MAT334H1-F – LEC0101 Complex Variables

October 7th, 2020 and October 9th, 2020

Power series: definition

Definition: power series

A (complex) power series centered at $z_0 \in \mathbb{C}$ is a series of the form

$$S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

where $a_n \in \mathbb{C}$.

Power series: definition

Definition: power series

A (complex) power series centered at $z_0 \in \mathbb{C}$ is a series of the form

$$S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^{\prime}$$

where $a_n \in \mathbb{C}$.

Examples

$$\sum_{n\geq 1} \frac{(z-1)^n}{n}, \sum_{n\geq 0} (n^2+1)(z-2i)^n, \sum_{n\geq 0} \frac{z^n}{n!}, \dots$$

Power series: definition

Definition: power series

A (complex) power series centered at $z_0 \in \mathbb{C}$ is a series of the form

$$S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^{\prime}$$

where $a_n \in \mathbb{C}$.

Examples

$$\sum_{n\geq 1} \frac{(z-1)^n}{n}, \sum_{n\geq 0} (n^2+1)(z-2i)^n, \sum_{n\geq 0} \frac{z^n}{n!}, \dots$$

A first natural question is: for which $z \in \mathbb{C}$ is the series S(z) convergent?

Radius of convergence – 1

Theorem: radius of convergence

Given a power series $S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ there exists a unique $R \in [0, +\infty]$ such that

$$\forall z \in \mathbb{C}, \begin{cases} |z - z_0| < R \implies S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \text{ is absolutely convergen} \\ |z - z_0| > R \implies S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \text{ is divergent} \end{cases}$$

We say that *R* is the **radius of convergence** of the power series S(z).

Radius of convergence - 1

Theorem: radius of convergence

Given a power series $S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ there exists a unique $R \in [0, +\infty]$ such that

$$\forall z \in \mathbb{C}, \begin{cases} |z - z_0| < R \implies S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \text{ is absolutely convergen} \\ |z - z_0| > R \implies S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \text{ is divergent} \end{cases}$$

We say that *R* is the **radius of convergence** of the power series S(z).

Below is the meaning of *R* for the extremal values 0 and $+\infty$:

- R = 0 means that S(z) is convergent if and only if $z = z_0$.
- $R = +\infty$ means that S(z) is absolutely convergent for all $z \in \mathbb{C}$.

Careful

We can't conclude anything when $|z - z_0| = R$.

Indeed, the radius of convergence of the following power series is R = 1, but:

```
• \sum_{n=0}^{+\infty} z^n is divergent for all z \in \mathbb{C} such that |z| = 1.
```

```
• \sum_{n=0}^{+\infty} \frac{z^n}{n} is divergent for z = 1 but (semi)-convergent for all z \in \mathbb{C} such that |z| = 1 and z \neq 1.
```

```
• \sum_{n=0}^{+\infty} \frac{z^n}{n^2} is absolutely convergent for all z \in \mathbb{C} such that |z| = 1.
```

Radius of convergence – 3

For z in the circle of indeterminacy $|z - z_0| = R$, the power series S(z) may be divergent, semi-convergent or absolutely convergent: we can't conclude...

 $n \ge 0$

Proof: existence of *R* for $S(z) = \sum a_n (z - z_0)^n$.

Note that $E = \{r \in [0, +\infty) : (a_n r^n)_n \text{ is bounded}\}$ is non-empty since $0 \in E$. Hence $R = \sup E$ is well-defined (possibly $+\infty$ if *E* is unbounded).

• Assume that $|z - z_0| < R$ then there exists ρ such that $|z - z_0| < \rho < R$ and $\exists M > 0, \forall n \in \mathbb{N}, |a_n \rho^n| < M$.

Then
$$\sum_{n\geq 0} |a_n(z-z_0)^n| = \sum_{n\geq 0} |a_n\rho^n| \left(\frac{|z-z_0|}{\rho}\right)^n \le M \sum_{n\geq 0} \left(\frac{|z-z_0|}{\rho}\right)^n$$
.
The last series is convergent (geometric series with $\frac{|z-z_0|}{\rho} < 1$).
Hence $S(z) = \sum_{n\geq 0} a_n(z-z_0)^n$ is absolutely convergent.

• Assume that $|z - z_0| > R$ then $\lim_{n \to +\infty} a_n (z - z_0)^n \neq 0$ since $(a_n (z - z_0)^n)_n$ is not bounded. Hence $S(z) = \sum_{n \ge 0} a_n (z - z_0)^n$ is divergent.

Radius of convergence – 5

Hence we have that the radius of convergence of $S(z) = \sum a_n (z - z_0)^n$ is given by

$$R = \sup\left\{r \in [0, +\infty) : (a_n r^n)_n \text{ is bounded}\right\}$$
$$= \sup\left\{|z - z_0| : \sum_{n=0}^{+\infty} a_n (z - z_0)^n \text{ is convergent}\right\}$$
$$= \inf\left\{|z - z_0| : \sum_{n=0}^{+\infty} a_n (z - z_0)^n \text{ is divergent}\right\}$$

By a theorem of Hadamard, we also have that
$$R = \frac{1}{\limsup_{n \to +\infty} \sqrt[n]{|a_n|}}$$

Two useful methods to compute the radius of convergence

Theorem: d'Alembert ratio test for power series

Let
$$S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 be a power series such that $a_n \neq 0$ for *n* big enough.
If the limit $\ell := \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists or is $+\infty$ then the radius of convergence of $S(z)$ is $R = \frac{1}{\ell}$.

Theorem: root test for power series

Let
$$S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 be a power series.
If the limit $\ell := \lim_{n \to +\infty} \sqrt[n]{|a_n|}$ exists or is $+\infty$ then the radius of convergence of $S(z)$ is $R = \frac{1}{\ell}$.

In the two above tests we use the convention $\frac{1}{\infty} = 0$ and $\frac{1}{0} = \infty$.

We define
$$S(z) = \sum_{n=n_0}^{+\infty} (z - z_0)^n$$
.

1 What is the radius of convergence R of S(z)?

2 Study S(z) of z such that $|z - z_0| = R$.

3 Find an expression for S(z) when $z \in D_R(z_0)$.

Homework – 1

What are the radii of convergence of the following power series:

1
$$\sum_{n=0}^{+\infty} a^n z^n \text{ (where } a \in \mathbb{C}\text{)}$$
2
$$\sum_{n=0}^{+\infty} e^{-\sqrt{n}} z^n$$
3
$$\sum_{n=0}^{+\infty} \sin(n) z^n$$
4
$$\sum_{n=0}^{+\infty} \frac{n^2 - n + 3}{2n^3 + n + \pi} z^n$$
5
$$\sum_{n=0}^{+\infty} \ln(n!) z^n$$
6
$$\sum_{n=0}^{+\infty} \frac{1}{n^2 + 1} z^{2n} \text{ (be careful with this one, why?)}$$
7
$$\sum_{n=0}^{+\infty} \frac{1}{n^3 + 1} z^n$$
8
$$\sum_{n=1}^{+\infty} \frac{1}{n^3 n} z^n$$

Hint: for the first three, you can simply use that $R = \sup \{r \in [0, +\infty) : (a_n r^n)_n \text{ is bounded} \}$.

Homework – 2

For question 7 in the previous slide, you can NOT apply the ratio test for power series. Indeed, $\sum_{n=0}^{+\infty} \frac{1}{n^2 + 1} z^{2n} = 1 + 0z + \frac{1}{2} z^2 + 0z^3 + \frac{1}{5} z^4 + 0z^5 + \frac{1}{10} z^6 + 0z^7 + \cdots$ If we want to rewrite $\sum_{n=0}^{+\infty} \frac{1}{n^2 + 1} z^{2n} = \sum_{n=0}^{+\infty} a_n z^n$ then $a_n = \begin{cases} \frac{1}{(n/2)^2 + 1} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$ Hence, since $a_n = 0$ for n odd, we can't compute $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|$.

One way is to directly work with the usual ratio test (for series, not power series): if $z \neq 0$ then

$$\lim_{n \to +\infty} \left| \frac{\frac{1}{(n+1)^2 + 1} z^{2(n+1)}}{\frac{1}{n^2 + 1} z^{2n}} \right| = \lim_{n \to +\infty} \left| \frac{n^2 + 1}{(n+1)^2 + 1} z^2 \right| = |z|^2$$

Hence, by the usual ratio test, the series is absolutely convergent when |z| < 1 and divergent when |z| > 1. Therefore the radius of convergence is 1.

Sum of two power series - 1

Theorem

Let
$$S_A = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 and $S_B = \sum_{n=0}^{+\infty} b_n (z - z_0)^n$ be two power series of radii R_A and R_B .
We define $S_{A+B}(z) \coloneqq \sum_{n=0}^{+\infty} (a_n + b_n)(z - z_0)^n$ and denote its radius of convergence by R_{A+B} .
Then

1
$$R_{A+B} \ge \min(R_A, R_B).$$

2 If $R_A \ne R_b$ then $R_{A+B} = \min(R_A, R_B).$
3 If $|z - z_0| < \min(R_A, R_B)$ then $S_{A+B}(z) = S_A(z) + S_B(z),$
i.e. $\sum_{n=0}^{+\infty} (a_n + b_n)(z - z_0)^n = \sum_{n=0}^{+\infty} a_n(z - z_0)^n + \sum_{n=0}^{+\infty} b_n(z - z_0)^n.$

Careful

When
$$R_A = R_B$$
 we may have $R_{A+B} = R_A = R_B$ or $R_{A+B} > R_A = R_B$.

1
$$S_A(z) = \sum_{n=0}^{+\infty} z^n$$
 and $S_B(z) = \sum_{n=0}^{+\infty} nz^n$ are of radii 1, and $S_{A+B}(z) = \sum_{n=0}^{+\infty} (1+n)z^n$ is of radius 1.

2
$$S_A(z) = \sum_{n=0}^{+\infty} z^n$$
 and $S_B(z) = \sum_{n=0}^{+\infty} (2^{-n} - 1) z^n$ are of radii 1, and $S_{A+B}(z) = \sum_{n=0}^{+\infty} 2^{-n} z^n$ is of radius 2.

$$S_A(z) = \sum_{n=0}^{+\infty} z^n \text{ and } S_B(z) = \sum_{n=0}^{+\infty} -z^n \text{ are of radii 1, and } S_{A+B}(z) = \sum_{n=0}^{+\infty} 0z^n \text{ is of radius } +\infty.$$

Product of two power series - 1

Theorem

Let
$$S_A = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 and $S_B = \sum_{n=0}^{+\infty} b_n (z - z_0)^n$ be two power series of radii R_A and R_B .
We define $S_{AB}(z) \coloneqq \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) (z - z_0)^n$ and denote its radius of convergence by R_{AB} .
Then

$$\begin{array}{l} \bullet R_{A+B} \geq \min(R_A, R_B). \\ \bullet \| |z-z_0| < \min(R_A, R_B) \text{ then } S_{AB}(z) = S_A(z)S_B(z), \\ \bullet \| e. \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right)(z-z_0)^n = \left(\sum_{n=0}^{+\infty} a_n(z-z_0)^n\right) \left(\sum_{n=0}^{+\infty} b_n(z-z_0)^n\right). \end{array}$$

Product of two power series – 1

Theorem

Let
$$S_A = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 and $S_B = \sum_{n=0}^{+\infty} b_n (z - z_0)^n$ be two power series of radii R_A and R_B .
We define $S_{AB}(z) \coloneqq \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) (z - z_0)^n$ and denote its radius of convergence by R_{AB} .
Then

$$\begin{array}{l} \label{eq:rescaled_res$$

Careful

 $S_{AB}(z) \neq \sum_{n=0}^{+\infty} (a_n b_n)(z - z_0)^n$: we need to use the *Cauchy product* as defined above!

Careful

We may have $R_{AB} = \min(R_A, R_B)$ or $R_{AB} > \min(R_A, R_B)$, even when $R_A \neq R_B$.

$$S_A(z) = \sum_{n=0}^{+\infty} z^n$$
 is of radius 1 and $S_B(z) = 1 - z$ is of radius $+\infty$ but $S_{AB}(z) = 1$ is of radius $+\infty$.

In this example, intuitively: $\frac{1}{1-z}(1-z) = 1$

Theorem

Let $S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ be a power series of radius of convergence *R*.

Then S is holomorphic/analytic¹/ \mathbb{C} -differentiable on $D_R(z_0)$ and moreover

$$\forall z \in D_R(z_0), \ S'(z) = \sum_{n=1}^{+\infty} na_n(z-z_0)^{n-1} = \sum_{n=0}^{+\infty} (n+1)a_{n+1}(z-z_0)^n$$

whose radius of convergence is also R.

¹I really don't like the choice in the textbook...

The previous result contains several things:

The power series
$$\sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 and $\sum_{n=1}^{+\infty} n a_n (z - z_0)^{n-1}$ have same radius of convergence,
The function $S : D_R(z_0) \to \mathbb{C}$ defined by $S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ is holomorphic on $D_R(z_0)$,

3 For all
$$z \in D_R(z_0)$$
, $S'(z) = \sum_{n=1}^{\infty} na_n(z-z_0)^{n-1}$.

Differentiability of power series - 3

Corollary

Let $S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ be a power series of radius of convergence *R*.

Then S is infinitely many times \mathbb{C} -differentiable on $D_R(z_0)$ and moreover

$$\forall z \in D_R(z_0), \ S^{(k)}(z) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n (z-z_0)^{n-k}$$

whose radius of convergence is also R.

Differentiability of power series - 3

Corollary

Let $S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ be a power series of radius of convergence *R*.

Then S is infinitely many times \mathbb{C} -differentiable on $D_R(z_0)$ and moreover

$$\forall z \in D_R(z_0), \ S^{(k)}(z) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n (z-z_0)^{n-k}$$

whose radius of convergence is also R.

(Important) Corollary If $S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ is a power series with radius of convergence R > 0, then $a_n = \frac{S^{(n)}(z_0)}{n!}$.

Differentiability of power series - 4

Example: power series expansion of the complex exponential

The radius of convergence of
$$S(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$
 is $+\infty$.

Indeed, we may conclude with the ratio test since $\lim_{n \to +}$

$$\lim_{n \to \infty} \left| \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} \right| = \lim_{n \to +\infty} \frac{1}{n+1} = 0.$$

2 For all
$$z \in \mathbb{C}$$
, $S'(z) = S(z)$.
Indeed, $S'(z) = \sum_{n=1}^{+\infty} n \frac{z^{n-1}}{n!} = \sum_{n=1}^{+\infty} \frac{z^{n-1}}{(n-1)!} = S(z)$.
3 For all $z \in \mathbb{C}$, $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$.
Indeed, $\frac{\partial}{\partial z} \left(e^{-z} S(z) \right) = -e^{-z} S(z) + e^{-z} S'(z) = -e^{-z} S(z) + e^{-z} S(z) = 0$.
Thence $e^{-z} S(z) = \lambda$ is constant since \mathbb{C} is connected.
We evaluate at $z = 0$ to obtain that $\lambda = 1$, so that $S(z) = e^z$.

Example: power series expansion of the complex cosine

C

For $z \in \mathbb{C}$, we have

$$\begin{aligned} \operatorname{ps}(z) &= \frac{e^{iz} + e^{-iz}}{2} \\ &= \frac{1}{2} \left(\sum_{n=0}^{+\infty} \frac{(iz)^n}{n!} + \sum_{n=0}^{+\infty} \frac{(iz)^n}{n!} \right) \\ &= \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!} \end{aligned}$$