Power Series

October $7^{\text {th }}, 2020$ and October $9^{\text {th }}, 2020$

Power series: definition

Definition: power series

A (complex) power series centered at $z_{0} \in \mathbb{C}$ is a series of the form

$$
S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where $a_{n} \in \mathbb{C}$.

Power series: definition

Definition: power series

A (complex) power series centered at $z_{0} \in \mathbb{C}$ is a series of the form

$$
S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where $a_{n} \in \mathbb{C}$.

Examples

$\sum_{n \geq 1} \frac{(z-1)^{n}}{n}, \sum_{n \geq 0}\left(n^{2}+1\right)(z-2 i)^{n}, \sum_{n \geq 0} \frac{z^{n}}{n!}, \cdots$

Power series: definition

Definition: power series

A (complex) power series centered at $z_{0} \in \mathbb{C}$ is a series of the form

$$
S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where $a_{n} \in \mathbb{C}$.

Examples

$\sum_{n \geq 1} \frac{(z-1)^{n}}{n}, \sum_{n \geq 0}\left(n^{2}+1\right)(z-2 i)^{n}, \sum_{n \geq 0} \frac{z^{n}}{n!}, \cdots$

A first natural question is: for which $z \in \mathbb{C}$ is the series $S(z)$ convergent?

Radius of convergence - 1

Theorem: radius of convergence

Given a power series $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ there exists a unique $R \in[0,+\infty]$ such that

$$
\forall z \in \mathbb{C},\left\{\begin{array}{l}
\left|z-z_{0}\right|<R \Longrightarrow S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} \text { is absolutely convergent } \\
\left|z-z_{0}\right|>R \Longrightarrow S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} \text { is divergent }
\end{array}\right.
$$

We say that R is the radius of convergence of the power series $S(z)$.

Radius of convergence - 1

Theorem: radius of convergence

Given a power series $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ there exists a unique $R \in[0,+\infty]$ such that

$$
\forall z \in \mathbb{C},\left\{\begin{array}{l}
\left|z-z_{0}\right|<R \Longrightarrow S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} \text { is absolutely convergent } \\
\left|z-z_{0}\right|>R \Longrightarrow S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} \text { is divergent }
\end{array}\right.
$$

We say that R is the radius of convergence of the power series $S(z)$.
Below is the meaning of R for the extremal values 0 and $+\infty$:

- $R=0$ means that $S(z)$ is convergent if and only if $z=z_{0}$.
- $R=+\infty$ means that $S(z)$ is absolutely convergent for all $z \in \mathbb{C}$.

Radius of convergence - 2

Careful

We can't conclude anything when $\left|z-z_{0}\right|=R$.
Indeed, the radius of convergence of the following power series is $R=1$, but:

- $\sum_{n=0}^{+\infty} z^{n}$ is divergent for all $z \in \mathbb{C}$ such that $|z|=1$.
- $\sum_{n=0}^{+\infty} \frac{z^{n}}{n}$ is divergent for $z=1$ but (semi)-convergent for all $z \in \mathbb{C}$ such that $|z|=1$ and $z \neq 1$.
- $\sum_{n=0}^{+\infty} \frac{z^{n}}{n^{2}}$ is absolutely convergent for all $z \in \mathbb{C}$ such that $|z|=1$.

Radius of convergence - 3

For z in the circle of indeterminacy $\left|z-z_{0}\right|=R$, the power series $S(z)$ may be divergent, semi-convergent or absolutely convergent: we can't conclude...

Radius of convergence - 4

Proof: existence of R for $S(z)=\sum a_{n}\left(z-z_{0}\right)^{n}$.

Note that $E=\left\{r \in[0,+\infty):\left(a_{n} r^{n}\right)_{n}\right.$ is bounded $\}$ is non-empty since $0 \in E$. Hence $R=\sup E$ is well-defined (possibly $+\infty$ if E is unbounded).

- Assume that $\left|z-z_{0}\right|<R$ then there exists ρ such that $\left|z-z_{0}\right|<\rho<R$ and $\exists M>0, \forall n \in \mathbb{N},\left|a_{n} \rho^{n}\right|<M$.
Then $\sum_{n \geq 0}\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\sum_{n \geq 0}\left|a_{n} \rho^{n}\right|\left(\frac{\left|z-z_{0}\right|}{\rho}\right)^{n} \leq M \sum_{n \geq 0}\left(\frac{\left|z-z_{0}\right|}{\rho}\right)^{n}$.
The last series is convergent (geometric series with $\frac{\left|z-z_{0}\right|}{\rho}<1$).
Hence $S(z)=\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n}$ is absolutely convergent.
- Assume that $\left|z-z_{0}\right|>R$ then $\lim _{n \rightarrow+\infty} a_{n}\left(z-z_{0}\right)^{n} \neq 0$ since $\left(a_{n}\left(z-z_{0}\right)^{n}\right)_{n}$ is not bounded. Hence $S(z)=\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n}$ is divergent.

Radius of convergence - 5

Hence we have that the radius of convergence of $S(z)=\sum a_{n}\left(z-z_{0}\right)^{n}$ is given by

$$
\begin{aligned}
R & =\sup \left\{r \in[0,+\infty):\left(a_{n} r^{n}\right)_{n} \text { is bounded }\right\} \\
& =\sup \left\{\left|z-z_{0}\right|: \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} \text { is convergent }\right\} \\
& =\inf \left\{\left|z-z_{0}\right|: \sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n} \text { is divergent }\right\}
\end{aligned}
$$

$$
\text { By a theorem of Hadamard, we also have that } R=\frac{1}{\limsup _{n \rightarrow+\infty}^{n} \sqrt[n]{\left|a_{n}\right|}}
$$

Two useful methods to compute the radius of convergence

Theorem: d'Alembert ratio test for power series

Let $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ be a power series such that $a_{n} \neq 0$ for n big enough.
If the limit $\ell:=\lim _{n \rightarrow+\infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists or is $+\infty$ then the radius of convergence of $S(z)$ is $R=\frac{1}{\ell}$.

Theorem: root test for power series

Let $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ be a power series.
If the limit $\ell:=\lim _{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|}$ exists or is $+\infty$ then the radius of convergence of $S(z)$ is $R=\frac{1}{\ell}$.

In the two above tests we use the convention $\frac{1}{\infty}=0$ and $\frac{1}{0}=\infty$.

Homework: geometric series

We define $S(z)=\sum_{n=n_{0}}^{+\infty}\left(z-z_{0}\right)^{n}$.
(1) What is the radius of convergence R of $S(z)$?
(2) Study $S(z)$ of z such that $\left|z-z_{0}\right|=R$.
(3) Find an expression for $S(z)$ when $z \in D_{R}\left(z_{0}\right)$.

Homework - 1

What are the radii of convergence of the following power series:

(1) $\sum_{n=0}^{+\infty} a^{n} z^{n}$ (where $a \in \mathbb{C}$)
(2) $\sum_{n=0}^{+\infty} e^{-\sqrt{n}} z^{n}$
(3 $\sum_{n=0}^{+\infty} \sin (n) z^{n}$
(4) $\sum_{n=0}^{+\infty} \frac{n^{2}-n+3}{2 n^{3}+n+\pi} z^{n}$
(5 $\sum_{n=0}^{+\infty} \ln (n!) z^{n}$
(6 $\sum_{n=0}^{+\infty}\binom{5 n}{2 n} z^{n}$
(7) $\sum_{n=0}^{+\infty} \frac{1}{n^{2}+1} z^{2 n}$ (be careful with this one, why?)
(8 $\sum_{n=1}^{+\infty} \frac{1}{n 3^{n}} z^{n}$

Hint: for the first three, you can simply use that $R=\sup \left\{r \in[0,+\infty):\left(a_{n} r^{r}\right)_{n}\right.$ is bounded $\}$.

Homework - 2

For question 7 in the previous slide, you can NOT apply the ratio test for power series.
Indeed, $\sum_{n=0}^{+\infty} \frac{1}{n^{2}+1} z^{2 n}=1+0 z+\frac{1}{2} z^{2}+0 z^{3}+\frac{1}{5} z^{4}+0 z^{5}+\frac{1}{10} z^{6}+0 z^{7}+\cdots$.
If we want to rewrite $\sum_{n=0}^{+\infty} \frac{1}{n^{2}+1} z^{2 n}=\sum_{n=0}^{+\infty} a_{n} z^{n}$ then $a_{n}=\left\{\begin{array}{cl}\frac{1}{(n / 2)^{2}+1} & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{array}\right.$.
Hence, since $a_{n}=0$ for n odd, we can't compute $\lim _{n \rightarrow+\infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
One way is to directly work with the usual ratio test (for series, not power series): if $z \neq 0$ then

$$
\lim _{n \rightarrow+\infty}\left|\frac{\frac{1}{(n+1)^{2}+1} z^{2(n+1)}}{\frac{1}{n^{2}+1} z^{2 n}}\right|=\lim _{n \rightarrow+\infty}\left|\frac{n^{2}+1}{(n+1)^{2}+1} z^{2}\right|=|z|^{2}
$$

Hence, by the usual ratio test, the series is absolutely convergent when $|z|<1$ and divergent when $|z|>1$. Therefore the radius of convergence is 1 .

Sum of two power series - 1

Theorem

Let $S_{A}=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $S_{B}=\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}$ be two power series of radii R_{A} and R_{B}.
We define $S_{A+B}(z):=\sum_{n=0}^{+\infty}\left(a_{n}+b_{n}\right)\left(z-z_{0}\right)^{n}$ and denote its radius of convergence by R_{A+B}. Then
(1) $R_{A+B} \geq \min \left(R_{A}, R_{B}\right)$.
(2) If $R_{A} \neq R_{b}$ then $R_{A+B}=\min \left(R_{A}, R_{B}\right)$.
(3) If $\left|z-z_{0}\right|<\min \left(R_{A}, R_{B}\right)$ then $S_{A+B}(z)=S_{A}(z)+S_{B}(z)$,

$$
\text { i.e. } \sum_{n=0}^{+\infty}\left(a_{n}+b_{n}\right)\left(z-z_{0}\right)^{n}=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n} \text {. }
$$

Sum of two power series - 2

Careful

When $R_{A}=R_{B}$ we may have $R_{A+B}=R_{A}=R_{B}$ or $R_{A+B}>R_{A}=R_{B}$.
(1) $S_{A}(z)=\sum_{n=0}^{+\infty} z^{n}$ and $S_{B}(z)=\sum_{n=0}^{+\infty} n z^{n}$ are of radii 1 , and $S_{A+B}(z)=\sum_{n=0}^{+\infty}(1+n) z^{n}$ is of radius 1 .
(2) $S_{A}(z)=\sum_{n=0}^{+\infty} z^{n}$ and $S_{B}(z)=\sum_{n=0}^{+\infty}\left(2^{-n}-1\right) z^{n}$ are of radii 1 , and $S_{A+B}(z)=\sum_{n=0}^{+\infty} 2^{-n} z^{n}$ is of radius 2 .
(3) $S_{A}(z)=\sum_{n=0}^{+\infty} z^{n}$ and $S_{B}(z)=\sum_{n=0}^{+\infty}-z^{n}$ are of radii 1 , and $S_{A+B}(z)=\sum_{n=0}^{+\infty} 0 z^{n}$ is of radius $+\infty$.

Product of two power series - 1

Theorem

Let $S_{A}=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $S_{B}=\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}$ be two power series of radii R_{A} and R_{B}.
We define $S_{A B}(z):=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)\left(z-z_{0}\right)^{n}$ and denote its radius of convergence by $R_{A B}$. Then
(1) $R_{A+B} \geq \min \left(R_{A}, R_{B}\right)$.
(2) If $\left|z-z_{0}\right|<\min \left(R_{A}, R_{B}\right)$ then $S_{A B}(z)=S_{A}(z) S_{B}(z)$,

$$
\text { i.e. } \sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)\left(z-z_{0}\right)^{n}=\left(\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}\right)\left(\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}\right)
$$

Product of two power series - 1

Theorem

Let $S_{A}=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $S_{B}=\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}$ be two power series of radii R_{A} and R_{B}.
We define $S_{A B}(z):=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)\left(z-z_{0}\right)^{n}$ and denote its radius of convergence by $R_{A B}$. Then
(1) $R_{A+B} \geq \min \left(R_{A}, R_{B}\right)$.
(2) If $\left|z-z_{0}\right|<\min \left(R_{A}, R_{B}\right)$ then $S_{A B}(z)=S_{A}(z) S_{B}(z)$,

$$
\text { i.e. } \sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)\left(z-z_{0}\right)^{n}=\left(\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}\right)\left(\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}\right)
$$

Careful

$$
S_{A B}(z) \neq \sum_{n=0}^{+\infty}\left(a_{n} b_{n}\right)\left(z-z_{0}\right)^{n}: \text { we need to use the Cauchy product as defined above! }
$$

Product of two power series - 2

Careful

We may have $R_{A B}=\min \left(R_{A}, R_{B}\right)$ or $R_{A B}>\min \left(R_{A}, R_{B}\right)$, even when $R_{A} \neq R_{B}$.
$S_{A}(z)=\sum_{n=0}^{+\infty} z^{n}$ is of radius 1 and $S_{B}(z)=1-z$ is of radius $+\infty$ but $S_{A B}(z)=1$ is of radius $+\infty$.

In this example, intuitively: $\frac{1}{1-z}(1-z)=1$

Differentiability of power series - 1

Theorem

Let $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ be a power series of radius of convergence R.
Then S is holomorphic/analytic ${ }^{1} / \mathbb{C}$-differentiable on $D_{R}\left(z_{0}\right)$ and moreover

$$
\forall z \in D_{R}\left(z_{0}\right), S^{\prime}(z)=\sum_{n=1}^{+\infty} n a_{n}\left(z-z_{0}\right)^{n-1}=\sum_{n=0}^{+\infty}(n+1) a_{n+1}\left(z-z_{0}\right)^{n}
$$

whose radius of convergence is also R.

[^0]
Differentiability of power series - 2

The previous result contains several things:
(1) The power series $\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $\sum_{n=1}^{+\infty} n a_{n}\left(z-z_{0}\right)^{n-1}$ have same radius of convergence,
(2 The function $S: D_{R}\left(z_{0}\right) \rightarrow \mathbb{C}$ defined by $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ is holomorphic on $D_{R}\left(z_{0}\right)$,
(3) For all $z \in D_{R}\left(z_{0}\right), S^{\prime}(z)=\sum_{n=1}^{+\infty} n a_{n}\left(z-z_{0}\right)^{n-1}$.

Differentiability of power series - 3

Corollary

Let $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ be a power series of radius of convergence R.
Then S is infinitely many times \mathbb{C}-differentiable on $D_{R}\left(z_{0}\right)$ and moreover

$$
\forall z \in D_{R}\left(z_{0}\right), S^{(k)}(z)=\sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_{n}\left(z-z_{0}\right)^{n-k}
$$

whose radius of convergence is also R.

Differentiability of power series - 3

Corollary

Let $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ be a power series of radius of convergence R.
Then S is infinitely many times \mathbb{C}-differentiable on $D_{R}\left(z_{0}\right)$ and moreover

$$
\forall z \in D_{R}\left(z_{0}\right), S^{(k)}(z)=\sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_{n}\left(z-z_{0}\right)^{n-k}
$$

whose radius of convergence is also R.

(Important) Corollary

If $S(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ is a power series with radius of convergence $R>0$, then $a_{n}=\frac{S^{(n)}\left(z_{0}\right)}{n!}$.

Differentiability of power series - 4

Example: power series expansion of the complex exponential

(1) The radius of convergence of $S(z)=\sum_{n=0}^{+\infty} \frac{z^{n}}{n!}$ is $+\infty$.

Indeed, we may conclude with the ratio test since $\lim _{n \rightarrow+\infty}\left|\frac{\frac{1}{(n+1)!}}{\frac{1}{n!}}\right|=\lim _{n \rightarrow+\infty} \frac{1}{n+1}=0$.
(2) For all $z \in \mathbb{C}, S^{\prime}(z)=S(z)$.

Indeed, $S^{\prime}(z)=\sum_{n=1}^{+\infty} n \frac{z^{n-1}}{n!}=\sum_{n=1}^{+\infty} \frac{z^{n-1}}{(n-1)!}=S(z)$.
(3) For all $z \in \mathbb{C}, e^{z}=\sum_{n=0}^{+\infty} \frac{z^{n}}{n!}$.

Indeed, $\frac{\partial}{\partial z}\left(e^{-z} S(z)\right)=-e^{-z} S(z)+e^{-z} S^{\prime}(z)=-e^{-z} S(z)+e^{-z} S(z)=0$.
Thence $e^{-z} S(z)=\lambda$ is constant since \mathbb{C} is connected.
We evaluate at $z=0$ to obtain that $\lambda=1$, so that $S(z)=e^{z}$.

Differentiability of power series - 5

Example: power series expansion of the complex cosine

For $z \in \mathbb{C}$, we have

$$
\begin{aligned}
\cos (z) & =\frac{e^{i z}+e^{-i z}}{2} \\
& =\frac{1}{2}\left(\sum_{n=0}^{+\infty} \frac{(i z)^{n}}{n!}+\sum_{n=0}^{+\infty} \frac{(i z)^{n}}{n!}\right) \\
& =\sum_{n=0}^{+\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}
\end{aligned}
$$

[^0]: ${ }^{1}$ I really don't like the choice in the textbook...

