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Holomorphic functions are analytic1 – 1

Theorem
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic/ℂ-differentiable.
Then 𝑓 can be locally expressed as a power series in a neighborhood of any point of 𝑈 .

More precisely, if 𝐷𝑟(𝑧0) ⊂ 𝑈 then

∀𝑧 ∈ 𝐷𝑟(𝑧0), 𝑓 (𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛

where
𝑎𝑛 = 1

2𝑖𝜋 ∫𝛾

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1 d𝑤

and 𝛾 ∶ [0, 1] → ℂ is defined by 𝛾(𝑡) = 𝑧0 + 𝑟𝑒2𝑖𝜋𝑡 and the radius of convergence of this power
series is greater than or equal to 𝑟.

1I will stop complaining about the term analytic… Now we know that holomorphic and analytic are synonyms.
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Holomorphic functions are analytic – 2
Proof. By Cauchy’s integral formula

𝑓(𝑧) = 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤

= 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧0

1
1 − 𝑧−𝑧0

𝑤−𝑧0

d𝑤

= 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧0

+∞

∑
𝑛=0 (

𝑧 − 𝑧0
𝑤 − 𝑧0 )

𝑛
d𝑤 since |𝑧 − 𝑧0| < |𝑤 − 𝑧0| = 𝑟

=
+∞

∑
𝑛=0 (

1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1 d𝑤) (𝑧 − 𝑧0)𝑛

■

Actually, we should justify the permutation ∫ − ∑ more carefully.

It can be done by noting that for 𝜀 > 0 there exists 𝑁 such that if 𝑘 ≥ 𝑁 then the remainder satisfies
|

+∞

∑
𝑛=𝑘 (

𝑧 − 𝑧0
𝑤 − 𝑧0 )

𝑛

|
≤ 𝜀, so that

|
𝑓 (𝑧) −

𝑘

∑
𝑛=0 (

1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1 d𝑤) (𝑧 − 𝑧0)𝑛

|
≤

|
1

2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧0

+∞

∑
𝑛=𝑘 (

𝑧 − 𝑧0
𝑤 − 𝑧0 )

𝑛
d𝑤

|
≤ 1

2𝜋

max
|𝑤−𝑧0|=𝑟

|𝑓 |

𝑟 𝜀 Length(𝛾) ≤ 𝜀 max
|𝑤−𝑧0|=𝑟

|𝑓 |.
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Holomorphic functions are analytic – 3

Corollary
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be a function.
Then 𝑓 is holomorphic/analytic/ℂ-differentiable if and only if 𝑓 can be locally expressed as a
power series in a neighborhood of any point of 𝑈 .

Proof.
⇒: the main theorem from the previous slide.

⇐: if 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 in 𝐷𝑟(𝑧0) then 𝑓 is holomorphic on 𝐷𝑟(𝑧0) from last week lecture.

■

Corollary
A holomorphic/analytic/ℂ-differentiable function is infinitely many times ℂ-differentiable.
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Holomorphic functions are analytic – 4
The previous results are false for ℝ-differentiability.

• Let 𝑓 ∶ ℝ → ℝ be defined by 𝑓(𝑥) =
{

𝑥2 sin (
1
𝑥 ) if 𝑥 ≠ 0

0 otherwise
Then 𝑓 is ℝ-differentiable but not 𝒞1.

• Let 𝑔 ∶ ℝ → ℝ be defined by 𝑔(𝑥) =
{

𝑒− 1
𝑥2 if 𝑥 ≠ 0

0 otherwise
Then 𝑔 is ℝ-differentiable, even 𝒞∞, but not analytic at 0,
i.e. it can’t be expressed as a power series around 0:
Indeed ∀𝑛 ∈ ℕ≥0, 𝑔(𝑛)(0) = 0, so if 𝑔 were equal to its Taylor series around 0 then it would be constant
equal to 0 but 𝑔 is non-zero in any neighborhood of 0.

• By a theorem of Borel2, given a real sequence (𝑎𝑛)𝑛∈ℕ≥0
, there exists a 𝒞∞ function defined in a

neighborhood of 0 in ℝ such that ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(0) = 𝑎𝑛.
Otherwise stated, any real power series is the Taylor expansion of a 𝒞∞ function.
If we take 𝑎𝑛 = (𝑛!)2 then we obtain a power series whose radius of convergence is 𝑅 = 0, hence a
function with such a Taylor expansion can’t be analytic.

2It generalizes to multivariable functions.
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Continuation of analytic functions – 1
Theorem
Let 𝑈 ⊂ ℂ be a domain and 𝑓 ∶ 𝑈 → ℂ be a holomorphic/analytic function.
If there exists 𝑧0 ∈ 𝑈 such that ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(𝑧0) = 0 then 𝑓 ≡ 0 on 𝑈 .

Proof.
𝑧0

Let 𝑧 ∈ 𝑈 . Since 𝑈 is path connected, there exists a 𝒞0 curve 𝛾 ∶ [𝑎, 𝑏] → 𝑈 from 𝛾(𝑎) = 𝑧0 to 𝛾(𝑏) = 𝑧.
Since 𝑈 is open, for every 𝑤 ∈ 𝛾([𝑎, 𝑏]) there exists 𝑟𝑤 > 0 such that 𝐷𝑟𝑤

(𝑤) ⊂ 𝑈 . Since 𝛾([𝑎, 𝑏]) is compact
we may assume that it is covered by finitely many of these disks 𝐷𝑟1

(𝑤1), … , 𝐷𝑟𝑘
(𝑤𝑘).

By the theorem on Slide 2, if there exists 𝑣 ∈ 𝐷𝑟𝑖
(𝑤𝑖) such that ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(𝑣) = 0 then 𝑓 ≡ 0 on 𝐷𝑟𝑖

(𝑤𝑖).
Two consecutive disks intersect (since they cover 𝛾), so we conclude using the previous remark disk by disk
from 𝑧0 to 𝑧. ■
If you attend MAT327, another proof consists in showing that {𝑧 ∈ 𝑈 ∶ ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(𝑧) = 0} is open, closed, and
non-empty, hence equals to 𝑈 by connectedness.
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Continuation of analytic functions – 2

Corollary
Let 𝑈 ⊂ ℂ be a domain and 𝑓, 𝑔 ∶ 𝑈 → ℂ be holomorphic/analytic functions.
If 𝑓 and 𝑔 coincide in the neighborhood of a point,

i.e. ∃𝑧0 ∈ 𝑈, ∃𝑟 > 0, ∀𝑧 ∈ 𝐷𝑟(𝑧0) ∩ 𝑈, 𝑓(𝑧) = 𝑔(𝑧),

then they coincide on 𝑈 ,
i.e. ∀𝑧 ∈ 𝑈, 𝑓(𝑧) = 𝑔(𝑧).

Proof. Then ∀𝑛 ∈ ℕ≥0, (𝑓 − 𝑔)(𝑛)(𝑧0) = 0 (since 𝑓 − 𝑔 ≡ 0 on 𝐷𝑟(𝑧0) ∩ 𝑈 ).
Hence 𝑓 − 𝑔 ≡ 0 on 𝑈 by the previous theorem. ■
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Continuation of analytic functions – 3

The previous results are false for ℝ-differentiability.

Example
Define 𝑓 ∶ ℝ → ℝ by

𝑓(𝑥) =
{

𝑒− 1
𝑥 if 𝑥 > 0

0 otherwise

then 𝑓 is ℝ-differentiable (even 𝒞∞). And

• ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(0) = 0 but 𝑓 ≢ 0.

• ∀𝑥 ∈ (−∞, 0), 𝑓 (𝑥) = 0 but 𝑓 ≢ 0.
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Continuation of analytic functions – 4
A common way to construct an analytic function consists in defining it in a ”small” domain and
then to extend it to an analytic function with a bigger domain.
By the above result, this analytic continuation, if it exists, is unique.
That’s a very powerful tool: knowing a function on a ”small” domain determines the function
everywhere else3. Holomorphic/analytic functions are very rigid!

⚠ The maximal domain may not be ℂ: for instance, if we try to extend Log, we won’t be able to
do a full turn around the origin since we won’t recover the same values (it increases by 2𝑖𝜋).

Example

Let 𝑓 ∶ 𝐷1(0) → ℂ be defined by 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑧𝑛.

Then 𝑓 coincides with 1
1−𝑧 on 𝐷1(0).

Hence we may extend 𝑓 with 𝐹 ∶ ℂ ⧵ {1} → ℂ defined by 𝐹 (𝑧) = 1
1−𝑧 .

3And we will even weaken the assumptions later this term: it is enough to know the function on a set with a limit point.
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Order of a zero

Definition: order of a zero
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Let 𝑧0 ∈ 𝑈 be such that 𝑓(𝑧0) = 0.
We define the order of vanishing of 𝑓 at 𝑧0 by 𝑚𝑓 (𝑧0) ≔ min {𝑛 ∈ ℕ ∶ 𝑓 (𝑛)(𝑧0) ≠ 0}.
Note that 𝑚𝑓 (𝑧0) > 0 since 𝑓(𝑧0) = 0.

Proposition
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Let 𝑧0 ∈ 𝑈 be such that 𝑓(𝑧0) = 0.

Denote the power series expansion of 𝑓 at 𝑧0 by 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛.

Then 𝑚𝑓 (𝑧0) = min {𝑛 ∈ ℕ ∶ 𝑎𝑛 ≠ 0}.

Proof. 𝑎𝑛 = 𝑓 (𝑛)(𝑧0)
𝑛! ■

Proposition
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Then 𝑧0 is a zero of order 𝑛 of 𝑓 if and only if
there exists 𝑔 ∶ 𝑈 → ℂ holomorphic such that 𝑓(𝑧) = (𝑧 − 𝑧0)𝑛𝑔(𝑧) and 𝑔(𝑧0) ≠ 0.
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Morera’s theorem
Theorem: Morera’s theorem
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be continuous.
If for every (full) triangle 𝑇 lying in 𝑈 we have ∫𝜕𝑇

𝑓 = 0 then 𝑓 is holomorphic/analytic on 𝑈 .

Proof. Let 𝑧0 ∈ 𝑈 and 𝑟 > 0 be such that 𝐷𝑟(𝑧0) ⊂ 𝑈 . We define 𝐹 ∶ 𝐷𝑟(𝑧0) → ℂ by 𝐹 (𝑧) = ∫[𝑧0 ,𝑧]
𝑓 .

Let 𝑧, ℎ ∈ ℂ be such that 𝑧, 𝑧 + ℎ ∈ 𝐷𝑟(𝑧0) then, considering the triangle whose vertices are 𝑧0, 𝑧 and 𝑧 + ℎ,
we obtain ∫[𝑧0 ,𝑧]

𝑓 + ∫[𝑧,𝑧+ℎ]
𝑓 + ∫[𝑧+ℎ,𝑧0]

𝑓 = 0, i.e. 𝐹 (𝑧 + ℎ) − 𝐹 (𝑧) = ∫[𝑧,𝑧+ℎ]
𝑓 .
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Morera’s theorem
Theorem: Morera’s theorem
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be continuous.
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𝑓 = 0 then 𝑓 is holomorphic/analytic on 𝑈 .

Proof. Let 𝑧0 ∈ 𝑈 and 𝑟 > 0 be such that 𝐷𝑟(𝑧0) ⊂ 𝑈 . We define 𝐹 ∶ 𝐷𝑟(𝑧0) → ℂ by 𝐹 (𝑧) = ∫[𝑧0 ,𝑧]
𝑓 .

Let 𝑧, ℎ ∈ ℂ be such that 𝑧, 𝑧 + ℎ ∈ 𝐷𝑟(𝑧0) then, considering the triangle whose vertices are 𝑧0, 𝑧 and 𝑧 + ℎ,
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𝑓 + ∫[𝑧,𝑧+ℎ]
𝑓 + ∫[𝑧+ℎ,𝑧0]

𝑓 = 0, i.e. 𝐹 (𝑧 + ℎ) − 𝐹 (𝑧) = ∫[𝑧,𝑧+ℎ]
𝑓 . Then

|
𝐹 (𝑧 + ℎ) − 𝐹 (𝑧)

ℎ − 𝑓(𝑧)| =
|
|
|
||

(∫[𝑧,𝑧+ℎ] 𝑓) − ℎ𝑓(𝑧)
ℎ

|
|
|
||

= 1
|ℎ| |∫[𝑧,𝑧+ℎ]

(𝑓 (𝑤) − 𝑓(𝑧)d𝑤| ≤
sup

𝑤∈[𝑧,𝑧+ℎ]
|𝑓 (𝑤) − 𝑓(𝑧)|

|ℎ| Length([𝑧, 𝑧 + ℎ])

= sup
𝑤∈[𝑧,𝑧+ℎ]

|𝑓 (𝑤) − 𝑓(𝑧)| −−−→
ℎ→0

0

Hence 𝐹 is holomorphic on 𝐷𝑟(𝑧0) and 𝐹 ′ = 𝑓 . Furthermore, 𝑓 is holomorphic on 𝐷𝑟(𝑧0) (and hence at 𝑧0)
as the complex derivative of a holomorphic function. ■
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Theorem: characterizations of holomorphicity/analyticity
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ. Then the following are equivalent:

1 𝑓 is holomorphic/analytic/ℂ-differentiable, i.e. ∀𝑧0 ∈ 𝑈, lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ exists.

2 ̃𝑓 ∶ 𝑈̃ → ℝ2 is ℝ-differentiable and satisfies the Cauchy–Riemann equations on 𝑈̃ .

3 𝑓 may be written as a power series 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 on a neighborhood of every 𝑧0 ∈ 𝑈 .

4 𝑓 is continuous and for every (full) triangle 𝑇 lying in 𝑈 we have ∫𝜕𝑇
𝑓 = 0.

5 𝑓 is continuous and for every simple closed curve 𝛾 on 𝑈 whose inside is also included in 𝑈 ,
we have ∫𝛾

𝑓 = 0.

6 𝑓 admits local primitives/antiderivatives: for every 𝑧0 ∈ 𝑈 there exists 𝐹 ∶ 𝐷𝑟(𝑧0) ∩ 𝑈 → ℂ
holomorphic for some 𝑟 > 0 such that 𝐹 ′ = 𝑓 on 𝐷𝑟(𝑧0) ∩ 𝑈 .

When 𝑈 is simply-connected, we may drop the assumption that the inside of the triangle/curve is included in 𝑈 in 4 5
furthermore we may also replace ”local primitives/antiderivatives” by ”a primitive/antiderivative” in 6 i.e. there exists
𝐹 ∶ 𝑈 → ℂ holomorphic s.t. 𝐹 ′ = 𝑓 .
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Liouville’s theorem – 1

Definition
We say that a function 𝑓 ∶ ℂ → ℂ is entire if it is holomorphic (everywhere) on ℂ.

Theorem: Liouville’s theorem
A bounded entire function is constant
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Liouville’s theorem – 2
Lemma: Cauchy’s inequalities
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic. Let 𝑟 > 0. If 𝐷𝑟(𝑧0) ⊂ 𝑈 then

|𝑓 (𝑛)(𝑧0)| ≤ 𝑛!
𝑟𝑛 max

|𝑧−𝑧0|=𝑟
|𝑓 (𝑧)|

Proof. From the theorem on Slide 2

|
𝑓 (𝑛)(𝑧0)

𝑛! |
=

|
1

2𝑖𝜋 ∫|𝑧−𝑧0|=𝑟

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1 d𝑤

|
≤

max
|𝑧−𝑧0|=𝑟

|𝑓 (𝑧)|

𝑟𝑛+1
Length (|𝑧 − 𝑧0| = 𝑟)

2𝜋 =
max|𝑧−𝑧0|=𝑟 |𝑓 (𝑧)|

𝑟𝑛

■

Proof of Liouville’s theorem.
Assume that there exists 𝑀 > 0 such that ∀𝑧 ∈ ℂ, |𝑓(𝑧)| ≤ 𝑀 .
Let 𝑧 ∈ ℂ. For 𝑟 > 0, by Cauchy’s inequality with 𝑛 = 1, we have |𝑓 ′(𝑧)| ≤ 𝑀

𝑟 −−−−−→
𝑟→+∞

0.
Hence, ∀𝑧 ∈ ℂ, 𝑓 ′(𝑧) = 0. Therefore 𝑓 is constant on ℂ. ■
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Liouville’s theorem – 3

Theorem: d’Alembert–Gauss theorem or the Fundamental Theorem of Algebra
A non-constant polynomial with coefficients in ℂ admits a root/zero in ℂ.

Proof. Assume that 𝑃 is a complex polynomial with no root in ℂ.
Then 𝑄 = 1

𝑃 is a entire function and 𝑄 is bounded since lim
𝑧→+∞

𝑄 = 0.
Therefore, by Liouville’s theorem, 𝑄 is constant, and so is 𝑃 . ■
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Analytic logarithm
Theorem
Let 𝑈 ⊂ ℂ be a simply connected domain and 𝑓 ∶ 𝑈 → ℂ a holomorphic/analytic function which
doesn’t vanish, i.e. ∀𝑧 ∈ 𝑈, 𝑓(𝑧) ≠ 0.
Then there exists 𝑔 ∶ 𝑈 → ℂ holomorphic/analytic such that 𝑒𝑔 = 𝑓 .

Proof. Since 𝑓 doesn’t vanish, 𝑓 ′

𝑓 is holomorphic on 𝑈 .

Then, since 𝑈 is simply connected, 𝑓 ′

𝑓 admits a complex primitive/antiderivative, i.e. there exists

̃𝑔 ∶ 𝑈 → ℂ holomorphic/analytic such that ̃𝑔′ = 𝑓 ′

𝑓 .
Then (𝑓𝑒− ̃𝑔)′ = (𝑓 ′ − ̃𝑔′𝑓)𝑒− ̃𝑔 = 0 and therefore 𝑓𝑒− ̃𝑔 = 𝐾 is constant since 𝑈 is connected.
Since 𝐾 ≠ 0, there exists 𝑤 ∈ ℂ such that 𝑒𝑤 = 𝐾.
Then, for 𝑔 = ̃𝑔 + 𝑤, we have 𝑒𝑔 = 𝑓 . ■

Careful
Such a function 𝑔 is not unique! For instance 𝑔 + 2𝑖𝜋 is another suitable function.
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Multiplication of complex power series – 1

We are going to prove the following theorem, but using results related to analytic functions.

Theorem

Let 𝑆𝐴(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 and 𝑆𝐵(𝑧) =
+∞

∑
𝑛=0

𝑏𝑛(𝑧 − 𝑧0)𝑛 be two power series of radii 𝑅𝐴 and 𝑅𝐵.

We define 𝑆𝐴𝐵(𝑧) ≔
+∞

∑
𝑛=0 (

𝑛

∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘)
(𝑧 − 𝑧0)𝑛 and denote its radius of convergence by 𝑅𝐴𝐵.

Then
1 𝑅𝐴𝐵 ≥ min(𝑅𝐴, 𝑅𝐵).
2 If |𝑧 − 𝑧0| < min(𝑅𝐴, 𝑅𝐵) then 𝑆𝐴𝐵(𝑧) = 𝑆𝐴(𝑧)𝑆𝐵(𝑧),

i.e.
+∞

∑
𝑛=0 (

𝑛

∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘)
(𝑧 − 𝑧0)𝑛 =

(

+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛
) (

+∞

∑
𝑛=0

𝑏𝑛(𝑧 − 𝑧0)𝑛
)

.
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Multiplication of complex power series – 1
Proof. We know that 𝑆𝐴 and 𝑆𝐵 are holomorphic on 𝑧 ∈ ℂ such that |𝑧 − 𝑧0| < min(𝑅𝐴, 𝑅𝐵).
Then 𝑓(𝑧) = 𝑆𝐴(𝑧)𝑆𝐵(𝑧) is holomorphic on |𝑧 − 𝑧0| < min(𝑅𝐴, 𝑅𝐵),

so it can be written as a

power series 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑐𝑛(𝑧 − 𝑧0)𝑛 on |𝑧 − 𝑧0| < min(𝑅𝐴, 𝑅𝐵) (particularly its radius of

convergence is at least min(𝑅𝐴, 𝑅𝐵)).
Then

𝑐𝑛 = 𝑓 (𝑛)(𝑧0)
𝑛! = 1

𝑛!

𝑛

∑
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