infty} \left(\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} \mathrm{d}w\right) (z - z_0)^n \\ e \text{ should justify the permutation } \int_{\gamma} \sum_{n=0}^{\infty} (-\infty)^n \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} \mathrm{d}w$$

Actually, we

It can be done by noting that for $\varepsilon > 0$ there exists N such that if $k \ge N$ then the remainder satisfies $\left|\sum_{n=k}^{+\infty} \left(\frac{z-z_0}{w-z_0}\right)^n\right| \le \varepsilon$, so that $\left| f(z) - \sum_{n=0}^{k} \left(\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w \right) (z-z_0)^n \right| \leq \left| \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w-z_0} \sum_{u=k}^{+\infty} \left(\frac{z-z_0}{w-z_0} \right)^n \mathrm{d}w \right| \leq \frac{1}{2\pi} \frac{\max_{|w-z_0|=r} |f|}{r} \varepsilon \operatorname{Length}(\gamma) \leq \varepsilon \max_{|w-z_0|=r} |f|.$

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be a function.

Then *f* is holomorphic/analytic/ \mathbb{C} -differentiable if and only if *f* can be **locally** expressed as a power series in a neighborhood of any point of *U*.

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be a function. Then f is holomorphic/analytic/ \mathbb{C} -differentiable if and only if f can be **locally** expressed as a power series in a neighborhood of any point of U.

Proof.

 \Rightarrow : the main theorem from the previous slide.

 $+\infty$

 $\Leftarrow: \text{ if } f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ in } D_r(z_0) \text{ then } f \text{ is holomorphic on } D_r(z_0) \text{ from last week lecture.}$

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be a function. Then f is holomorphic/analytic/ \mathbb{C} -differentiable if and only if f can be **locally** expressed as a power series in a neighborhood of any point of U.

Proof.

 \Rightarrow : the main theorem from the previous slide.

 $\Leftarrow: \text{ if } f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \text{ in } D_r(z_0) \text{ then } f \text{ is holomorphic on } D_r(z_0) \text{ from last week lecture.}$

Corollary

A holomorphic/analytic/ \mathbb{C} -differentiable function is infinitely many times \mathbb{C} -differentiable.

The previous results are false for \mathbb{R} -differentiability.

²It generalizes to multivariable functions.

The previous results are false for \mathbb{R} -differentiability.

• Let
$$f : \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{otherwise} \end{cases}$

Then *f* is \mathbb{R} -differentiable but not C^1 .

²It generalizes to multivariable functions.

The previous results are false for ℝ-differentiability.

• Let
$$f : \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$
Then f is \mathbb{R} -differentiable but not C^1 .

• Let
$$g : \mathbb{R} \to \mathbb{R}$$
 be defined by $g(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$

Then g is \mathbb{R} -differentiable, even \mathcal{C}^{∞} , but not analytic at 0,

i.e. it can't be expressed as a power series around 0:

Indeed $\forall n \in \mathbb{N}_{\geq 0}$, $g^{(n)}(0) = 0$, so if g were equal to its Taylor series around 0 then it would be constant equal to 0 but g is non-zero in any neighborhood of 0.

²It generalizes to multivariable functions.

The previous results are false for \mathbb{R} -differentiability.

• Let
$$f : \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$
Then f is \mathbb{R} -differentiable but not C^1 .

• Let
$$g : \mathbb{R} \to \mathbb{R}$$
 be defined by $g(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$

Then *g* is \mathbb{R} -differentiable, even C^{∞} , but not analytic at 0, i.e. it can't be expressed as a power series around 0: Indeed $\forall n \in \mathbb{N}_{\geq 0}$, $g^{(n)}(0) = 0$, so if *g* were equal to its Taylor series around 0 then it would be constant equal to 0 but *g* is non-zero in any neighborhood of 0.

By a theorem of Borel², given a real sequence (a_n)_{n∈N≥0}, there exists a C[∞] function defined in a neighborhood of 0 in R such that ∀n ∈ N≥0, f⁽ⁿ⁾(0) = a_n. Otherwise stated, any real power series is the Taylor expansion of a C[∞] function. If we take a_n = (n!)² then we obtain a power series whose radius of convergence is R = 0, hence a function with such a Taylor expansion can't be analytic.

²It generalizes to multivariable functions.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Proof.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Proof.

Let $z \in U$.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Proof.

Let $z \in U$. Since U is path connected, there exists a C^0 curve $\gamma : [a, b] \to U$ from $\gamma(a) = z_0$ to $\gamma(b) = z$.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Proof.

Let $z \in U$. Since U is path connected, there exists a C^0 curve $\gamma : [a, b] \to U$ from $\gamma(a) = z_0$ to $\gamma(b) = z$. Since U is open, for every $w \in \gamma([a, b])$ there exists $r_w > 0$ such that $D_{r_w}(w) \subset U$. Since $\gamma([a, b])$ is compact we may assume that it is covered by finitely many of these disks $D_{r_v}(w_1), \ldots, D_{r_v}(w_k)$.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Proof.

Let $z \in U$. Since U is path connected, there exists a C^0 curve $\gamma : [a, b] \to U$ from $\gamma(a) = z_0$ to $\gamma(b) = z$. Since U is open, for every $w \in \gamma([a, b])$ there exists $r_w > 0$ such that $D_{r_w}(w) \subset U$. Since $\gamma([a, b])$ is compact we may assume that it is covered by finitely many of these disks $D_{r_1}(w_1), \ldots, D_{r_k}(w_k)$. By the theorem on Slide 2, if there exists $v \in D_{r_k}(w_i)$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(v) = 0$ then $f \equiv 0$ on $D_{r_k}(w_i)$.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Proof.

Let $z \in U$. Since U is path connected, there exists a C^0 curve $\gamma : [a, b] \to U$ from $\gamma(a) = z_0$ to $\gamma(b) = z$. Since U is open, for every $w \in \gamma([a, b])$ there exists $r_w > 0$ such that $D_{r_w}(w) \subset U$. Since $\gamma([a, b])$ is compact we may assume that it is covered by finitely many of these disks $D_{r_1}(w_1), \ldots, D_{r_k}(w_k)$. By the theorem on Slide 2, if there exists $v \in D_{r_i}(w_i)$ such that $\forall n \in \mathbb{N}_{\geq 0}$, $f^{(n)}(v) = 0$ then $f \equiv 0$ on $D_{r_i}(w_i)$. Two consecutive disks intersect (since they cover γ), so we conclude using the previous remark disk by disk from z_0 to z.

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f : U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Proof.

Let $z \in U$. Since U is path connected, there exists a C^0 curve $\gamma : [a, b] \to U$ from $\gamma(a) = z_0$ to $\gamma(b) = z$. Since U is open, for every $w \in \gamma([a, b])$ there exists $r_w > 0$ such that $D_{r_w}(w) \subset U$. Since $\gamma([a, b])$ is compact we may assume that it is covered by finitely many of these disks $D_{r_1}(w_1), \ldots, D_{r_k}(w_k)$. By the theorem on Slide 2, if there exists $v \in D_{r_k}(w_i)$ such that $\forall n \in \mathbb{N}_{>0}$, $f^{(n)}(v) = 0$ then $f \equiv 0$ on $D_{r_k}(w_i)$.

Two consecutive disks intersect (since they cover γ), so we conclude using the previous remark disk by disk from z_0 to z.

If you attend MAT327, another proof consists in showing that $\{z \in U : \forall n \in \mathbb{N}_{\geq 0}, f^{(n)}(z) = 0\}$ is open, closed, and non-empty, hence equals to U by connectedness.

Let $U \subset \mathbb{C}$ be a **domain** and $f, g : U \to \mathbb{C}$ be holomorphic/analytic functions. If f and g coincide in the neighborhood of a point,

i.e. $\exists z_0 \in U, \exists r > 0, \forall z \in D_r(z_0) \cap U, f(z) = g(z),$

then they coincide on U,

i.e. $\forall z \in U, f(z) = g(z).$

Let $U \subset \mathbb{C}$ be a **domain** and $f, g : U \to \mathbb{C}$ be holomorphic/analytic functions. If f and g coincide in the neighborhood of a point,

i.e. $\exists z_0 \in U, \exists r > 0, \forall z \in D_r(z_0) \cap U, f(z) = g(z),$

then they coincide on U,

```
i.e. \forall z \in U, f(z) = g(z).
```

Proof. Then $\forall n \in \mathbb{N}_{\geq 0}$, $(f - g)^{(n)}(z_0) = 0$ (since $f - g \equiv 0$ on $D_r(z_0) \cap U$). Hence $f - g \equiv 0$ on U by the previous theorem. The previous results are false for \mathbb{R} -differentiability.

Example

Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

then f is \mathbb{R} -differentiable (even C^{∞}). And

- $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}(0) = 0$ but $f \not\equiv 0$.
- $\forall x \in (-\infty, 0), f(x) = 0$ but $f \not\equiv 0$.

A common way to construct an analytic function consists in defining it in a "small" domain and then to extend it to an analytic function with a bigger domain.

By the above result, this analytic continuation, if it exists, is unique.

That's a very powerful tool: knowing a function on a "small" domain determines the function everywhere else³. *Holomorphic/analytic functions are very rigid!*

The maximal domain may not be \mathbb{C} : for instance, if we try to extend Log, we won't be able to do a full turn around the origin since we won't recover the same values (it increases by $2i\pi$).

Example

Let
$$f : D_1(0) \to \mathbb{C}$$
 be defined by $f(z) = \sum_{n=0}^{+\infty} z^n$.
Then f coincides with $\frac{1}{1-z}$ on $D_1(0)$.
Hence we may extend f with $F : \mathbb{C} \setminus \{1\} \to \mathbb{C}$ defined by $F(z) = \frac{1}{1-z}$.

³And we will even weaken the assumptions later this term: it is enough to know the function on a set with a limit point.

Definition: order of a zero

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$. We define the **order of vanishing of** f at z_0 by $m_f(z_0) \coloneqq \min \{n \in \mathbb{N} : f^{(n)}(z_0) \neq 0\}$. Note that $m_f(z_0) > 0$ since $f(z_0) = 0$.

Definition: order of a zero

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$. We define the **order of vanishing of** f at z_0 by $m_f(z_0) \coloneqq \min \{n \in \mathbb{N} : f^{(n)}(z_0) \neq 0\}$. Note that $m_f(z_0) > 0$ since $f(z_0) = 0$.

Proposition

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$. Denote the power series expansion of f at z_0 by $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$. Then $m_f(z_0) = \min \{n \in \mathbb{N} : a_n \neq 0\}$.

Definition: order of a zero

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$. We define the **order of vanishing of** f at z_0 by $m_f(z_0) \coloneqq \min \{n \in \mathbb{N} : f^{(n)}(z_0) \neq 0\}$. Note that $m_f(z_0) > 0$ since $f(z_0) = 0$.

Proposition

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$.

Denote the power series expansion of *f* at z_0 by $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$.

Then $m_f(z_0) = \min \{ n \in \mathbb{N} : a_n \neq 0 \}.$

Proof. $a_n = \frac{f^{(n)}(z_0)}{n!}$

Definition: order of a zero

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$. We define the **order of vanishing of** f at z_0 by $m_f(z_0) \coloneqq \min \{n \in \mathbb{N} : f^{(n)}(z_0) \neq 0\}$. Note that $m_f(z_0) > 0$ since $f(z_0) = 0$.

Proposition

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Let $z_0 \in U$ be such that $f(z_0) = 0$.

Denote the power series expansion of *f* at z_0 by $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$.

Then
$$m_f(z_0) = \min \{ n \in \mathbb{N} : a_n \neq 0 \}.$$

Proof. $a_n = \frac{f^{(n)}(z_0)}{n!}$

Proposition

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic/analytic. Then z_0 is a zero of order *n* of *f* if and only if there exists $g : U \to \mathbb{C}$ holomorphic such that $f(z) = (z - z_0)^n g(z)$ and $g(z_0) \neq 0$.

Theorem: Morera's theorem

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be continuous.

If for every (full) triangle T lying in U we have $\int_{\partial T} f = 0$ then f is holomorphic/analytic on U.

Theorem: Morera's theorem

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be continuous. If for every (full) triangle *T* lying in *U* we have $\int_{\partial T} f = 0$ then *f* is holomorphic/analytic on *U*.

Proof. Let $z_0 \in U$ and r > 0 be such that $D_r(z_0) \subset U$.

Theorem: Morera's theorem

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be continuous.

If for every (full) triangle T lying in U we have $\int_{\partial T} f = 0$ then f is holomorphic/analytic on U.

Proof. Let $z_0 \in U$ and r > 0 be such that $D_r(z_0) \subset U$. We define $F : D_r(z_0) \to \mathbb{C}$ by $F(z) = \int_{[z_0, z]} f$.

Theorem: Morera's theorem

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be continuous. If for every (full) triangle *T* lying in *U* we have $\int_{\partial T} f = 0$ then *f* is holomorphic/analytic on *U*.

Proof. Let $z_0 \in U$ and r > 0 be such that $D_r(z_0) \subset U$. We define $F : D_r(z_0) \to \mathbb{C}$ by $F(z) = \int_{[z_0, z]} f$. Let $z, h \in \mathbb{C}$ be such that $z, z + h \in D_r(z_0)$ then, considering the triangle whose vertices are z_0, z and z + h, we obtain $\int_{[z_0, z]} f + \int_{[z, z+h]} f + \int_{[z+h, z_0]} f = 0$, i.e. $F(z+h) - F(z) = \int_{[z, z+h]} f$.

Theorem: Morera's theorem

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be continuous. If for every (full) triangle *T* lying in *U* we have $\int_{\partial T} f = 0$ then *f* is holomorphic/analytic on *U*.

 $\begin{array}{l} \textit{Proof. Let } z_0 \in U \text{ and } r > 0 \text{ be such that } D_r(z_0) \subset U. \text{ We define } F : D_r(z_0) \to \mathbb{C} \text{ by } F(z) = \int_{[z_0,z]} f. \\ \text{Let } z, h \in \mathbb{C} \text{ be such that } z, z + h \in D_r(z_0) \text{ then, considering the triangle whose vertices are } z_0, z \text{ and } z + h, \\ \text{we obtain } \int_{[z_0,z]} f + \int_{[z,z+h]} f + \int_{[z+h,z_0]} f = 0, \text{ i.e. } F(z+h) - F(z) = \int_{[z,z+h]} f. \quad \text{Then} \\ \left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = \left| \frac{\left(f_{[z,z+h]} f \right) - hf(z)}{h} \right| = \frac{1}{|h|} \left| \int_{[z,z+h]} (f(w) - f(z) dw \right| \leq \frac{\sup_{w \in [z,z+h]} |f(w) - f(z)|}{|h|} \text{ Length}([z,z+h]) \\ &= \sup_{w \in [z,z+h]} |f(w) - f(z)| \frac{1}{h \to 0} 0 \end{array}$

Hence *F* is holomorphic on $D_r(z_0)$ and F' = f. Furthermore, *f* is holomorphic on $D_r(z_0)$ (and hence at z_0) as the complex derivative of a holomorphic function.

Theorem: characterizations of holomorphicity/analyticity

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$. Then the following are equivalent:

1 *f* is holomorphic/analytic/ \mathbb{C} -differentiable, i.e. $\forall z_0 \in U$, $\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$ exists.

2 \tilde{f} : $\tilde{U} \to \mathbb{R}^2$ is \mathbb{R} -differentiable and satisfies the Cauchy–Riemann equations on \tilde{U} .

3 *f* may be written as a power series $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ on a neighborhood of every $z_0 \in U$.

- 4 *f* is continuous and for every (full) triangle *T* lying in *U* we have $\int_{T} f = 0$.
- **5** *f* is continuous and for every simple closed curve γ on *U* whose inside is also included in *U*, we have $\int_{\gamma} f = 0$.
- **6** *f* admits local primitives/antiderivatives: for every $z_0 \in U$ there exists $F : D_r(z_0) \cap U \to \mathbb{C}$ holomorphic for some r > 0 such that F' = f on $D_r(z_0) \cap U$.

When *U* is simply-connected, we may drop the assumption that the inside of the triangle/curve is included in *U* in (4) (5) furthermore we may also replace "local primitive/antiderivatives" by "a primitive/antiderivative" in (6) i.e. there exists $F : U \to \mathbb{C}$ holomorphic s.t. F' = f.

Definition

We say that a function $f : \mathbb{C} \to \mathbb{C}$ is **entire** if it is holomorphic (everywhere) on \mathbb{C} .

Theorem: Liouville's theorem

A bounded entire function is constant

Liouville's theorem – 2

Lemma: Cauchy's inequalities

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic. Let r > 0. If $D_r(z_0) \subset U$ then

$$\left|f^{(n)}(z_0)\right| \le \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|$$

Proof. From the theorem on Slide 2

$$\left|\frac{f^{(n)}(z_0)}{n!}\right| = \left|\frac{1}{2i\pi} \int_{|z-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w\right| \le \frac{\max_{|z-z_0|=r} |f(z)|}{r^{n+1}} \frac{\mathrm{Length}\left(|z-z_0|=r\right)}{2\pi} = \frac{\max_{|z-z_0|=r} |f(z)|}{r^n}$$

First equality: we know that the *n*-th coefficient of the power expansion of *f* at z_0 is $a_n = \frac{f^{(n)}(z_0)}{n!}$ and by the theorem on Slide 2 that it is also equal to $a_n = \frac{1}{2i\pi} \int_{|z-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} dw.$

Liouville's theorem -2

Lemma: Cauchy's inequalities

Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be holomorphic. Let r > 0. If $D_r(z_0) \subset U$ then

$$\left|f^{(n)}(z_0)\right| \le \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|$$

Proof. From the theorem on Slide 2

$$\left|\frac{f^{(n)}(z_0)}{n!}\right| = \left|\frac{1}{2i\pi} \int_{|z-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w\right| \le \frac{\max_{|z-z_0|=r} |f(z)|}{r^{n+1}} \frac{\mathrm{Length}\left(|z-z_0|=r\right)}{2\pi} = \frac{\max_{|z-z_0|=r} |f(z)|}{r^n}$$

Proof of Liouville's theorem.

Assume that there exists M > 0 such that $\forall z \in \mathbb{C}$, $|f(z)| \le M$. Let $z \in \mathbb{C}$. For r > 0, by Cauchy's inequality with n = 1, we have $|f'(z)| \le \frac{M}{r} \xrightarrow[r \to +\infty]{} 0$. Hence, $\forall z \in \mathbb{C}$, f'(z) = 0. Therefore f is constant on \mathbb{C} .

Theorem: d'Alembert–Gauss theorem or the Fundamental Theorem of Algebra

A non-constant polynomial with coefficients in \mathbb{C} admits a root/zero in \mathbb{C} .

Theorem: d'Alembert–Gauss theorem or the Fundamental Theorem of Algebra

A non-constant polynomial with coefficients in \mathbb{C} admits a root/zero in \mathbb{C} .

Proof. Assume that *P* is a complex polynomial with no root in \mathbb{C} . Then $Q = \frac{1}{P}$ is a entire function and *Q* is bounded since $\lim_{z \to +\infty} Q = 0$. Therefore, by Liouville's theorem, *Q* is constant, and so is *P*.

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain and $f : U \to \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, f(z) \neq 0$. Then there exists $g : U \to \mathbb{C}$ holomorphic/analytic such that $e^g = f$.

Careful

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain and $f : U \to \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, f(z) \neq 0$. Then there exists $g : U \to \mathbb{C}$ holomorphic/analytic such that $e^g = f$.

Proof.

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain and $f : U \to \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, f(z) \neq 0$. Then there exists $g : U \to \mathbb{C}$ holomorphic/analytic such that $e^g = f$.

Proof. Since *f* doesn't vanish, $\frac{f'}{f}$ is holomorphic on *U*.

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain and $f : U \to \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, f(z) \neq 0$. Then there exists $g : U \to \mathbb{C}$ holomorphic/analytic such that $e^g = f$.

Proof. Since *f* doesn't vanish, $\frac{f'}{f}$ is holomorphic on *U*.

Then, since *U* is simply connected, $\frac{f'}{f}$ admits a complex primitive/antiderivative, i.e. there exists $\tilde{g} : U \to \mathbb{C}$ holomorphic/analytic such that $\tilde{g}' = \frac{f'}{f}$.

Careful

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain and $f : U \to \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, f(z) \neq 0$. Then there exists $g : U \to \mathbb{C}$ holomorphic/analytic such that $e^g = f$.

Proof. Since f doesn't vanish, $\frac{f'}{f}$ is holomorphic on U.

Then, since *U* is simply connected, $\frac{f'}{f}$ admits a complex primitive/antiderivative, i.e. there exists $\tilde{g} : U \to \mathbb{C}$ holomorphic/analytic such that $\tilde{g}' = \frac{f'}{f}$. Then $(fe^{-\tilde{g}})' = (f' - \tilde{g}'f)e^{-\tilde{g}} = 0$ and therefore $fe^{-\tilde{g}} = K$ is constant since *U* is connected.

Careful

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain and $f : U \to \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, f(z) \neq 0$. Then there exists $g : U \to \mathbb{C}$ holomorphic/analytic such that $e^g = f$.

Proof. Since *f* doesn't vanish, $\frac{f'}{f}$ is holomorphic on *U*.

Then, since *U* is simply connected, $\frac{f'}{f}$ admits a complex primitive/antiderivative, i.e. there exists $\tilde{g} : U \to \mathbb{C}$ holomorphic/analytic such that $\tilde{g}' = \frac{f'}{f}$. Then $(fe^{-\tilde{g}})' = (f' - \tilde{g}'f)e^{-\tilde{g}} = 0$ and therefore $fe^{-\tilde{g}} = K$ is constant since *U* is connected. Since $K \neq 0$, there exists $w \in \mathbb{C}$ such that $e^w = K$.

Careful

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain and $f : U \to \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, f(z) \neq 0$. Then there exists $g : U \to \mathbb{C}$ holomorphic/analytic such that $e^g = f$.

Proof. Since *f* doesn't vanish, $\frac{f'}{f}$ is holomorphic on *U*.

Then, since *U* is simply connected, $\frac{f'}{f}$ admits a complex primitive/antiderivative, i.e. there exists $\tilde{g} : U \to \mathbb{C}$ holomorphic/analytic such that $\tilde{g}' = \frac{f'}{f}$. Then $(fe^{-\tilde{g}})' = (f' - \tilde{g}'f)e^{-\tilde{g}} = 0$ and therefore $fe^{-\tilde{g}} = K$ is constant since *U* is connected. Since $K \neq 0$, there exists $w \in \mathbb{C}$ such that $e^w = K$. Then, for $g = \tilde{g} + w$, we have $e^g = f$.

Careful

We are going to prove the following theorem, but using results related to analytic functions.

Theorem

Let
$$S_A(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 and $S_B(z) = \sum_{n=0}^{+\infty} b_n (z - z_0)^n$ be two power series of radii R_A and R_B .
We define $S_{AB}(z) \coloneqq \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) (z - z_0)^n$ and denote its radius of convergence by R_{AB} .

Then

$$\begin{array}{l} \mathbf{1} \ R_{AB} \geq \min(R_A, R_B). \\ \mathbf{2} \ \text{If } |z - z_0| < \min(R_A, R_B) \text{ then } S_{AB}(z) = S_A(z)S_B(z), \\ \text{i.e. } \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right)(z - z_0)^n = \left(\sum_{n=0}^{+\infty} a_n(z - z_0)^n\right) \left(\sum_{n=0}^{+\infty} b_n(z - z_0)^n\right). \end{array}$$

Proof. We know that S_A and S_B are holomorphic on $z \in \mathbb{C}$ such that $|z - z_0| < \min(R_A, R_B)$. Then $f(z) = S_A(z)S_B(z)$ is holomorphic on $|z - z_0| < \min(R_A, R_B)$,

Proof. We know that S_A and S_B are holomorphic on $z \in \mathbb{C}$ such that $|z - z_0| < \min(R_A, R_B)$. Then $f(z) = S_A(z)S_B(z)$ is holomorphic on $|z - z_0| < \min(R_A, R_B)$, so it can be written as a power series $f(z) = \sum_{n=0}^{+\infty} c_n(z - z_0)^n$ on $|z - z_0| < \min(R_A, R_B)$

Proof. We know that S_A and S_B are holomorphic on $z \in \mathbb{C}$ such that $|z - z_0| < \min(R_A, R_B)$. Then $f(z) = S_A(z)S_B(z)$ is holomorphic on $|z - z_0| < \min(R_A, R_B)$, so it can be written as a power series $f(z) = \sum_{n=0}^{+\infty} c_n(z - z_0)^n$ on $|z - z_0| < \min(R_A, R_B)$ (particularly its radius of convergence is at least $\min(R_A, R_B)$).

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Oct 16, 2020 to Oct 21, 2020

Proof. We know that S_A and S_B are holomorphic on $z \in \mathbb{C}$ such that $|z - z_0| < \min(R_A, R_B)$. Then $f(z) = S_A(z)S_B(z)$ is holomorphic on $|z - z_0| < \min(R_A, R_B)$, so it can be written as a power series $f(z) = \sum_{n=0}^{+\infty} c_n(z - z_0)^n$ on $|z - z_0| < \min(R_A, R_B)$ (particularly its radius of convergence is at least $\min(R_A, R_B)$)

convergence is at least $\min(R_A, R_B)$). Then

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{n!} \sum_{k=0}^n \frac{n!}{(n-k)!k!} S_A^{(n-k)}(z_0) S_B^{(k)}(z_0) \text{ by Leibniz rule}$$
$$= \sum_{k=0}^n \frac{S_A^{(n-k)}(z_0)}{(n-k)!} \frac{S_B^{(k)}(z_0)}{k!}$$
$$= \sum_{k=0}^n a_{n-k} b_k = \sum_{k=0}^n a_k b_{n-k}$$