MAT334H1-F – LEC0101 Complex Variables

Consequences of the Cauchy's integral formula

October 16th, 2020 to October 21st, 2020

Holomorphic functions are analytic¹ – 1

Theorem

Let $U\subset \mathbb{C}$ be open and $f:U\to \mathbb{C}$ be holomorphic/analytic/ \mathbb{C} -differentiable.

Then f can be **locally** expressed as a power series in a neighborhood of any point of U.

More precisely, if $\overline{D_r}(z_0) \subset U$ then

$$\forall z \in D_r(z_0), \ f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

where

$$a_n = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw$$

and $\gamma:[0,1]\to\mathbb{C}$ is defined by $\gamma(t)=z_0+re^{2i\pi t}$ and the radius of convergence of this power series is greater than or equal to r.

¹I will stop complaining about the term *analytic...* Now we know that holomorphic and analytic are synonyms.

Holomorphic functions are analytic – 2

Proof. By Cauchy's integral formula

$$f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z} dw$$

$$= \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z_0} \frac{1}{1 - \frac{z - z_0}{w - z_0}} dw$$

$$= \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z_0} \sum_{n=0}^{+\infty} \left(\frac{z - z_0}{w - z_0}\right)^n dw \qquad \text{since } |z - z_0| < |w - z_0| = r$$

$$= \sum_{n=0}^{+\infty} \left(\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw\right) (z - z_0)^n$$

Actually, we should justify the permutation $\int -\sum$ more carefully.

It can be done by noting that for $\varepsilon > 0$ there exists N such that if $k \ge N$ then the remainder satisfies $\left|\sum_{n=k}^{+\infty} \left(\frac{z-z_0}{w-z_0}\right)^n\right| \le \varepsilon$, so that

$$\left| f(z) - \sum_{n=0}^{k} \left(\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w-z_0)^{n+1}} dw \right) (z-z_0)^n \right| \leq \left| \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w-z_0} \sum_{n=k}^{+\infty} \left(\frac{z-z_0}{w-z_0} \right)^n dw \right| \leq \frac{1}{2\pi} \frac{\max_{|w-z_0|=r} |f|}{r} \varepsilon \operatorname{Length}(\gamma) \leq \varepsilon \max_{|w-z_0|=r} |f|.$$

Holomorphic functions are analytic - 3

Corollary

Let $U \subset \mathbb{C}$ be open and $f: U \to \mathbb{C}$ be a function.

Then f is holomorphic/analytic/ \mathbb{C} -differentiable if and only if f can be **locally** expressed as a power series in a neighborhood of any point of U.

Proof.

 \Rightarrow : the main theorem from the previous slide.

 \Leftarrow : if $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ in $D_r(z_0)$ then f is holomorphic on $D_r(z_0)$ from last week lecture.

Corollary

A holomorphic/analytic/ $\mathbb C$ -differentiable function is infinitely many times $\mathbb C$ -differentiable.

Holomorphic functions are analytic – 4

The previous results are false for \mathbb{R} -differentiability.

- Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$ Then f is \mathbb{R} -differentiable but not \mathcal{C}^1 .
- Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$ Then g is \mathbb{R} -differentiable, even C^{∞} , but not analytic at 0, i.e. it can't be expressed as a power series around 0: Indeed $\forall n \in \mathbb{N}_{\geq 0}, \ g^{(n)}(0) = 0$, so if g were equal to its Taylor series around 0 then it would be constant equal to 0 but g is non-zero in any neighborhood of 0.
- By a theorem of Borel², given a real sequence $(a_n)_{n\in\mathbb{N}_{\geq 0}}$, there exists a \mathcal{C}^{∞} function defined in a neighborhood of 0 in \mathbb{R} such that $\forall n\in\mathbb{N}_{\geq 0}$, $f^{(n)}(0)=a_n$. Otherwise stated, any real power series is the Taylor expansion of a \mathcal{C}^{∞} function. If we take $a_n=(n!)^2$ then we obtain a power series whose radius of convergence is R=0, hence a function with such a Taylor expansion can't be analytic.

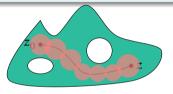
²It generalizes to multivariable functions.

Continuation of analytic functions - 1

Theorem

Let $U \subset \mathbb{C}$ be a **domain** and $f: U \to \mathbb{C}$ be a holomorphic/analytic function. If there exists $z_0 \in U$ such that $\forall n \in \mathbb{N}_{\geq 0}, \ f^{(n)}(z_0) = 0$ then $f \equiv 0$ on U.

Proof.



Let $z \in U$. Since U is path connected, there exists a C^0 curve $\gamma:[a,b] \to U$ from $\gamma(a)=z_0$ to $\gamma(b)=z$. Since U is open, for every $w \in \gamma([a,b])$ there exists $r_w>0$ such that $D_{r_w}(w) \subset U$. Since $\gamma([a,b])$ is compact we may assume that it is covered by finitely many of these disks $D_{r_1}(w_1), \ldots, D_{r_k}(w_k)$.

By the theorem on Slide 2, if there exists $v \in D_{r_i}(w_i)$ such that $\forall n \in \mathbb{N}_{\geq 0}, \ f^{(n)}(v) = 0$ then $f \equiv 0$ on $D_{r_i}(w_i)$. Two consecutive disks intersect (since they cover γ), so we conclude using the previous remark disk by disk from z_0 to z.

If you attend MAT327, another proof consists in showing that $\{z \in U : \forall n \in \mathbb{N}_{\geq 0}, \ f^{(n)}(z) = 0\}$ is open, closed, and non-empty, hence equals to U by connectedness.

Continuation of analytic functions - 2

Corollary

Let $U \subset \mathbb{C}$ be a **domain** and $f,g:U\to\mathbb{C}$ be holomorphic/analytic functions. If f and g coincide in the neighborhood of a point,

i.e.
$$\exists z_0 \in U, \ \exists r > 0, \ \forall z \in D_r(z_0) \cap U, \ f(z) = g(z),$$

then they coincide on U,

i.e.
$$\forall z \in U, f(z) = g(z)$$
.

Proof. Then $\forall n \in \mathbb{N}_{\geq 0}$, $(f-g)^{(n)}(z_0) = 0$ (since $f-g \equiv 0$ on $D_r(z_0) \cap U$). Hence $f-g \equiv 0$ on U by the previous theorem.

Continuation of analytic functions – 3

The previous results are false for \mathbb{R} -differentiability.

Example

Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

then f is \mathbb{R} -differentiable (even C^{∞}). And

- $\forall n \in \mathbb{N}_{>0}, f^{(n)}(0) = 0 \text{ but } f \not\equiv 0.$
- $\forall x \in (-\infty, 0), f(x) = 0 \text{ but } f \not\equiv 0.$

Continuation of analytic functions - 4

A common way to construct an analytic function consists in defining it in a "small" domain and then to extend it to an analytic function with a bigger domain.

By the above result, this analytic continuation, if it exists, is unique.

That's a very powerful tool: knowing a function on a "small" domain determines the function everywhere else³. *Holomorphic/analytic functions are very rigid!*

The maximal domain may not be \mathbb{C} : for instance, if we try to extend Log, we won't be able to do a full turn around the origin since we won't recover the same values (it increases by $2i\pi$).

Example

Let
$$f: D_1(0) \to \mathbb{C}$$
 be defined by $f(z) = \sum_{n=0}^{+\infty} z^n$.

Then f coincides with $\frac{1}{1-z}$ on $D_1(0)$.

Hence we may extend f with $F: \mathbb{C} \setminus \{1\} \to \mathbb{C}$ defined by $F(z) = \frac{1}{1-z}$.

³And we will even weaken the assumptions later this term: it is enough to know the function on a set with a limit point.

Order of a zero

Definition: order of a zero

Let $U\subset \mathbb{C}$ be open and $f:U\to \mathbb{C}$ be holomorphic/analytic. Let $z_0\in U$ be such that $f(z_0)=0$.

We define the **order of vanishing of** f **at** z_0 by $m_f(z_0) := \min \{ n \in \mathbb{N} : f^{(n)}(z_0) \neq 0 \}$.

Note that $m_f(z_0) > 0$ since $f(z_0) = 0$.

Proposition

Let $U\subset\mathbb{C}$ be open and $f:U\to\mathbb{C}$ be holomorphic/analytic. Let $z_0\in U$ be such that $f(z_0)=0$.

Denote the power series expansion of f at z_0 by $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$.

Then $m_f(z_0) = \min \{ n \in \mathbb{N} : a_n \neq 0 \}.$

Proof. $a_n = \frac{f^{(n)}(z_0)}{n!}$

Proposition

Let $U \subset \mathbb{C}$ be open and $f: U \to \mathbb{C}$ be holomorphic/analytic. Then z_0 is a zero of order n of f if and only if there exists $g: U \to \mathbb{C}$ holomorphic such that $f(z) = (z - z_0)^n g(z)$ and $g(z_0) \neq 0$.

Morera's theorem

Theorem: Morera's theorem

Let $U \subset \mathbb{C}$ be open and $f: U \to \mathbb{C}$ be continuous.

If for every (full) triangle T lying in U we have $\int_{\partial T} f = 0$ then f is holomorphic/analytic on U.

Proof. Let $z_0 \in U$ and r > 0 be such that $D_r(z_0) \subset U$. We define $F: D_r(z_0) \to \mathbb{C}$ by $F(z) = \int_{\{z_0,z\}} f$.

Let $z,h\in\mathbb{C}$ be such that $z,z+h\in D_r(z_0)$ then, considering the triangle whose vertices are z_0,z and z+h,

we obtain
$$\int_{[z_0,z]} f + \int_{[z,z+h]} f + \int_{[z+h,z_0]} f = 0$$
, i.e. $F(z+h) - F(z) = \int_{[z,z+h]} f$. Then

$$\left|\frac{F(z+h)-F(z)}{h}-f(z)\right| = \left|\frac{\left(\int_{[z,z+h]}f\right)-hf(z)}{h}\right| = \frac{1}{|h|}\left|\int_{[z,z+h]}(f(w)-f(z)\mathrm{d}w\right| \leq \frac{\sup\limits_{w\in[z,z+h]}|f(w)-f(z)|}{|h|} \underset{w\in[z,z+h]}{\operatorname{Length}}([z,z+h])$$

$$= \sup\limits_{w\in[z,z+h]}|f(w)-f(z)| \xrightarrow[h\to 0]{} 0$$

Hence F is holomorphic on $D_r(z_0)$ and F' = f. Furthermore, f is holomorphic on $D_r(z_0)$ (and hence at z_0) as the complex derivative of a holomorphic function.

Theorem: characterizations of holomorphicity/analyticity

Let $U \subset \mathbb{C}$ be open and $f: U \to \mathbb{C}$. Then the following are equivalent:

- $\textbf{1} \ \, f \ \, \text{is holomorphic/analytic/\mathbb{C}-differentiable, i.e.} \ \, \forall z_0 \in U, \lim_{h \to 0} \frac{f(z_0 + h) f(z_0)}{h} \ \, \text{exists.}$
- 2 $\tilde{f}: \tilde{U} \to \mathbb{R}^2$ is \mathbb{R} -differentiable and satisfies the Cauchy–Riemann equations on \tilde{U} .
- 3 f may be written as a power series $f(z) = \sum_{n=0}^{+\infty} a_n (z z_0)^n$ on a neighborhood of every $z_0 \in U$.
- 4 f is continuous and for every (full) triangle T lying in U we have $\int_{\partial T} f = 0$.
- 5 f is continuous and for every simple closed curve γ on U whose inside is also included in U, we have $\int_{\gamma} f = 0$.
- **6** *f* admits local primitives/antiderivatives: for every $z_0 ∈ U$ there exists $F : D_r(z_0) \cap U \to \mathbb{C}$ holomorphic for some r > 0 such that F' = f on $D_r(z_0) \cap U$.

When U is simply-connected, we may drop the assumption that the inside of the triangle/curve is included in U in \P furthermore we may also replace "local primitives/antiderivatives" by "a primitive/antiderivative" in \P i.e. there exists $F:U\to\mathbb{C}$ holomorphic s.t. F'=f.

Liouville's theorem – 1

Definition

We say that a function $f: \mathbb{C} \to \mathbb{C}$ is **entire** if it is holomorphic (everywhere) on \mathbb{C} .

Theorem: Liouville's theorem

A bounded entire function is constant

Liouville's theorem – 2

Lemma: Cauchy's inequalities

Let $U \subset \mathbb{C}$ be open and $f: U \to \mathbb{C}$ be holomorphic. Let r > 0. If $D_r(z_0) \subset U$ then

$$|f^{(n)}(z_0)| \le \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|$$

Proof. From the theorem on Slide 2

$$\left| \frac{f^{(n)}(z_0)}{n!} \right| = \left| \frac{1}{2i\pi} \int_{|z-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w \right| \le \frac{\max\limits_{|z-z_0|=r} |f(z)|}{r^{n+1}} \frac{\mathrm{Length}\left(|z-z_0|=r\right)}{2\pi} = \frac{\max_{|z-z_0|=r} |f(z)|}{r^n}$$

Proof of Liouville's theorem.

Assume that there exists M > 0 such that $\forall z \in \mathbb{C}$, |f(z)| < M.

Let $z \in \mathbb{C}$. For r > 0, by Cauchy's inequality with n = 1, we have $|f'(z)| \leq \frac{M}{r} \longrightarrow 0$.

Hence, $\forall z \in \mathbb{C}$, f'(z) = 0. Therefore f is constant on \mathbb{C} .

Liouville's theorem – 3

Theorem: d'Alembert-Gauss theorem or the Fundamental Theorem of Algebra

A non-constant polynomial with coefficients in $\mathbb C$ admits a root/zero in $\mathbb C$.

Proof. Assume that P is a complex polynomial with no root in \mathbb{C} .

Then $Q = \frac{1}{P}$ is a entire function and Q is bounded since $\lim_{z \to +\infty} Q = 0$.

Therefore, by Liouville's theorem, Q is constant, and so is P.

Analytic logarithm

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain and $f: U \to \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, \ f(z) \neq 0$.

Then there exists $g:U\to\mathbb{C}$ holomorphic/analytic such that $e^g=f$.

Proof. Since f doesn't vanish, $\frac{f'}{f}$ is holomorphic on U.

Then, since U is simply connected, $\frac{f'}{f}$ admits a complex primitive/antiderivative, i.e. there exists

 $\tilde{g}:U\to\mathbb{C}$ holomorphic/analytic such that $\tilde{g}'=rac{f'}{f}.$

Then $(fe^{-\tilde{g}})' = (f' - \tilde{g}'f)e^{-\tilde{g}} = 0$ and therefore $fe^{-\tilde{g}} = K$ is constant since U is connected.

Since $K \neq 0$, there exists $w \in \mathbb{C}$ such that $e^w = K$.

Then, for $g = \tilde{g} + w$, we have $e^g = f$.

Careful

Such a function g is not unique! For instance $g + 2i\pi$ is another suitable function.

Multiplication of complex power series – 1

We are going to prove the following theorem, but using results related to analytic functions.

Theorem

Let
$$S_A(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 and $S_B(z) = \sum_{n=0}^{+\infty} b_n (z - z_0)^n$ be two power series of radii R_A and R_B .

We define
$$S_{AB}(z) := \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) (z-z_0)^n$$
 and denote its radius of convergence by R_{AB} .

Then

- $\text{i.e. } \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) (z-z_0)^n = \left(\sum_{n=0}^{+\infty} a_n (z-z_0)^n \right) \left(\sum_{n=0}^{+\infty} b_n (z-z_0)^n \right).$

Multiplication of complex power series – 1

Proof. We know that S_A and S_B are holomorphic on $z \in \mathbb{C}$ such that $|z-z_0| < \min(R_A,R_B)$. Then $f(z) = S_A(z)S_B(z)$ is holomorphic on $|z-z_0| < \min(R_A,R_B)$, so it can be written as a

power series $f(z) = \sum_{n=0}^{+\infty} c_n (z - z_0)^n$ on $|z - z_0| < \min(R_A, R_B)$ (particularly its radius of convergence is at least $\min(R_A, R_B)$).

Then

$$\begin{split} c_n &= \frac{f^{(n)}(z_0)}{n!} = \frac{1}{n!} \sum_{k=0}^n \frac{n!}{(n-k)!k!} S_A^{(n-k)}(z_0) S_B^{(k)}(z_0) \text{ by Leibniz rule} \\ &= \sum_{k=0}^n \frac{S_A^{(n-k)}(z_0)}{(n-k)!} \frac{S_B^{(k)}(z_0)}{k!} \\ &= \sum_{k=0}^n a_{n-k} b_k = \sum_{k=0}^n a_k b_{n-k} \end{split}$$