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Simple connectedness – 1
Definition: hole
A hole of 𝑆 ⊂ ℂ is a bounded connected component of ℂ ⧵ 𝑆.

Definition: simple connectedness (that’s a formal definition with the above definition of a hole)

We say that 𝑆 ⊂ ℂ is simply connected if it is path connected and has no hole.

Figure: A simply connected set Figure: A set NOT simply connected

Figure: A set NOT simply connected

ℂ ⧵ {0}

Figure: A set NOT simply connected
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Simple connectedness – 2
Theorem
𝑆 ⊂ ℂ is simply connected if and only if it is path-connected and for any simple closed curve
included in 𝑆, its inside1 is also included in 𝑆.

Figure: A set NOT simply connected

𝛾

Figure: A set NOT simply connected

ℂ ⧵ {0}
𝛾

An important property2 of simply connected sets is that any closed curve on it can be continuously deformed to a
constant curve without leaving it:

1See Jordan curve theorem from September 28.

2That’s actually the usual definition of simple connectedness: a path connected set is simply connected if any closed curve on it is homotopic to a point.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Oct 14, 2020 3 / 14



Simple connectedness – 2
Theorem
𝑆 ⊂ ℂ is simply connected if and only if it is path-connected and for any simple closed curve
included in 𝑆, its inside1 is also included in 𝑆.

Figure: A set NOT simply connected

𝛾

Figure: A set NOT simply connected

ℂ ⧵ {0}
𝛾

An important property2 of simply connected sets is that any closed curve on it can be continuously deformed to a
constant curve without leaving it:

1See Jordan curve theorem from September 28.
2That’s actually the usual definition of simple connectedness: a path connected set is simply connected if any closed curve on it is homotopic to a point.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Oct 14, 2020 3 / 14



Cauchy’s integral theorem – 1

Theorem: Cauchy’s integral theorem – version 1
Let 𝑈 ⊂ ℂ be an open subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth simple closed curve on 𝑈 whose inside is also entirely
included in 𝑈 , then

∫𝛾
𝑓(𝑧)d𝑧 = 0

Proof. There is an easy proof with the extra assumption that 𝑓 ′ is continuous3:

∫𝛾
𝑓 = 𝑖 ∬𝛾∪Inside (

𝜕𝑓
𝜕𝑥 + 𝑖𝜕𝑓

𝜕𝑦 ) by Green’s theorem

= 𝑖 ∬ 0 by the Cauchy–Riemann equations

= 0 ■
3It is always the case: the derivative of a holomorphic/analytic function is always continuous but you don’t know that yet. To avoid

circular arguments, it would be better to give a proof without this assumption. There is such a proof (due to Goursat), but it is far more
technical. So I am cheating a little bit here.
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Cauchy’s integral theorem – 2
Corollary
Let 𝑈 ⊂ ℂ be an open simply connected subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Then there exists 𝐹 ∶ 𝑈 → ℂ holomorphic/analytic such that 𝐹 ′ = 𝑓 .

We say that 𝐹 is a (complex) antiderivative/primitive of 𝑓 on 𝑈 .

The simple connectedness assumption ensures that for any simple closed curve on 𝑈 , its inside
is included in 𝑈 , so that we can use Cauchy’s integral theorem.
Hence we will assume that the domains are simply connected in the next corollaries.

Proof. Fix
𝑧0 ∈ 𝑈 and for 𝑧 ∈ 𝑈 set 𝐹 (𝑧) = ∫𝛾

𝑓(𝑧)d𝑧 where 𝛾 is a polygonal curve from 𝑧0 to 𝑧.
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For the second equality, I used that
ℎ𝑓(𝑧) = ∫[𝑧,𝑧+ℎ]

𝑓(𝑤)d𝑤.
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𝐹 doesn’t depend on the choice of 𝛾, indeed if 𝜂 is another such curve then ∫𝛾
𝑓(𝑧)d𝑧 − ∫𝜂

𝑓(𝑧)d𝑧

= ∫𝛾−𝜂
𝑓(𝑧)d𝑧 = 0 (the integrals cancel each other on the common edges with reversed orientation, and by the previous

theorem, each integral around a simple closed polygonal curve is 0).

𝛾

−𝜂

𝑧0

𝑧
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ℎ − 𝑓(𝑧)| =
|
∫[𝑧,𝑧+ℎ] 𝑓(𝑤)d𝑤

ℎ − 𝑓(𝑧)
|

= |∫[𝑧,𝑧+ℎ]

𝑓(𝑤) − 𝑓(𝑧)
ℎ d𝑤|

≤ ( max
𝑤∈[𝑧,𝑧+ℎ]

|𝑓 (𝑤) − 𝑓(𝑧)|)
ℒ([𝑧, 𝑧 + ℎ])

|ℎ|

= ( max
𝑤∈[𝑧,𝑧+ℎ]

|𝑓 (𝑤) − 𝑓(𝑧)|) −−−→
ℎ→0

0

■
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Cauchy’s integral theorem – 3
Corollary
Let 𝑈 ⊂ ℂ be an open simply connected subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth closed curve included4 in 𝑈 , then ∫𝛾

𝑓(𝑧)d𝑧 = 0.

Corollary
Let 𝑈 ⊂ ℂ be an open simply connected subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾1 ∶ [𝑎1, 𝑏1] → ℂ and 𝛾2 ∶ [𝑎2, 𝑏2] → ℂ be two piecewise smooth curves included4 in 𝑈 with
same endpoints a, then ∫𝛾1

𝑓(𝑧)d𝑧 = ∫𝛾2
𝑓(𝑧)d𝑧.

ai.e. 𝛾1(𝑎1) = 𝛾2(𝑎2) and 𝛾1(𝑏1) = 𝛾2(𝑏2).

Proof of both corollaries. Let 𝐹 be a primitive of 𝑓 on 𝑈 then

∫𝛾
𝑓(𝑧)d𝑧 = ∫

𝑏

𝑎
𝑓(𝛾(𝑡))𝛾′(𝑡)d𝑡 = ∫

𝑏

𝑎
(𝐹 ∘ 𝛾)′(𝑡)d𝑡 = 𝐹 (𝛾(𝑏)) − 𝐹 (𝛾(𝑎))

■

4i.e. ∀𝑡 ∈ [𝑎, 𝑏], 𝛾(𝑡) ∈ 𝑈 .
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Cauchy’s integral theorem – 4
When the domain is simply connected, we proved:

Theorem: Cauchy’s integral theorem – version 2
Let 𝑈 ⊂ ℂ be an open simply connected subset and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Then

• For 𝛾 ∶ [𝑎, 𝑏] → ℂ a piecewise smooth closed curve included in 𝑈 ,

∫𝛾
𝑓(𝑧)d𝑧 = 0

• For 𝛾𝑖 ∶ [𝑎𝑖, 𝑏𝑖] → ℂ, 𝑖 = 1, 2 two piecewise smooth curves included in 𝑈 with same
endpoints,

∫𝛾1
𝑓(𝑧)d𝑧 = ∫𝛾2

𝑓(𝑧)d𝑧

• 𝑓 admits a primitive/antiderivative5 𝐹 on 𝑈 ,
i.e. there exists 𝐹 ∶ 𝑈 → ℂ holomorphic/analytic such that 𝐹 ′ = 𝑓 .

5Actually a function 𝑓 ∶ 𝑈 → ℂ, where 𝑈 ⊂ ℂ is simply connected, is holomorphic if and only if it admits a (complex)
antiderivative: indeed, we will see soon that the derivative of a holomorphic function is holomorphic too.
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Cauchy’s integral theorem – 5

Careful
The simple connectedness assumption of the domain is essential.

Indeed 𝑓 ∶ ℂ ⧵ {0} → ℂ defined by 𝑓(𝑧) = 1/𝑧 is holomorphic, but :

• For 𝛾 ∶ [0, 2𝜋] → ℂ defined by 𝛾(𝑡) = 𝑒𝑖𝑡, we have ∫𝛾

1
𝑧d𝑧 = 2𝑖𝜋 ≠ 0

• 𝑓 has no antiderivative on ℂ ⧵ {0}.
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An application of Cauchy’s integral theorem: Fresnel’s integrals
The following (improper) integrals are difficult to compute using only ”real” methods.

Frenel’s integrals

∫
+∞

0
cos (𝑡2) d𝑡 = ∫

+∞

0
sin (𝑡2) d𝑡 = 1

2√
𝜋
2

ℜ

ℑ

𝛾1

𝛾2𝛾3

0 𝑟

𝑟(1 + 𝑖) •
∫𝛾1

𝑒−𝑧2
d𝑧 = ∫

𝑟

0
𝑒−𝑡2 d𝑡 −−−−−→

𝑟→+∞
√𝜋

2 .

•
|∫𝛾2

𝑒−𝑧2
d𝑧

|
= |∫

1

0
𝑖𝑟𝑒(𝑡2−1)𝑟2 𝑒2𝑖𝑡𝑟2

d𝑡| ≤ 𝑟𝑒−𝑟2
∫

1

0
𝑒𝑡2𝑟2

d𝑡 ≤ 𝑟𝑒−𝑟2
∫

1

0
𝑒𝑡𝑟2

d𝑡 = 1 − 𝑒−𝑟2

𝑟 −−−−→
𝑟→+∞

0

•
∫𝛾3

𝑒−𝑧2
d𝑧 = ∫

𝑟

0
(1 + 𝑖)𝑒((1+𝑖)𝑡)2

d𝑡 = (1 + 𝑖) ∫
𝑟

0
𝑒−2𝑖𝑡2 d𝑡 = 𝑒𝑖 𝜋

4 ∫

𝑟
√2

0
𝑒−𝑖𝑡2 d𝑡

By Cauchy’s integral theorem 0 = ∫𝛾1+𝛾2−𝛾3
𝑒−𝑧2

d𝑧 = ∫𝛾1
𝑒−𝑧2

d𝑧 + ∫𝛾2
𝑒−𝑧2

d𝑧 − ∫𝛾3
𝑒−𝑧2

d𝑧.

So ∫
+∞

0
𝑒−𝑖𝑡2 d𝑡 = 𝑒−𝑖 𝜋

4
√𝜋

2 and finally we identify the real and imaginary parts. ■
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d𝑡 = 1 − 𝑒−𝑟2

𝑟 −−−−→
𝑟→+∞

0

•
∫𝛾3

𝑒−𝑧2
d𝑧 = ∫

𝑟

0
(1 + 𝑖)𝑒((1+𝑖)𝑡)2

d𝑡 = (1 + 𝑖) ∫
𝑟

0
𝑒−2𝑖𝑡2 d𝑡 = 𝑒𝑖 𝜋

4 ∫

𝑟
√2

0
𝑒−𝑖𝑡2 d𝑡

By Cauchy’s integral theorem 0 = ∫𝛾1+𝛾2−𝛾3
𝑒−𝑧2

d𝑧 = ∫𝛾1
𝑒−𝑧2

d𝑧 + ∫𝛾2
𝑒−𝑧2

d𝑧 − ∫𝛾3
𝑒−𝑧2

d𝑧.

So ∫
+∞

0
𝑒−𝑖𝑡2 d𝑡 = 𝑒−𝑖 𝜋

4
√𝜋

2 and finally we identify the real and imaginary parts. ■
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Cauchy’s integral formula – 1

Theorem: Cauchy’s integral formula
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth positively oriented simple closed curve on 𝑈 whose
inside Ω ≔ Inside(𝛾) is also included in 𝑈 then

∀𝑧 ∈ Ω, 𝑓(𝑧) = 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤

Proof.
Define 𝑔 ∶ 𝑈 → ℂ by 𝑔(𝑤) = {

𝑓(𝑤)−𝑓(𝑧)
𝑤−𝑧 if 𝑤 ≠ 𝑧

𝑓 ′(𝑧) if 𝑤 = 𝑧 .

Then 𝑔 is holomorphic on 𝑈 ⧵ {𝑧} and continuous on 𝑈 .

By Cauchy’s integral theorem ∫𝛾
𝑔(𝑤)d𝑤 = 0, thence ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧 d𝑤 = ∫𝛾

𝑓(𝑧)
𝑤 − 𝑧 d𝑤 = 𝑓(𝑧) ∫𝛾

1
𝑤 − 𝑧 d𝑤.

We conclude using the next lemma from which ∫𝛾

1
𝑤 − 𝑧 d𝑤 = 2𝑖𝜋. ■
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Cauchy’s integral formula – 2
Lemma
Let 𝑈 ⊂ ℂ be open. Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth positively oriented simple closed
curve on 𝑈 whose inside Ω ≔ Inside(𝛾) is also included in 𝑈 then

∀𝑧 ∈ Ω, ∫𝛾

1
𝑤 − 𝑧d𝑤 = 2𝑖𝜋

Proof. Let 𝑧 ∈ Ω. There exists 𝜀 > 0 such that 𝐷𝜀(𝑧) ⊂ Ω.

We can’t directly apply Cauchy’s integral theorem
because 𝑤 ↦ 1

𝑤−𝑧 is not defined at 𝑧.
So we divide Ω ⧵ 𝐷𝜀(𝑧) into two simply connected pieces.

𝛾

𝑧𝜎

0 = 0 + 0 = ∫orange

1
𝑤 − 𝑧 d𝑤 + ∫red

1
𝑤 − 𝑧 d𝑤 by Cauchy’s integral theorem

= ∫𝛾

1
𝑤 − 𝑧 d𝑤 + ∫𝜎

1
𝑤 − 𝑧 d𝑤 since the segment lines are counted twice with reversed orientation

= ∫𝛾

1
𝑤 − 𝑧 d𝑤 − 2𝑖𝜋 since 𝜎(𝑡) = 𝑧 + 𝑒−𝑖𝑡, 𝑡 ∈ [0, 2𝜋] ■
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Corollary
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth positively oriented simple closed curve on 𝑈 whose
inside is also included in 𝑈 .

• If 𝑧 ∈ 𝑈 is in the inside of 𝛾 then

∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤 = 2𝑖𝜋𝑓(𝑧)

• If 𝑧 ∈ 𝑈 is in the outside of 𝛾 then

∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤 = 0

Proof. First case: it is Cauchy’s integral formula.
Second case: it is a consequence of Cauchy’s integral theorem. ■

Careful: we don’t say anything when 𝑧 ∈ 𝛾 (the integrand 𝑤 ↦ 𝑓(𝑤)
𝑤−𝑧 is not defined at 𝑧).

The above corollary could be improved using ”winding numbers”.
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Example:
Computing a difficult (real) integral with Cauchy’s integral formula

∫
+∞

−∞

cos(𝑡)
1 + 𝑡2 d𝑡 = 𝜋

𝑒

ℜ

ℑ

𝛾1

𝛾2

𝑟−𝑟

𝑖

−𝑖

•
∫𝛾1+𝛾2

𝑒𝑖𝑧

1 + 𝑧2 d𝑧 = 1
2𝑖 (∫𝛾1+𝛾2

𝑒𝑖𝑧

𝑧 − 𝑖 d𝑧 − ∫𝛾1+𝛾2

𝑒𝑖𝑧

𝑧 + 𝑖 d𝑧) since 1
1 + 𝑧2 = 1

2𝑖 (
1

𝑧 − 𝑖 − 1
𝑧 + 𝑖 )

= 1
2𝑖 (2𝑖𝜋𝑒𝑖2 − 0) by Cauchy’s integral formula (resp. theorem) if 𝑟 > 1

= 𝜋
𝑒

• |∫𝛾2

𝑒𝑖𝑧

1 + 𝑧2 d𝑧| ≤ Length(𝛾2) 1
𝑟2 − 1

= 𝜋𝑟
𝑟2 − 1

−−−−−→
𝑟→+∞

0 (
|𝑒𝑖𝑧| ≤ 1 since ℑ(𝑧) ≥ 0
|1 + 𝑧2| ≥ 𝑟2 − 1 )

•
∫𝛾1

𝑒𝑖𝑧

1 + 𝑧2 d𝑧 = ∫
𝑟

−𝑟

𝑒𝑖𝑡

𝑡2 + 1
d𝑡 = ∫

𝑟

−𝑟

cos(𝑡) + 𝑖 sin(𝑡)
𝑡2 + 1

d𝑡 = ∫
𝑟

−𝑟

cos(𝑡)
𝑡2 + 1

d𝑡 since sin is odd.

• Since |
cos(𝑡)
1 + 𝑡2 | ≤ 1

1 + 𝑡2 , ∫
+∞

−∞

cos(𝑡)
1 + 𝑡2 d𝑡 is absolutely convergent, thence ∫

+∞

−∞

cos(𝑡)
1 + 𝑡2 d𝑡 = lim

𝑟→+∞ ∫
𝑟

−𝑟

cos(𝑡)
1 + 𝑡2 d𝑡 (we can

use the same variable for both bounds).

Therefore 𝜋
𝑒 = lim

𝑟→+∞ ∫𝛾1+𝛾2

𝑒𝑖𝑧

1 + 𝑧2 d𝑧 = ∫
+∞

−∞

cos(𝑡)
1 + 𝑡2 d𝑡 + 0.
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Next lecture, we will see that Cauchy’s integral formula has deep consequences concerning
properties of holomorphic functions!
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